Search results for: vacuum polarization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 776

Search results for: vacuum polarization

566 Application of Stabilized Polyaniline Microparticles for Better Protective Ability of Zinc Coatings

Authors: N. Boshkova, K. Kamburova, N. Tabakova, N. Boshkov, Ts. Radeva

Abstract:

Coatings based on polyaniline (PANI) can improve the resistance of steel against corrosion. In this work, the preparation of stable suspensions of colloidal PANI-SiO2 particles, suitable for obtaining of composite anticorrosive coating on steel, is described. Electrokinetic data as a function of pH are presented, showing that the zeta potentials of the PANI-SiO2 particles are governed primarily by the charged groups at the silica oxide surface. Electrosteric stabilization of the PANI-SiO2 particles’ suspension against aggregation is realized at pH>5.5 (EB form of PANI) by adsorption of positively charged polyelectrolyte molecules onto negatively charged PANI-SiO2 particles. The PANI-SiO2 particles are incorporated by electrodeposition into the metal matrix of zinc in order to obtain composite (hybrid) coatings. The latter are aimed to ensure sacrificial protection of steel mainly in aggressive media leading to local corrosion damages. The surface morphology of the composite zinc coatings is investigated with SEM. The influence of PANI-SiO2 particles on the cathodic and anodic processes occurring in the starting electrolyte for obtaining of the coatings is followed with cyclic voltammetry. The electrochemical and corrosion behavior is evaluated with potentiodynamic polarization curves and polarization resistance measurements. The beneficial effect of the stabilized PANI-SiO2 particles for the increased protective ability of the composites is commented and discussed.

Keywords: corrosion, polyaniline-silica particles, zinc, protective ability

Procedia PDF Downloads 146
565 Transformations of Spatial Distributions of Bio-Polymers and Nanoparticles in Water Suspensions Induced by Resonance-Like Low Frequency Electrical Fields

Authors: A. A. Vasin, N. V. Klassen, A. M. Likhter

Abstract:

Water suspensions of in-organic (metals and oxides) and organic nano-objects (chitozan and collagen) were subjected to the treatment of direct and alternative electrical fields. In addition to quasi-periodical spatial patterning resonance-like performance of spatial distributions of these suspensions has been found at low frequencies of alternating electrical field. These resonances are explained as the result of creation of equilibrium states of groups of charged nano-objects with opposite signs of charges at the interparticle distances where the forces of Coulomb attraction are compensated by the repulsion forces induced by relatively negative polarization of hydrated regions surrounding the nanoparticles with respect to pure water. The low frequencies of these resonances are explained by comparatively big distances between the particles and their big masses with t\respect to masses of atoms constituting molecules with high resonance frequencies. These new resonances open a new approach to detailed modeling and understanding of mechanisms of the influence of electrical fields on the functioning of internal organs of living organisms at the level of cells and neurons.

Keywords: bio-polymers, chitosan, collagen, nanoparticles, coulomb attraction, polarization repulsion, periodical patterning, electrical low frequency resonances, transformations

Procedia PDF Downloads 525
564 The Influence of Temperature on the Corrosion and Corrosion Inhibition of Steel in Hydrochloric Acid Solution: Thermodynamic Study

Authors: Fatimah Al-Hayazi, Ehteram. A. Noor, Aisha H. Moubaraki

Abstract:

The inhibitive effect of Securigera securidaca seed extract (SSE) on mild steel corrosion in 1 M HCl solution has been studied by weight loss and electrochemical techniques at four different temperatures. All techniques studied provided data that the studied extract does well at all temperatures, and its inhibitory action increases with increasing its concentration. SEM images indicate thin-film formation on mild steel when corroded in solutions containing 1 g L-1 of inhibitor either at low or high temperatures. The polarization studies showed that SSE acts as an anodic inhibitor. Both polarization and impedance techniques show an acceleration behaviour for SSE at concentrations ≤ 0.1 g L-1 at all temperatures. At concentrations ≥ 0.1 g L-1, the efficiency of SSE is dramatically increased with increasing concentration, and its value does not change appreciably with increasing temperature. It was found that all adsorption data obeyed Temkin adsorption isotherm. Kinetic activation and thermodynamic adsorption parameters are evaluated and discussed. The results revealed an endothermic corrosion process with an associative activation mechanism, while a comprehensive adsorption mechanism for SSE on mild steel surfaces is suggested, in which both physical and chemical adsorption are involved in the adsorption process. A good correlation between inhibitor constituents and their inhibitory action was obtained.

Keywords: corrosion, inhibition of steel, hydrochloric acid, thermodynamic study

Procedia PDF Downloads 72
563 Study of the Uncertainty Behaviour for the Specific Total Enthalpy of the Hypersonic Plasma Wind Tunnel Scirocco at Italian Aerospace Research Center

Authors: Adolfo Martucci, Iulian Mihai

Abstract:

By means of the expansion through a Conical Nozzle and the low pressure inside the Test Chamber, a large hypersonic stable flow takes place for a duration of up to 30 minutes. Downstream the Test Chamber, the diffuser has the function of reducing the flow velocity to subsonic values, and as a consequence, the temperature increases again. In order to cool down the flow, a heat exchanger is present at the end of the diffuser. The Vacuum System generates the necessary vacuum conditions for the correct hypersonic flow generation, and the DeNOx system, which follows the Vacuum System, reduces the nitrogen oxide concentrations created inside the plasma flow behind the limits imposed by Italian law. This very large, powerful, and complex facility allows researchers and engineers to reproduce entire re-entry trajectories of space vehicles into the atmosphere. One of the most important parameters for a hypersonic flowfield representative of re-entry conditions is the specific total enthalpy. This is the whole energy content of the fluid, and it represents how severe could be the conditions around a spacecraft re-entering from a space mission or, in our case, inside a hypersonic wind tunnel. It is possible to reach very high values of enthalpy (up to 45 MJ/kg) that, together with the large allowable size of the models, represent huge possibilities for making on-ground experiments regarding the atmospheric re-entry field. The maximum nozzle exit section diameter is 1950 mm, where values of Mach number very much higher than 1 can be reached. The specific total enthalpy is evaluated by means of a number of measurements, each of them concurring with its value and its uncertainty. The scope of the present paper is the evaluation of the sensibility of the uncertainty of the specific total enthalpy versus all the parameters and measurements involved. The sensors that, if improved, could give the highest advantages have so been individuated. Several simulations in Python with the METAS library and by means of Monte Carlo simulations are presented together with the obtained results and discussions about them.

Keywords: hypersonic, uncertainty, enthalpy, simulations

Procedia PDF Downloads 61
562 Deep Learning for SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network

Procedia PDF Downloads 44
561 Analysis of Combined Heat Transfer through the Core Materials of VIPs with Various Scattering Properties

Authors: Jaehyug Lee, Tae-Ho Song

Abstract:

Vacuum insulation panel (VIP) can achieve very low thermal conductivity by evacuating its inner space. Heat transfer in the core materials of highly-evacuated VIP occurs by conduction through the solid structure and radiation through the pore. The effect of various scattering modes in combined conduction-radiation in VIP is investigated through numerical analysis. The discrete ordinates interpolation method (DOIM) incorporated with the commercial code FLUENT® is employed. It is found that backward scattering is more effective in reducing the total heat transfer while isotropic scattering is almost identical with pure absorbing/emitting case of the same optical thickness. For a purely scattering medium, the results agree well with additive solution with diffusion approximation, while a modified term is added in the effect of optical thickness to backward scattering is employed. For other scattering phase functions, it is also confirmed that backwardly scattering phase function gives a lower effective thermal conductivity. Thus, the materials with backward scattering properties, with radiation shields are desirable to lower the thermal conductivity of VIPs.

Keywords: combined conduction and radiation, discrete ordinates interpolation method, scattering phase function, vacuum insulation panel

Procedia PDF Downloads 348
560 Robotic Exoskeleton Response During Infant Physiological Knee Kinematics

Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno

Abstract:

Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.

Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics

Procedia PDF Downloads 79
559 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 50
558 Exoskeleton Response During Infant Physiological Knee Kinematics And Dynamics

Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno

Abstract:

Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.

Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics

Procedia PDF Downloads 48
557 Potentiostatic Growth of Hazenite Mineral Coating on AZ31 Magnesium Alloy in 0.1 M K₂HPO₄/0.1 M Na₂HPO₄ Solution

Authors: Liping Wu, Durga Bhakta Pokharel, Junhua Dong, Changgang Wang, Lin Zhao, Wei Ke, Nan Chen

Abstract:

Hazenite conversion coating was deposited on AZ31 Mg alloy in a deaerated phosphate solution containing 0.1 M K₂HPO₄ and 0.1 M Na₂HPO₄ (Na₀.₁K0₀.₁) with pH 9 at −0.8 V. The coating mechanism of hazenite was elucidated by in situ potentiostatic current decay, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), electron probe micro-analyzer (EPMA) and differential scanning calorimetry (DSC). The volume of H₂ evolved during potentiostatic polarization was measured by a gas collection apparatus. The degradation resistance of the hazenite coating was evaluated in simulated body fluid (SBF) at 37℃ by using potentiodynamic polarization (PDP). The results showed that amorphous Mg(OH)₂ was deposited first, followed by the transformation of Mg(OH)₂ to amorphous MgHPO₄, subsequently the conversion of MgHPO₄ to crystallized K-struvite (KMgPO₄·6H₂O), finally the crystallization of crystallized hazenite (NaKMg₂(PO₄)₂·14H₂O). The deposited coating was composed of four layers where the inner layer is comprised of Mg(OH)₂, the middle layer of Mg(OH)₂ and MgHPO₄, the top layer of Mg(OH)₂, MgHPO₄ and K-struvite, the topmost layer of Mg(OH)₂, MgHPO₄, K-struvite and hazenite (NaKMg₂(PO₄)₂·14H₂O). The PD results showed that the hazenite coating decreased the corrosion rate by two orders of magnitude.

Keywords: magnesium alloy, potentiostatic technique, hazenite, mineral conversion coating

Procedia PDF Downloads 145
556 Social Perspectives on Population of People Living Postively; An Indian Scenario, Evidence from Tiruchirappalli

Authors: Uwonkunda Jeanne, J. Godwin Prem Singh, Anjaneyalu Subbiah

Abstract:

HIV/AIDS is known to affect an individual not only physically but also mentally, socially, and financially. It is a syndrome that builds a vacuum in a person affecting his/her life as a whole.

Keywords: People living with HIV, social dysfunction, stigma, and Social support.

Procedia PDF Downloads 463
555 Enhanced Dielectric and Ferroelectric Properties in Holmium Substituted Stoichiometric and Non-Stoichiometric SBT Ferroelectric Ceramics

Authors: Sugandha Gupta, Arun Kumar Jha

Abstract:

A large number of ferroelectric materials have been intensely investigated for applications in non-volatile ferroelectric random access memories (FeRAMs), piezoelectric transducers, actuators, pyroelectric sensors, high dielectric constant capacitors, etc. Bismuth layered ferroelectric materials such as Strontium Bismuth Tantalate (SBT) has attracted a lot of attention due to low leakage current, high remnant polarization and high fatigue endurance up to 1012 switching cycles. However, pure SBT suffers from various major limitations such as high dielectric loss, low remnant polarization values, high processing temperature, bismuth volatilization, etc. Significant efforts have been made to improve the dielectric and ferroelectric properties of this compound. Firstly, it has been reported that electrical properties vary with the Sr/ Bi content ratio in the SrBi2Ta2O9 compsition i.e. non-stoichiometric compositions with Sr-deficient / Bi excess content have higher remnant polarization values than stoichiometic SBT compositions. With the objective to improve structural, dielectric, ferroelectric and piezoelectric properties of SBT compound, rare earth holmium (Ho3+) was chosen as a donor cation for substitution onto the Bi2O2 layer. Moreover, hardly any report on holmium substitution in stoichiometric SrBi2Ta2O9 and non-stoichiometric Sr0.8Bi2.2Ta2O9 compositions were available in the literature. The holmium substituted SrBi2-xHoxTa2O9 (x= 0.00-2.0) and Sr0.8Bi2.2Ta2O9 (x=0.0 and 0.01) compositions were synthesized by the solid state reaction method. The synthesized specimens were characterized for their structural and electrical properties. X-ray diffractograms reveal single phase layered perovskite structure formation for holmium content in stoichiometric SBT samples up to x ≤ 0.1. The granular morphology of the samples was investigated using scanning electron microscope (Hitachi, S-3700 N). The dielectric measurements were carried out using a precision LCR meter (Agilent 4284A) operating at oscillation amplitude of 1V. The variation of dielectric constant with temperature shows that the Curie temperature (Tc) decreases on increasing the holmium content. The specimen with x=2.0 i.e. the bismuth free specimen, has very low dielectric constant and does not show any appreciable variation with temperature. The dielectric loss reduces significantly with holmium substitution. The polarization–electric field (P–E) hysteresis loops were recorded using a P–E loop tracer based on Sawyer–Tower circuit. It is observed that the ferroelectric property improve with Ho substitution. Holmium substituted specimen exhibits enhanced value of remnant polarization (Pr= 9.22 μC/cm²) as compared to holmium free specimen (Pr= 2.55 μC/cm²). Piezoelectric co-efficient (d33 values) was measured using a piezo meter system (Piezo Test PM300). It is observed that holmium substitution enhances piezoelectric coefficient. Further, the optimized holmium content (x=0.01) in stoichiometric SrBi2-xHoxTa2O9 composition has been substituted in non-stoichiometric Sr0.8Bi2.2Ta2O9 composition to obtain further enhanced structural and electrical characteristics. It is expected that a new class of ferroelectric materials i.e. Rare Earth Layered Structured Ferroelectrics (RLSF) derived from Bismuth Layered Structured Ferroelectrics (BLSF) will generate which can be used to replace static (SRAM) and dynamic (DRAM) random access memories with ferroelectric random access memories (FeRAMS).

Keywords: dielectrics, ferroelectrics, piezoelectrics, strontium bismuth tantalate

Procedia PDF Downloads 178
554 Device for Thermal Depolymerisation of Organic Substrates Prior to Methane Fermentation

Authors: Marcin Dębowski, Mirosław Krzemieniewski, Marcin Zieliński

Abstract:

This publication presents a device designed to depolymerise and structurally change organic substrate, for use in agricultural biogas plants or sewage treatment plants. The presented device consists of a heated tank equipped with an inlet valve for the crude substrate and an outlet valve for the treated substrate. The system also includes a gas conduit, which is at its tip equipped with a high-pressure solenoid valve and a vacuum relief solenoid valve. A conduit behind the high-pressure solenoid valve connects to the vacuum tank equipped with the outlet valve. The substrate introduced into the device is exposed to agents such as high temperature and cavitation produced by abrupt, short-term reduction of pressure within the heated tank. The combined effect of these processes is substrate destruction rate increase of about 20% when compared to using high temperature alone, and about 30% when compared to utilizing only cavitation. Energy consumption is greatly reduced, as the pressure increase is generated by heating the substrate. Thus, there is a 18% reduction of energy consumption when compared to a device designed to destroy substrate through high temperature alone, and a 35% reduction if compared to using cavitation as the only means of destruction.

Keywords: thermal depolymerisation, organic substrate, biogas, pre-treatment

Procedia PDF Downloads 537
553 Mechanical Properties of Graphene Nano-Platelets Coated Carbon-Fiber Composites

Authors: Alok Srivastava, Vidit Gupta, Aparna Singh, Chandra Sekher Yerramalli

Abstract:

Carbon-fiber epoxy composites show extremely high modulus and strength in the uniaxial direction. However, they are prone to fail under low load in transverse direction due to the weak nature of the interface between the carbon-fiber and epoxy. In the current study, we have coated graphene nano-platelets (GNPs) on the carbon-fibers in an attempt to strengthen the interface/interphase between the fiber and the matrix. Vacuum Assisted Resin Transfer Moulding (VARTM) has been used to make the laminates of eight cross-woven fabrics. Tensile, flexural and fracture toughness tests have been performed on pristine carbon-fiber composite (P-CF), GNP coated carbon-fiber composite (GNP-CF) and functionalized-GNP coated carbon-fiber composite (F-GNP-CF). The tensile strength and flexural strength values are pretty similar for P-CF and GNP-CF. The micro-structural examination of the GNP coated carbon-fibers, as well as the fracture surfaces, have been carried out using scanning electron microscopy (SEM). The micrographs reveal the deposition of GNPs onto the carbon fibers in transverse and longitudinal direction. Fracture surfaces show the debonding and pull outs of the carbon fibers in P-CF and GNP-CF samples.

Keywords: carbon fiber, graphene nanoplatelets, strength, VARTM, Vacuum Assisted Resin Transfer Moulding

Procedia PDF Downloads 121
552 Influences of Thermal Treatments on Dielectric Behaviors of Carbon Nanotubes-BaTiO₃ Hybrids Reinforced Polyvinylidene Fluoride Composites

Authors: Benhui Fan, Fahmi Bedoui, Jinbo Bai

Abstract:

Incorporated carbon nanotube-BaTiO₃ hybrids (H-CNT-BT) with core-shell structure, a better dispersion of CNTs can be achieved in a semi-crystalline polymeric matrix, polyvinylidene fluoride (PVDF). Carried by BT particles, CNTs are easy to mutually connect which helps to obtain an extremely low percolation threshold (fc). After thermal treatments, the dielectric constants (ε’) of samples further increase which depends on the conditions of thermal treatments such as annealing temperatures, annealing durations and cooling ways. Thus, in order to study more comprehensively about the influence of thermal treatments on composite’s dielectric behaviors, in situ synchrotron X-ray is used to detect re-crystalline behavior of PVDF. Results of wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) show that after the thermal treatment, the content of β polymorph (the polymorph with the highest ε’ among all the polymorphs of PVDF’s crystalline structure) has increased nearly double times at the interfacial region of CNT-PVDF, and the thickness of amorphous layers (La) in PVDF’s long periods (Lp) has shrunk around 10 Å. The evolution of CNT’s network possibly occurs in the procedure of La shrinkage, where the strong interfacial polarization may be aroused and increases ε’ at low frequency. Moreover, an increase in the thickness of crystalline lamella may also arouse more orientational polarization and improve ε’ at high frequency.

Keywords: dielectric properties, thermal treatments, carbon nanotubes, crystalline structure

Procedia PDF Downloads 304
551 Design of Self-Heating Containers Using Sodium Acetate Trihydrate for Chemical Energy – Food Products

Authors: Rameshaiah Gowdara Narayanappa, Manikonda Prithvi, Manoj Kumar, Suraj Bhavani, Vikram Singh

Abstract:

Long ago heating of food was only related to fire or electricity. Heating and storage of consumer foods were satisfied by the use of vacuum thermo flaks, electric heating cans and DC powered heating cans. But many of which did not sustain the heat for a long period of time and were impractical for remote areas. The use of chemical energy for heating foods directed us to think about the applications of exothermic reactions as a source of heat. Initial studies of calcium oxide showed desirability but not feasible because the reaction was uncontrollable and irreversible. In this research work we viewed at crystallization of super saturated sodium acetate trihydrate solution. Supersaturated sodium acetate trihydrate has a freezing point of 540 C (1300 F), but it observed to be stable as a liquid at much lower temperatures. Mechanical work is performed to create an active chemical energy zone within the working fluid, when crystallization process is initiated. Due to this the temperature rises to its freezing point which in turn heats the contents in the storage container. Present work endeavor to design a self-heating storage container is suitable for consumer dedications.

Keywords: crystallization, exothermic reactions, self-heating container, super saturation, vacuum thermo flask

Procedia PDF Downloads 444
550 The Role of Online Social Networks in Social Movements: Social Polarization and Violations against Social Unity and Privacy of Individuals in Turkey

Authors: Tolga Yazıcı

Abstract:

As a matter of the fact that online social networks like Twitter, Facebook and MySpace have experienced an extensive growth in recent years. Social media offers individuals with a tool for communicating and interacting with one another. These social networks enable people to stay in touch with other people and express themselves. This process makes the users of online social networks active creators of content rather than being only consumers of traditional media. That’s why millions of people show strong desire to learn the methods and tools of digital content production and necessary communication skills. However, the booming interest in communication and interaction through online social networks and high level of eagerness to invent and implement the ways to participate in content production raise some privacy and security concerns. This presentation aims to open the assumed revolutionary, democratic and liberating nature of the online social media up for discussion by reviewing some recent political developments in Turkey. Firstly, the role of Internet and online social networks in mobilizing collective movements through social interactions and communications will be questioned. Secondly, some cases from Gezi and Okmeydanı Protests and also December 17-25 period will be presented in order to illustrate misinformation and manipulation in social media and violation of individual privacy through online social networks in order to damage social unity and stability contradictory to democratic nature of online social networking.

Keywords: online social media networks, democratic participation, social movements, social polarization, privacy of individuals, Turkey

Procedia PDF Downloads 315
549 Surface Characterization of Zincblende and Wurtzite Semiconductors Using Nonlinear Optics

Authors: Hendradi Hardhienata, Tony Sumaryada, Sri Setyaningsih

Abstract:

Current progress in the field of nonlinear optics has enabled precise surface characterization in semiconductor materials. Nonlinear optical techniques are favorable due to their nondestructive measurement and ability to work in nonvacuum and ambient conditions. The advance of the bond hyperpolarizability models opens a wide range of nanoscale surface investigation including the possibility to detect molecular orientation at the surface of silicon and zincblende semiconductors, investigation of electric field induced second harmonic fields at the semiconductor interface, detection of surface impurities, and very recently, study surface defects such as twin boundary in wurtzite semiconductors. In this work, we show using nonlinear optical techniques, e.g. nonlinear bond models how arbitrary polarization of the incoming electric field in Rotational Anisotropy Spectroscopy experiments can provide more information regarding the origin of the nonlinear sources in zincblende and wurtzite semiconductor structure. In addition, using hyperpolarizability consideration, we describe how the nonlinear susceptibility tensor describing SHG can be well modelled using only few parameter because of the symmetry of the bonds. We also show how the third harmonic intensity feature shows considerable changes when the incoming field polarization angle is changed from s-polarized to p-polarized. We also propose a method how to investigate surface reconstruction and defects in wurtzite and zincblende structure at the nanoscale level.

Keywords: surface characterization, bond model, rotational anisotropy spectroscopy, effective hyperpolarizability

Procedia PDF Downloads 133
548 Dielectric Properties of Thalium Selenide Thin Films at Radio Wave Frequencies

Authors: Onur Potok, Deniz Deger, Kemal Ulutas, Sahin Yakut, Deniz Bozoglu

Abstract:

Thalium Selenide (TlSe) is used for optoelectronic devices, pressure sensitive detectors, and gamma-ray detectors. The TlSe samples were grown as large single crystals using the Stockbarger-Bridgman method. The thin films, in the form of Al/TlSe/Al, were deposited on the microscope slide in different thicknesses (300-3000 Å) using thermal evaporation technique at 10-5 Torr. The dielectric properties of (TlSe) thin films, capacitance (C) and dielectric loss factor (tanδ), were measured in a frequency range of 10-105 Hz, and temperatures between 213K and 393K via Broadband Dielectric Spectroscopy analyzer. The dielectric constant (ε’) and the dielectric loss (ε’’) of the thin films were derived from measured parameters (C and tanδ). These results showed that the dielectric properties of TlSe thin films are frequency and temperature dependent. The capacitance and the dielectric constant decrease with increasing frequency and decreasing temperature. The dielectric loss of TlSe thin films decreases with increasing frequency, on the other hand, they increase with increasing temperature and increasing thicknesses. There is two relaxation region in the investigated frequency and temperature interval. These regions can be called as low and high-frequency dispersion regions. Low-frequency dispersion region can be attributed to the polarization of the main part of the chain structure of TlSe while high-frequency dispersion region can be attributed to the polarization of side parts of the structure.

Keywords: thin films, thallium selenide, dielectric spectroscopy, binary compounds

Procedia PDF Downloads 126
547 Theoretical Analysis of Photoassisted Field Emission near the Metal Surface Using Transfer Hamiltonian Method

Authors: Rosangliana Chawngthu, Ramkumar K. Thapa

Abstract:

A model calculation of photoassisted field emission current (PFEC) by using transfer Hamiltonian method will be present here. When the photon energy is incident on the surface of the metals, such that the energy of a photon is usually less than the work function of the metal under investigation. The incident radiation photo excites the electrons to a final state which lies below the vacuum level; the electrons are confined within the metal surface. A strong static electric field is then applied to the surface of the metal which causes the photoexcited electrons to tunnel through the surface potential barrier into the vacuum region and constitutes the considerable current called photoassisted field emission current. The incident radiation is usually a laser beam, causes the transition of electrons from the initial state to the final state and the matrix element for this transition will be written. For the calculation of PFEC, transfer Hamiltonian method is used. The initial state wavefunction is calculated by using Kronig-Penney potential model. The effect of the matrix element will also be studied. An appropriate dielectric model for the surface region of the metal will be used for the evaluation of vector potential. FORTRAN programme is used for the calculation of PFEC. The results will be checked with experimental data and the theoretical results.

Keywords: photoassisted field emission, transfer Hamiltonian, vector potential, wavefunction

Procedia PDF Downloads 190
546 Learning a Bayesian Network for Situation-Aware Smart Home Service: A Case Study with a Robot Vacuum Cleaner

Authors: Eu Tteum Ha, Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

The smart home environment backed up by IoT (internet of things) technologies enables intelligent services based on the awareness of the situation a user is currently in. One of the convenient sensors for recognizing the situations within a home is the smart meter that can monitor the status of each electrical appliance in real time. This paper aims at learning a Bayesian network that models the causal relationship between the user situations and the status of the electrical appliances. Using such a network, we can infer the current situation based on the observed status of the appliances. However, learning the conditional probability tables (CPTs) of the network requires many training examples that cannot be obtained unless the user situations are closely monitored by any means. This paper proposes a method for learning the CPT entries of the network relying only on the user feedbacks generated occasionally. In our case study with a robot vacuum cleaner, the feedback comes in whenever the user gives an order to the robot adversely from its preprogrammed setting. Given a network with randomly initialized CPT entries, our proposed method uses this feedback information to adjust relevant CPT entries in the direction of increasing the probability of recognizing the desired situations. Simulation experiments show that our method can rapidly improve the recognition performance of the Bayesian network using a relatively small number of feedbacks.

Keywords: Bayesian network, IoT, learning, situation -awareness, smart home

Procedia PDF Downloads 493
545 Corrosion Behvaior of CS1018 in Various CO2 Capture Solvents

Authors: Aida Rafat, Ramazan Kahraman, Mert Atilhan

Abstract:

The aggressive corrosion behavior of conventional amine solvents is one of main barriers against large scale commerizaliation of amine absorption process for carbon capture application. Novel CO2 absorbents that exhibit minimal corrosivity against operation conditions are essential to lower corrosion damage and control and ensure more robustness in the capture plant. This work investigated corrosion behavior of carbon steel CS1018 in various CO2 absrobent solvents. The tested solvents included the classical amines MEA, DEA and MDEA, piperazine activated solvents MEA/PZ, MDEA/PZ and MEA/MDEA/PZ as well as mixtures of MEA and Room Temperature Ionic Liquids RTIL, namely MEA/[C4MIM][BF4] and MEA/[C4MIM][Otf]. Electrochemical polarization technique was used to determine the system corrosiveness in terms of corrosion rate and polarization behavior. The process parameters of interest were CO2 loading and solution temperature. Electrochemical resulted showed corrosivity order of classical amines at 40°C is MDEA> MEA > DEA wherase at 80°C corrosivity ranking changes to MEA > DEA > MDEA. Corrosivity rankings were mainly governed by CO2 absorption capacity at the test temperature. Corrosivity ranking for activated amines at 80°C was MEA/PZ > MDEA/PZ > MEA/MDEA/PZ. Piperazine addition seemed to have a dual advanatge in terms of enhancing CO2 absorption capacity as well as nullifying corrosion. For MEA/RTIL mixtures, the preliminary results showed that the partial repalcement of aqueous phase in MEA solution by the more stable nonvolatile RTIL solvents reduced corrosion rates considerably.

Keywords: corrosion, amines, CO2 capture, piperazine, ionic liquids

Procedia PDF Downloads 437
544 The Corrosion Resistance of P/M Alumix 431D Compacts

Authors: J. Kazior, A. Szewczyk-Nykiel, T. Pieczonka, M. Laska

Abstract:

Aluminium alloys are an important class of engineering materials for structural applications. This is due to the fact that these alloys have many interesting properties, namely, low density, high ratio of strength to density, good thermal and electrical conductivity, good corrosion resistance as well as extensive capabilities for shaping processes. In case of classical PM technology a particular attention should be paid to the selection of appropriate parameters of compacting and sintering processes and to keeping them. The latter need arises from the high sensitivity of aluminium based alloy powders on any fluctuation of technological parameters, in particular those related to the temperature-time profile and gas flow. Only then the desired sintered compacts with residual porosity may be produced. Except high mechanical properties, the other profitable properties of almost fully dense sintered components could be expected. Among them is corrosion resistance, rarely investigated on PM aluminium alloys. Thus, in the current study the Alumix 431/D commercial, press-ready grade powder was used for this purpose. Sintered compacts made of it in different conditions (isothermal sintering temperature, gas flow rate) were subjected to corrosion experiments in 0,1 M and 0,5 M NaCl solutions. The potentiodynamic curves were used to establish parameters characterising the corrosion resistance of sintered Alumix 431/D powder, namely, the corrosion potential, the corrosion current density, the polarization resistance, the breakdown potential. The highest value of polarization resistance, the lowest value of corrosion current density and the most positive corrosion potential was obtained for Alumix431/D powder sintered at 600°C and for highest protective gas flow rate.

Keywords: aluminium alloys, sintering, corrosion resistance, industry

Procedia PDF Downloads 318
543 In₀.₁₈Al₀.₈₂N/AlN/GaN/Si Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors with Backside Metal-Trench Design

Authors: C. S Lee, W. C. Hsu, H. Y. Liu, C. J. Lin, S. C. Yao, Y. T. Shen, Y. C. Lin

Abstract:

In₀.₁₈Al₀.₈₂N/AlN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS-HFETs) having Al₂O₃ gate-dielectric and backside metal-trench structure are investigated. The Al₂O₃ gate oxide was formed by using a cost-effective non-vacuum ultrasonic spray pyrolysis deposition (USPD) method. In order to enhance the heat dissipation efficiency, metal trenches were etched 3-µm deep and evaporated with a 150-nm thick Ni film on the backside of the Si substrate. The present In₀.₁₈Al₀.₈₂N/AlN/GaN MOS-HFET (Schottky-gate HFET) has demonstrated improved maximum drain-source current density (IDS, max) of 1.08 (0.86) A/mm at VDS = 8 V, gate-voltage swing (GVS) of 4 (2) V, on/off-current ratio (Ion/Ioff) of 8.9 × 10⁸ (7.4 × 10⁴), subthreshold swing (SS) of 140 (244) mV/dec, two-terminal off-state gate-drain breakdown voltage (BVGD) of -191.1 (-173.8) V, turn-on voltage (Von) of 4.2 (1.2) V, and three-terminal on-state drain-source breakdown voltage (BVDS) of 155.9 (98.5) V. Enhanced power performances, including saturated output power (Pout) of 27.9 (21.5) dBm, power gain (Gₐ) of 20.3 (15.5) dB, and power-added efficiency (PAE) of 44.3% (34.8%), are obtained. Superior breakdown and RF power performances are achieved. The present In₀.₁₈Al₀.₈₂N/AlN/GaN MOS-HFET design with backside metal-trench is advantageous for high-power circuit applications.

Keywords: backside metal-trench, InAlN/AlN/GaN, MOS-HFET, non-vacuum ultrasonic spray pyrolysis deposition

Procedia PDF Downloads 235
542 Novel Poly Schiff Bases as Corrosion Inhibitors for Carbon Steel in Sour Petroleum Conditions

Authors: Shimaa A. Higazy, Olfat E. El-Azabawy, Ahmed M. Al-Sabagh, Notaila M. Nasser, Eman A. Khamis

Abstract:

In this work, two novel Schiff base polymers (PSB1 and PSB₂) with extra-high protective barrier features were facilely prepared via Polycondensation reactions. They were applied for the first time as effective corrosion inhibitors in the sour corrosive media of petroleum environments containing hydrogen sulfide (H₂S) gas. For studying the polymers' inhibitive action on the carbon steel, numerous corrosion testing methods including potentiodynamic polarization (PDP), open circuit potential, and electrochemical impedance spectroscopy (EIS) have been employed at various temperatures (298-328 K) in the oil wells formation water with H₂S concentrations of 100, 400, and 700 ppm as aggressive media. The activation energy (Ea) and other thermodynamic parameters were computed to describe the mechanism of adsorption. The corrosion morphological traits and steel samples' surfaces composition were analyzed by field emission scanning electron microscope and energy dispersive X-ray analysis. The PSB2 inhibited sour corrosion more effectively than PSB1 when subjected to electrochemical testing. The 100 ppm concentration of PSB2 exhibited 82.18 % and 81.14 % inhibition efficiencies at 298 K in PDP and EIS measurements, respectively. While at 328 K, the inhibition efficiencies were 61.85 % and 67.4 % at the same dosage and measurements. These poly Schiff bases exhibited fascinating performance as corrosion inhibitors in sour environment. They provide a great corrosion inhibition platform for the sustainable future environment.

Keywords: schiff base polymers, corrosion inhibitors, sour corrosive media, potentiodynamic polarization, H₂S concentrations

Procedia PDF Downloads 65
541 Poly(Amidoamine) Dendrimer-Cisplatin Nanocomplex Mixed with Multifunctional Ovalbumin Coated Iron Oxide Nanoparticles for Immuno-Chemotherapeutics with M1 Polarization of Macrophages

Authors: Tefera Worku Mekonnen, Hiseh Chih Tsai

Abstract:

Enhancement of drug efficacy is essential in cancer treatment. The immune stimulator ovalbumin (Ova)-coated citric acid (AC-)-stabilized iron oxide nanoparticles (AC-IO-Ova NPs) and enhanced permeability and retention (EPR) based tumor targeted 4.5 (4.5G) poly(amidoamine) dendrimer-cisplatin nanocomplex (4.5GDP-Cis-pt NC) were used for enhanced anticancer efficiency. The formations of 4.5GDP-Cis-pt NC, AC-IO, and AC-IO-Ova NPs have been examined by FTIR, X-ray diffraction, Raman, and X-ray photoelectron spectroscopy. The conjugation of cisplatin (Cis-pt) with 4.5GDP was confirmed using carbon NMR. The tumor-specific 4.5GDP-Cis-pt NC provided ~45% and 28% cumulative cisplatin release in 72 h at pH 6.5 and 7.4, respectively. A significant immune response with high TNF-α and IL-6 cytokine secretion was confirmed when the co-incubation of AC-IO-Ova with RAW 264.7 or HaCaT cells. AC-IO-Ova NP was biocompatible in different cell lines, even at a high concentration (200 µg mL−1). In contrast, AC-IO-Ova NPs mixed with 4.5GDP-Cis-pt NC (Cis-pt at 15 µg mL−1) significantly increased the cytotoxicity against the cancer cells, which is dose-dependent on the concentration of AC-IO-Ova NPs. The increased anticancer effects may be attributed to the generation of reactive oxygen species (ROS). Moreover, the efficiency of anticancer cells may be further assisted by induction of an innate immune response via M1 macrophage polarization due to the presence of AC-IO-Ova NPs. We provide a better synergestic chemoimmunotherapeutic strategy to enhance the efficiency of anticancer of cisplatin via chemotherapeutic agent 4.5GDP-Cis-pt NC and induction of proinflammatory cytokines to stimulate innate immunity through AC-IO-Ova NPs against tumors.

Keywords: cisplatin-release, iron oxide, ovalbumin, poly(amidoamine) dendrimer

Procedia PDF Downloads 105
540 Polarization as a Proxy of Misinformation Spreading

Authors: Michela Del Vicario, Walter Quattrociocchi, Antonio Scala, Ana Lucía Schmidt, Fabiana Zollo

Abstract:

Information, rumors, and debates may shape and impact public opinion heavily. In the latest years, several concerns have been expressed about social influence on the Internet and the outcome that online debates might have on real-world processes. Indeed, on online social networks users tend to select information that is coherent to their system of beliefs and to form groups of like-minded people –i.e., echo chambers– where they reinforce and polarize their opinions. In this way, the potential benefits coming from the exposure to different points of view may be reduced dramatically, and individuals' views may become more and more extreme. Such a context fosters misinformation spreading, which has always represented a socio-political and economic risk. The persistence of unsubstantiated rumors –e.g., the hypothetical and hazardous link between vaccines and autism– suggests that social media do have the power to misinform, manipulate, or control public opinion. As an example, current approaches such as debunking efforts or algorithmic-driven solutions based on the reputation of the source seem to prove ineffective against collective superstition. Indeed, experimental evidence shows that confirmatory information gets accepted even when containing deliberately false claims while dissenting information is mainly ignored, influences users’ emotions negatively and may even increase group polarization. Moreover, confirmation bias has been shown to play a pivotal role in information cascades, posing serious warnings about the efficacy of current debunking efforts. Nevertheless, mitigation strategies have to be adopted. To generalize the problem and to better understand social dynamics behind information spreading, in this work we rely on a tight quantitative analysis to investigate the behavior of more than 300M users w.r.t. news consumption on Facebook over a time span of six years (2010-2015). Through a massive analysis on 920 news outlets pages, we are able to characterize the anatomy of news consumption on a global and international scale. We show that users tend to focus on a limited set of pages (selective exposure) eliciting a sharp and polarized community structure among news outlets. Moreover, we find similar patterns around the Brexit –the British referendum to leave the European Union– debate, where we observe the spontaneous emergence of two well segregated and polarized groups of users around news outlets. Our findings provide interesting insights into the determinants of polarization and the evolution of core narratives on online debating. Our main aim is to understand and map the information space on online social media by identifying non-trivial proxies for the early detection of massive informational cascades. Furthermore, by combining users traces, we are finally able to draft the main concepts and beliefs of the core narrative of an echo chamber and its related perceptions.

Keywords: information spreading, misinformation, narratives, online social networks, polarization

Procedia PDF Downloads 266
539 Single Atom Manipulation with 4 Scanning Tunneling Microscope Technique

Authors: Jianshu Yang, Delphine Sordes, Marek Kolmer, Christian Joachim

Abstract:

Nanoelectronics, for example the calculating circuits integrating at molecule scale logic gates, atomic scale circuits, has been constructed and investigated recently. A major challenge is their functional properties characterization because of the connecting problem from atomic scale to micrometer scale. New experimental instruments and new processes have been proposed therefore. To satisfy a precisely measurement at atomic scale and then connecting micrometer scale electrical integration controller, the technique improvement is kept on going. Our new machine, a low temperature high vacuum four scanning tunneling microscope, as a customer required instrument constructed by Omicron GmbH, is expected to be scaling down to atomic scale characterization. Here, we will present our first testified results about the performance of this new instrument. The sample we selected is Au(111) surface. The measurements have been taken at 4.2 K. The atomic resolution surface structure was observed with each of four scanners with noise level better than 3 pm. With a tip-sample distance calibration by I-z spectra, the sample conductance has been derived from its atomic locally I-V spectra. Furthermore, the surface conductance measurement has been performed using two methods, (1) by landing two STM tips on the surface with sample floating; and (2) by sample floating and one of the landed tips turned to be grounding. In addition, single atom manipulation has been achieved with a modified tip design, which is comparable to a conventional LT-STM.

Keywords: low temperature ultra-high vacuum four scanning tunneling microscope, nanoelectronics, point contact, single atom manipulation, tunneling resistance

Procedia PDF Downloads 258
538 A Comparative Analysis of Traditional and Advanced Methods in Evaluating Anti-corrosion Performance of Sacrificial and Barrier Coatings

Authors: Kazem Sabet-Bokati, Ilia Rodionov, Marciel Gaier, Kevin Plucknett

Abstract:

Protective coatings play a pivotal role in mitigating corrosion and preserving the integrity of metallic structures exposed to harsh environmental conditions. The diversity of corrosive environments necessitates the development of protective coatings suitable for various conditions. Accurately selecting and interpreting analysis methods is crucial in identifying the most suitable protective coatings for the various corrosive environments. This study conducted a comprehensive comparative analysis of traditional and advanced methods to assess the anti-corrosion performance of sacrificial and barrier coatings. The protective performance of pure epoxy, zinc-rich epoxy, and cold galvanizing coatings was evaluated using salt spray tests, together with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods. The performance of each coating was thoroughly differentiated under both atmospheric and immersion conditions. The distinct protective performance of each coating against atmospheric corrosion was assessed using traditional standard methods. Additionally, the electrochemical responses of these coatings in immersion conditions were systematically studied, and a detailed discussion on interpreting the electrochemical responses is provided. Zinc-rich epoxy and cold galvanizing coatings offer superior anti-corrosion performance against atmospheric corrosion, while the pure epoxy coating excels in immersion conditions.

Keywords: corrosion, barrier coatings, sacrificial coatings, salt-spray, EIS, polarization

Procedia PDF Downloads 29
537 Li2S Nanoparticles Impact on the First Charge of Li-ion/Sulfur Batteries: An Operando XAS/XES Coupled With XRD Analysis

Authors: Alice Robba, Renaud Bouchet, Celine Barchasz, Jean-Francois Colin, Erik Elkaim, Kristina Kvashnina, Gavin Vaughan, Matjaz Kavcic, Fannie Alloin

Abstract:

With their high theoretical energy density (~2600 Wh.kg-1), lithium/sulfur (Li/S) batteries are highly promising, but these systems are still poorly understood due to the complex mechanisms/equilibria involved. Replacing S8 by Li2S as the active material allows the use of safer negative electrodes, like silicon, instead of lithium metal. S8 and Li2S have different conductivity and solubility properties, resulting in a profoundly changed activation process during the first cycle. Particularly, during the first charge a high polarization and a lack of reproducibility between tests are observed. Differences observed between raw Li2S material (micron-sized) and that electrochemically produced in a battery (nano-sized) may indicate that the electrochemical process depends on the particle size. Then the major focus of the presented work is to deepen the understanding of the Li2S material charge mechanism, and more precisely to characterize the effect of the initial Li2S particle size both on the mechanism and the electrode preparation process. To do so, Li2S nanoparticles were synthetized according to two ways: a liquid path synthesis and a dissolution in ethanol, allowing Li2S nanoparticles/carbon composites to be made. Preliminary chemical and electrochemical tests show that starting with Li2S nanoparticles could effectively suppress the high initial polarization but also influence the electrode slurry preparation. Indeed, it has been shown that classical formulation process - a slurry composed of Polyvinylidone Fluoride polymer dissolved in N-methyle-2-pyrrolidone - cannot be used with Li2S nanoparticles. This reveals a complete different Li2S material behavior regarding polymers and organic solvents when going at the nanometric scale. Then the coupling between two operando characterizations such as X-Ray Diffraction (XRD) and X-Ray Absorption and Emission Spectroscopy (XAS/XES) have been carried out in order to interpret the poorly understood first charge. This study discloses that initial particle size of the active material has a great impact on the working mechanism and particularly on the different equilibria involved during the first charge of the Li2S based Li-ion batteries. These results explain the electrochemical differences and particularly the polarization differences observed during the first charge between micrometric and nanometric Li2S-based electrodes. Finally, this work could lead to a better active material design and so to more efficient Li2S-based batteries.

Keywords: Li-ion/Sulfur batteries, Li2S nanoparticles effect, Operando characterizations, working mechanism

Procedia PDF Downloads 238