Search results for: photoassisted field emission
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9139

Search results for: photoassisted field emission

9139 Theoretical Analysis of Photoassisted Field Emission near the Metal Surface Using Transfer Hamiltonian Method

Authors: Rosangliana Chawngthu, Ramkumar K. Thapa

Abstract:

A model calculation of photoassisted field emission current (PFEC) by using transfer Hamiltonian method will be present here. When the photon energy is incident on the surface of the metals, such that the energy of a photon is usually less than the work function of the metal under investigation. The incident radiation photo excites the electrons to a final state which lies below the vacuum level; the electrons are confined within the metal surface. A strong static electric field is then applied to the surface of the metal which causes the photoexcited electrons to tunnel through the surface potential barrier into the vacuum region and constitutes the considerable current called photoassisted field emission current. The incident radiation is usually a laser beam, causes the transition of electrons from the initial state to the final state and the matrix element for this transition will be written. For the calculation of PFEC, transfer Hamiltonian method is used. The initial state wavefunction is calculated by using Kronig-Penney potential model. The effect of the matrix element will also be studied. An appropriate dielectric model for the surface region of the metal will be used for the evaluation of vector potential. FORTRAN programme is used for the calculation of PFEC. The results will be checked with experimental data and the theoretical results.

Keywords: photoassisted field emission, transfer Hamiltonian, vector potential, wavefunction

Procedia PDF Downloads 187
9138 Enhanced Field Emission from Plasma Treated Graphene and 2D Layered Hybrids

Authors: R. Khare, R. V. Gelamo, M. A. More, D. J. Late, Chandra Sekhar Rout

Abstract:

Graphene emerges out as a promising material for various applications ranging from complementary integrated circuits to optically transparent electrode for displays and sensors. The excellent conductivity and atomic sharp edges of unique two-dimensional structure makes graphene a propitious field emitter. Graphene analogues of other 2D layered materials have emerged in material science and nanotechnology due to the enriched physics and novel enhanced properties they present. There are several advantages of using 2D nanomaterials in field emission based devices, including a thickness of only a few atomic layers, high aspect ratio (the ratio of lateral size to sheet thickness), excellent electrical properties, extraordinary mechanical strength and ease of synthesis. Furthermore, the presence of edges can enhance the tunneling probability for the electrons in layered nanomaterials similar to that seen in nanotubes. Here we report electron emission properties of multilayer graphene and effect of plasma (CO2, O2, Ar and N2) treatment. The plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/μm and high emission current density of 1.89 mA/cm2 at an applied field of 0.35 V/μm. Further, we report the field emission studies of layered WS2/RGO and SnS2/RGO composites. The turn on field required to draw a field emission current density of 1μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2/RGO composite respectively. The enhanced field emission behavior observed for the WS2/RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 µA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2/RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overlap of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. Similarly, the turn on field required to draw an emission current density of 1µA/cm2 is significantly low (almost half the value) for the SnS2/RGO nanocomposite (2.65 V/µm) compared to pristine SnS2 (4.8 V/µm) nanosheets. The field enhancement factor β (~3200 for SnS2 and ~3700 for SnS2/RGO composite) was calculated from Fowler-Nordheim (FN) plots and indicates emission from the nanometric geometry of the emitter. The field emission current versus time plot shows overall good emission stability for the SnS2/RGO emitter. The DFT calculations reveal that the enhanced field emission properties of SnS2/RGO composites are because of a substantial lowering of work function of SnS2 when supported by graphene, which is in response to p-type doping of the graphene substrate. Graphene and 2D analogue materials emerge as a potential candidate for future field emission applications.

Keywords: graphene, layered material, field emission, plasma, doping

Procedia PDF Downloads 338
9137 Copper Phthalocyanine Nanostructures: A Potential Material for Field Emission Display

Authors: Uttam Kumar Ghorai, Madhupriya Samanta, Subhajit Saha, Swati Das, Nilesh Mazumder, Kalyan Kumar Chattopadhyay

Abstract:

Organic semiconductors have gained potential interest in the last few decades for their significant contributions in the various fields such as solar cell, non-volatile memory devices, field effect transistors and light emitting diodes etc. The most important advantages of using organic materials are mechanically flexible, light weight and low temperature depositing techniques. Recently with the advancement of nanoscience and technology, one dimensional organic and inorganic nanostructures such as nanowires, nanorods, nanotubes have gained tremendous interests due to their very high aspect ratio and large surface area for electron transport etc. Among them, self-assembled organic nanostructures like Copper, Zinc Phthalocyanine have shown good transport property and thermal stability due to their π conjugated bonds and π-π stacking respectively. Field emission properties of inorganic and carbon based nanostructures are reported in literatures mostly. But there are few reports in case of cold cathode emission characteristics of organic semiconductor nanostructures. In this work, the authors report the field emission characteristics of chemically and physically synthesized Copper Phthalocyanine (CuPc) nanostructures such as nanowires, nanotubes and nanotips. The as prepared samples were characterized by X-Ray diffraction (XRD), Ultra Violet Visible Spectrometer (UV-Vis), Fourier Transform Infra-red Spectroscopy (FTIR), and Field Emission Scanning Electron Microscope (FESEM) and Transmission Electron Microscope (TEM). The field emission characteristics were measured in our home designed field emission set up. The registered turn-on field and local field enhancement factor are found to be less than 5 V/μm and greater than 1000 respectively. The field emission behaviour is also stable for 200 minute. The experimental results are further verified by theoretically using by a finite displacement method as implemented in ANSYS Maxwell simulation package. The obtained results strongly indicate CuPc nanostructures to be the potential candidate as an electron emitter for field emission based display device applications.

Keywords: organic semiconductor, phthalocyanine, nanowires, nanotubes, field emission

Procedia PDF Downloads 470
9136 Sliver Nanoparticles Enhanced Visible and Near Infrared Emission of Er³+ Ions Doped Lithium Tungsten Tellurite Glasses

Authors: Sachin Mahajan, Ghizal Ansari

Abstract:

TeO2-WO3-Li2O glass doped erbium ions (1mol %) and embedded silver nanoparticles( Ag NPs) has successfully been prepared by melt quenching technique and increasing the heat-treatment duration. The amorphous nature of the glass is determined by X-ray diffraction method, and the presences of silver nanoparticles are confirmed using Transmission Electron Microscopy analysis. TEM image reveals that the Ag NPs are dispersed homogeneously with average size 18 nm. From the UV-Vis absorption spectra, the surface plasmon resonance (SPR) peaks are detected at 550 and 578 nm. Under 980 nm excitation wavelengths, enhancement of red upconversion fluorescence and near-infrared broadband emission around 1550nm of Er3+ ions doped tellurite glasses containing Ag NPs have been observed. The observed enhancement of Er3+ emission is mainly attributed to the local field effects of Ag NPs causes an intensified electromagnetic field around NPs. For observed enhancement involved mechanisms are discussed.

Keywords: erbium ions, silver nanoparticle, surface plasmon resonance, upconversion emission

Procedia PDF Downloads 561
9135 NOx Emission and Computational Analysis of Jatropha Curcus Fuel and Crude Oil

Authors: Vipan Kumar Sohpal, Rajesh K Sharma

Abstract:

Diminishing of conventional fuels and hysterical vehicles emission leads to deterioration of the environment, which emphasize the research to work on biofuels. Biofuels from different sources attract the attention of research due to low emission and biodegradability. Emission of carbon monoxide, carbon dioxide and H-C reduced drastically using Biofuels (B-20) combustion. Contrary to the conventional fuel, engine emission results indicated that nitrous oxide emission is higher in Biofuels. So this paper examines and compares the nitrogen oxide emission of Jatropha Curcus (JCO) B-20% blends with the vegetable oil. In addition to that computational analysis of crude non edible oil performed to assess the impact of composition on emission quality. In conclusion, JCO have the potential feedstock for the biodiesel production after the genetic modification in the plant.

Keywords: jatropha curcus, computational analysis, emissions, NOx biofuels

Procedia PDF Downloads 550
9134 A Mini-Review on Effect of Magnetic Field and Material on Combustion Engines

Authors: A. N. Santhosh, Vinay Hegde, S. Vinod Kumar, R. Giria, D. L. Rakesh, M. S. Raghu

Abstract:

At present, research on automobile engineering is in high demand, particularly in the field of fuel combustion. A large number of fossil fuels are being used in combustion, which may get exhausted in the near future and are not economical. To this end, research on the use of magnetic material in combustion engines is in progress to enhance the efficiency of fuel. The present review describes the chemical, physical and mathematical theory behind the magnetic materials along with the working principle of the internal combustion engine. The effect of different magnets like ferrite magnet, Neodymium magnet, and electromagnets was discussed. The effect of magnetic field on the consumption of the fuel, brake thermal efficiency, carbon monoxide, Oxides of Nitrogen, carbon dioxide, and hydrocarbon emission, along with smoke density, have been discussed in detail. Detailed mathematical modelling that shows the effect of magnetic field on fuel combustion is elaborated. Required pictorial representations are included wherever necessary. This review article could serve as a base for studying the effect of magnetic materials on IC engines.

Keywords: magnetic field, energizer, fuel conditioner, fuel consumption, emission reduction

Procedia PDF Downloads 65
9133 Lanthanide Incorporated Dendron Based White Light Emitting Material

Authors: Prashant Kumar, Edamana Prasad

Abstract:

The White light emitting material has an emerging field in recent years due to their widespread application in the field of optoelectronics and cellular display. In the present study, we have achieved white light emission in gel medium through partial resonance energy transfer from different donors (naphthalene, phenanthrene, and pyrene) to lanthanides {Eu(III) and Tb(III)}. The gel was formed by the self- assembly of glucose cored poly(aryl ether) dendrons in DMSO-Water mixture (1:9 v/v). The white light emission was further confirmed by the CIE coordinates (Commission Internationale d’ Eclairage). Moreover, we have developed three different white light emitting system by utilizing three different donor moiety namely, naphthalene-Tb(III)-Eu(III) {I}, phenanthrene-Tb(III)-Eu(III) {II}, and pyrene-Tb(III)-Eu(III) {III}. The CIE coordinates for I, II and III were (0.35, 0.37), (0.33, 0.32) and (0.35, 0.33) respectively. Furthermore, we have investigated the energy transfer from different donors (phenanthrene, naphthalene, and pyrene) to lanthanide {Eu(III)}. The efficiency of energy transfer from phenanthrene-Eu(III), naphthalene-Eu(III) and pyrene-Eu(III) systems was 11.9%, 3.9%, and 3.6%, respectively. Detailed mechanistic aspects will be displayed in the poster.

Keywords: dendron, lanthanide, resonance energy transfer, white light emission

Procedia PDF Downloads 300
9132 Determinants of Intensity of Greenhouse Gas Emission in Lithuanian Agriculture

Authors: D. Makuteniene

Abstract:

Agriculture, as one of the human activities, emits a significant amount of greenhouse gas emission and undoubtedly has an impact on climate change. The main gaseous products of agricultural greenhouse gases are carbon dioxide, methane, and nitroxadoxide. The sources and emission of these gases depend on land use, soil, crops, manure, livestock, and energy consumption. One of the indicators showing the agricultural impact on climate change is an intensity of GHG emission and its dynamics. This study analyzed the determinants of an intensity of greenhouse gas emission in Lithuanian agriculture using data decomposition. The research revealed that, although greenhouse gas emission increased during the research period, however, agricultural net value added grew more rapidly, which contributed to a reduction of intensity of greenhouse gas emission in Lithuania between 2000 and 2015. It was identified that during the research period intensity of greenhouse gas emission was mostly increased by the change of the use of nitrogen in agriculture, as compared to the change of the area of agricultural land, and by the change of the number of full-time employees, as compared to the change of net value added. Conversely, the change of energy consumption in agriculture, as compared to the change of the use of nitrogen in agriculture, had a bigger impact in decreasing intensity of greenhouse gas emission.

Keywords: agriculture, determinants of intensity, greenhouse gas emission, intensity

Procedia PDF Downloads 149
9131 CO2 Emissions Quantification of the Modular Bridge Superstructure

Authors: Chanhyuck Jeon, Jongho Park, Jinwoong Choi, Sungnam Hong, Sun-Kyu Park

Abstract:

Many industries put emphasis on environmentally-friendliness as environmental problems are on the rise all over the world. Among themselves, the Modular Bridge research is going on. Also performing cross-section optimization and duration reducing, this research aims at developing the modular bridge with Environment-Friendliness and economic feasibility. However, the difficulty lies in verifying environmental effectiveness because there are no field applications of the modular bridge until now. Therefore, this thesis is categorized according to the form of the modular bridge superstructure and assessed CO₂ emission quantification per work types and materials according to each form to verify the environmental effectiveness of the modular bridge.

Keywords: modular bridge, CO2 emission, environmentally friendly, quantification, carbon emission factor, LCA (Life Cycle Assessment)

Procedia PDF Downloads 525
9130 Modeling of Thermo Acoustic Emission Memory Effect in Rocks of Varying Textures

Authors: Vladimir Vinnikov

Abstract:

The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied with a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.

Keywords: crack growth, cyclic heating and cooling, rock texture, thermo acoustic emission memory effect

Procedia PDF Downloads 240
9129 Effect of Cr and Fe Doping on the Structural and Optical Properties of ZnO Nanostructures

Authors: Prakash Chand, Anurag Gaur, Ashavani Kumar

Abstract:

In the present study, we have synthesized Cr and Fe doped zinc oxide (ZnO) nano-structures (Zn1-δCraFebO; where δ= a + b=20%, a = 5, 6, 8 & 10% and b=15, 14, 12 & 10%) via sol-gel method at different doping concentrations. The synthesized samples were characterized for structural properties by X-ray diffractometer and field emission scanning electron microscope and the optical properties were carried out through photoluminescence and UV-visible spectroscopy. The particle size calculated through field emission scanning electron microscope varies from 41 to 96 nm for the samples synthesized at different doping concentrations. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 3.27 to 3.02 eV as the doping concentration of Cr increases and Fe decreases.

Keywords: nano-structures, optical properties, sol-gel method, zinc oxide

Procedia PDF Downloads 284
9128 Test Research on Damage Initiation and Development of a Concrete Beam Using Acoustic Emission Technology

Authors: Xiang Wang

Abstract:

In order to validate the efficiency of recognizing the damage initiation and development of a concrete beam using acoustic emission technology, a concrete beam is built and tested in the laboratory. The acoustic emission signals are analyzed based on both parameter and wave information, which is also compared with the beam deflection measured by displacement sensors. The results indicate that using acoustic emission technology can detect damage initiation and development effectively, especially in the early stage of the damage development, which can not be detected by the common monitoring technology. Furthermore, the positioning of the damage based on the acoustic emission signals can be proved to be reasonable. This job can be an important attempt for the future long-time monitoring of the real concrete structure.

Keywords: acoustic emission technology, concrete beam, parameter analysis, wave analysis, positioning

Procedia PDF Downloads 110
9127 Modeling of Thermally Induced Acoustic Emission Memory Effects in Heterogeneous Rocks with Consideration for Fracture Develo

Authors: Vladimir A. Vinnikov

Abstract:

The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied by a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.

Keywords: degree of rock disturbance, non-destructive testing, thermally induced acoustic emission memory effects, structure and texture of rocks

Procedia PDF Downloads 233
9126 Electrification Strategy of Hybrid Electric Vehicle as a Solution to Decrease CO2 Emission in Cities

Authors: M. Mourad, K. Mahmoud

Abstract:

Recently hybrid vehicles have become a major concern as one alternative vehicles. This type of hybrid vehicle contributes greatly to reducing pollution. Therefore, this work studies the influence of electrification phase of hybrid electric vehicle on emission of vehicle at different road conditions. To accomplish this investigation, a simulation model was used to evaluate the external characteristics of the hybrid electric vehicle according to variant conditions of road resistances. Therefore, this paper reports a methodology to decrease the vehicle emission especially greenhouse gas emission inside cities. The results show the effect of electrification on vehicle performance characteristics. The results show that CO2 emission of vehicle decreases up to 50.6% according to an urban driving cycle due to applying the electrification strategy for hybrid electric vehicle.

Keywords: electrification strategy, hybrid electric vehicle, driving cycle, CO2 emission

Procedia PDF Downloads 405
9125 Climate Change Effects of Vehicular Carbon Monoxide Emission from Road Transportation in Part of Minna Metropolis, Niger State, Nigeria

Authors: H. M. Liman, Y. M. Suleiman A. A. David

Abstract:

Poor air quality often considered one of the greatest environmental threats facing the world today is caused majorly by the emission of carbon monoxide into the atmosphere. The principal air pollutant is carbon monoxide. One prominent source of carbon monoxide emission is the transportation sector. Not much was known about the emission levels of carbon monoxide, the primary pollutant from the road transportation in the study area. Therefore, this study assessed the levels of carbon monoxide emission from road transportation in the Minna, Niger State. The database shows the carbon monoxide data collected. MSA Altair gas alert detector was used to take the carbon monoxide emission readings in Parts per Million for the peak and off-peak periods of vehicular movement at the road intersections. Their Global Positioning System (GPS) coordinates were recorded in the Universal Transverse Mercator (UTM). Bar chart graphs were plotted by using the emissions level of carbon dioxide as recorded on the field against the scientifically established internationally accepted safe limit of 8.7 Parts per Million of carbon monoxide in the atmosphere. Further statistical analysis was also carried out on the data recorded from the field using the Statistical Package for Social Sciences (SPSS) software and Microsoft excel to show the variance of the emission levels of each of the parameters in the study area. The results established that emissions’ level of atmospheric carbon monoxide from the road transportation in the study area exceeded the internationally accepted safe limits of 8.7 parts per million. In addition, the variations in the average emission levels of CO between the four parameters showed that morning peak is having the highest average emission level of 24.5PPM followed by evening peak with 22.84PPM while morning off peak is having 15.33 and the least is evening off peak 12.94PPM. Based on these results, recommendations made for poor air quality mitigation via carbon monoxide emissions reduction from transportation include Introduction of the urban mass transit would definitely reduce the number of traffic on the roads, hence the emissions from several vehicles that would have been on the road. This would also be a cheaper means of transportation for the masses and Encouraging the use of vehicles using alternative sources of energy like solar, electric and biofuel will also result in less emission levels as the these alternative energy sources other than fossil fuel originated diesel and petrol vehicles do not emit especially carbon monoxide.

Keywords: carbon monoxide, climate change emissions, road transportation, vehicular

Procedia PDF Downloads 348
9124 Study of Interaction between Ascorbic Acid and Bovine Hemoglobin by Multispectroscopic Methods

Authors: Krishnamoorthy Shanmugaraj, Malaichamy Ilanchelian

Abstract:

Ascorbic acid is an essential component in the diet of humans, and also is a typical long used pharmaceutical agent. In the present contribution, we have carried out a detailed study on the binding interaction of ascorbic acid (AA) with bovine hemoglobin (BHb) using steady state emission, time resolved fluorescence, UV-Vis absorption, circular dichroism (CD), Fourier transform infra-red (FT-IR) and three dimensional emission (3D) spectral studies. The results from the emission spectral studies unveiled that the quenching of BHb emission by AA is attributed to the formation of a complex in the ground state (static in nature) after correcting for inner filter effect. The binding parameters calculated from corrected emission quenching data revealed that BHb exhibited a significant binding affinity towards AA. Moreover, AA induced tertiary and secondary conformational changes of BHb were monitored by UV-Vis absorption, CD, FT-IR and 3D emission spectral studies. The results presented here will help to further understand the credible mechanism of BHb-AA system which is expected to provide insights into conformational and microenvironmental changes of BHb.

Keywords: ascorbic acid, bovine hemoglobin, circular dichroism, three dimensional emission spectral studies

Procedia PDF Downloads 929
9123 The Reduction of CO2 Emissions Level in Malaysian Transportation Sector: An Optimization Approach

Authors: Siti Indati Mustapa, Hussain Ali Bekhet

Abstract:

Transportation sector represents more than 40% of total energy consumption in Malaysia. This sector is a major user of fossils based fuels, and it is increasingly being highlighted as the sector which contributes least to CO2 emission reduction targets. Considering this fact, this paper attempts to investigate the problem of reducing CO2 emission using linear programming approach. An optimization model which is used to investigate the optimal level of CO2 emission reduction in the road transport sector is presented. In this paper, scenarios have been used to demonstrate the emission reduction model: (1) utilising alternative fuel scenario, (2) improving fuel efficiency scenario, (3) removing fuel subsidy scenario, (4) reducing demand travel, (5) optimal scenario. This study finds that fuel balancing can contribute to the reduction of the amount of CO2 emission by up to 3%. Beyond 3% emission reductions, more stringent measures that include fuel switching, fuel efficiency improvement, demand travel reduction and combination of mitigation measures have to be employed. The model revealed that the CO2 emission reduction in the road transportation can be reduced by 38.3% in the optimal scenario.

Keywords: CO2 emission, fuel consumption, optimization, linear programming, transportation sector, Malaysia

Procedia PDF Downloads 385
9122 Experimental Investigation of Performance and Emission Characteristics of Using Acetylene Gas in CI Engine

Authors: S. Sivakumar, Ashwin Bala, S. Prithviraj, K. Panthala Rajakumaran, R. Pradeep, J. Udhayakumar

Abstract:

Studies reveal that acetylene gas derived from hydrolysis of calcium carbide has similar properties to that of diesel. However, the self-ignition temperature of acetylene gas is higher than that of diesel. Early investigations reveal that acetylene gas could be used as alternative fuel mode. In the present work, acetylene gas of 31/min were inducted and diesel was injected into the combustion chamber of a single cylinder air cooled diesel engine. It was observed that the higher calorific value of acetylene gas improves the brake thermal efficiency at full load conditions. The CO and HC emissions were higher at part load conditions as compared to conventional diesel. The Nox emission level was higher and smoke emission was lower during dual fuel mode under all operating conditions. It is concluded that dual fuel mode of acetylene gas and diesel improves the brake thermal efficiency and reduces smoke in diesel engine.

Keywords: acetylene gas, diesel engine, Nox emission, CO emission, HC emission

Procedia PDF Downloads 337
9121 Study on the Relationship between the Emission Property of Barium-Tungsten Cathode and Micro-Area Activity

Authors: Zhen Qin, Yufei Peng, Jianbei Li, Jidong Long

Abstract:

In order to study the activity of the coated aluminate barium-tungsten cathodes during activation, aging, poisoning and long-term use. Through a set of hot-cathode micro-area emission uniformity study device, we tested the micro-area emission performance of the cathode under different conditions. The change of activity of cathode micro-area was obtained. The influence of micro-area activity on the performance of the cathode was explained by the ageing model of barium-tungsten cathode. This helps to improve the design and process of the cathode and can point the way in finding the factors that affect life in the cathode operation.

Keywords: barium-tungsten cathode, ageing model, micro-area emission, emission uniformity

Procedia PDF Downloads 379
9120 Effects of China's Urban Form on Urban Carbon Emission

Authors: Lu Lin

Abstract:

Urbanization has reshaped physical environment, energy consumption and carbon emission of the urban area. China is a typical developing country under a rapid urbanization process and is the world largest carbon emission country. This study aims to explore the correlation between urban form and carbon emission caused by urban energy consumption in China. 287 provincial-level and prefecture-level cities are studied in 2000, 2005, and 2010. Compact ratio index, shape index, and fractal dimension index are used to quantify urban form. Geographically weighted regression (GWR) model is employed to explore the relationship between urban form, energy consumption, and related carbon emission. The results show the average compact ratio index decreased from 2000 to 2010 which indicates urban in China sprawled. The average fractal dimension index increases by 3%, indicating the spatial layouts of China's cities were more complicated. The results by the GWR model show that shape index and fractal dimension index had a non-significant relationship with carbon emission by urban energy consumption. However, compact urban form reduced carbon emission. The findings of this study will help policy-makers make sustainable urban planning and reduce urban carbon emission.

Keywords: carbon emission, GWR model, urban energy consumption, urban form

Procedia PDF Downloads 310
9119 Cross-Sectional Analysis of Sustainability Activities in the Pharmaceutical Companies

Authors: Kanika Saxena, Sunita Balani

Abstract:

Purpose - The aim of the study is to compare the reported sustainability activities in areas of emission, water management and gender equality, currently undertaken by the seven major pharmaceutical companies. Methodology: The published corporate sustainability activity reports for the year 2017 for seven pharmaceutical companies have been studied. The two main criteria for the inclusion of pharmaceutical companies in this study are that they are globally recognized and active in the field of sustainability reporting. Company’s actions and initiatives have been grouped under three categories: (i) Emissions (ii) Water management (iii) Gender Equality in terms of employee workforce. Findings: Based on the sustainability reports, quantification and grading of the companies showed interesting results. Johnson & Johnson and Bayer are leading their activities under emissions and water management categories. The number of activities under emission and water management in case of Eli Lily, Roche, Sanofi, Pfizer and GlaxoSmithKline were 19, 16, 16, 11 and 6 respectively. Johnson & Johnson and Eli Lily are leading in taking the initiatives to curb the problem of emissions as compared with other 5 companies. Under the category of gender equality in terms of employee workforce, Eli Lily is leading the group of sampled companies with 47% of women employee workforce globally followed by Sanofi with 46.2% (42.2% of managers) female employees. It has also been observed that in some of the reports, gender diversification in the workforce has not been mentioned though the total number of employees were mentioned. Conclusion: This study could serve as the informative material for future in-depth industry-specific studies in order to find out the participation of the pharmaceutical companies in the reporting of the sustainability activities especially in reference to emission, water management and gender equality in the workforce. In addition to it, this can be helpful as a reference point for other companies in the pharmaceutical sector who are yet to explore the field of sustainability initiatives and reporting. Due to the limited scope of this study, only seven major players of the pharmaceutical sector who are active in the field of sustainability have been considered.

Keywords: emission, gender equality workforce, pharmaceutical, sustainability, water management

Procedia PDF Downloads 110
9118 Research of Intrinsic Emittance of Thermal Cathode with Emission Nonuniformity

Authors: Yufei Peng, Zhen Qin, Jianbe Li, Jidong Long

Abstract:

The thermal cathode is widely used in accelerators, FELs and kinds of vacuum electronics. However, emission nonuniformity exists due to surface profile, material distribution, temperature variation, crystal orientation, etc., which will cause intrinsic emittance growth, brightness decline, envelope size augment, device performance deterioration or even failure. To understand how emittance is manipulated by emission nonuniformity, an intrinsic emittance model consisting of contributions from macro and micro surface nonuniformity is developed analytically based on general thermal emission model at temperature limited regime according to a real 3mm cathode. The model shows relative emittance increased about 50% due to temperature variation, and less than 5% from several kinds of micro surface nonuniformity which is much smaller than other research. Otherwise, we also calculated emittance growth combining with Monte Carlo method and PIC simulation, experiments of emission uniformity and emittance measurement are going to be carried out separately.

Keywords: thermal cathode, electron emission fluctuation, intrinsic emittance, surface nonuniformity, cathode lifetime

Procedia PDF Downloads 263
9117 Bearing Condition Monitoring with Acoustic Emission Techniques

Authors: Faisal AlShammari, Abdulmajid Addali

Abstract:

Monitoring the conditions of rotating machinery as bearing is important in order to improve its stability of works. Acoustic emission (AE) and vibration analysis are some of the most accomplished techniques used for this purpose. Acoustic emission has the ability to detect the initial phase of component degradation. Moreover, it has been observed that the success of vibration analysis does not take place below 100 rpm rotational speed. This because the energy generated below 100 rpm rotational speed is not detectable using conventional vibration. From this pint, this paper has presented a focused review of using acoustic emission techniques for monitoring bearings condition.

Keywords: condition monitoring, stress wave analysis, low-speed bearings, bearing defect diagnosis

Procedia PDF Downloads 281
9116 Magnetic Simulation of the Underground Electric Cable in the Presence of a Short Circuit and Harmonics

Authors: Ahmed Nour El Islam Ayad, Wafa Krika, Abdelghani Ayad, Moulay Larab, Houari Boudjella, Farid Benhamida

Abstract:

The purpose of this study is to evaluate the magnetic emission of underground electric cable of high voltage, because these power lines generate electromagnetic interaction with other objects near to it. The aim of this work shows a numerical simulation of the magnetic field of buried 400 kV line in three cases: permanent and transient states of short circuit and the last case with the presence of the harmonics at different positions as a function of time variation, with finite element resolution using Comsol Multiphysics software. The results obtained showed that the amplitude and distribution of the magnetic flux density change in the transient state and the presence of harmonics. The results of this work calculate the magnetic field generated by the underground lines in order to evaluate and know their impact on ecology and health.

Keywords: underground, electric power cables, cables crossing, harmonic, emission

Procedia PDF Downloads 197
9115 The Analysis of Exhaust Emission from Single Cylinder Non-Mobile Spark Ignition Engine Using Ethanol-Gasoline Blend as Fuel

Authors: Iyiola Olusola Oluwaleye, Ogbevire Umukoro

Abstract:

In view of the prevailing pollution problems and its consequences on the environment, efforts are being made to lower the concentration of toxic components in combustion products and decreasing fossil fuel consumption by using renewable alternative fuels. In this work, the impact of ethanol-gasoline blend on the exhaust emission of a single cylinder non-mobile spark ignition engine was investigated. Gasoline was blended with 5 – 20% of ethanol sourced from the open market (bought off the shelf) in an interval of 5%. The results of the emission characteristics of the exhaust gas from the combustion of the ethanol-gasoline blends showed that increasing the percentage of ethanol in the blend decreased CO emission by between 2.12% and 52.29% and HC emissions by between12.14% and 53.24%, but increased CO2 and NOx emissions by between 25% to 56% and 59% to 60% respectively. E15 blend is preferred above other blends at no-load and across all the load variations. However its NOx emission was the highest when compared with other samples. This will negatively affect human health and the environment but this drawback can be remedied by adequate treatment with appropriate additives.

Keywords: blends, emission, ethanol, gasoline, spark ignition engine

Procedia PDF Downloads 163
9114 Analysis of Population and Growth Rate Methanotof Bateria as Reducers Methane Gases Emission in Rice Field

Authors: Maimuna Nontji

Abstract:

The life cycle of rice plant has three phases of growth; they are the vegetative, reproductive and maturation phase. They greatly affect the life of dynamics metanotrof bacterial as reducer methane emissions in the rice field, both of population and on the rate of growth. The aim of this study was to analyze the population and growth rate of methanotrof isolates which has been isolated in previous studies. Isolates were taken at all the life cycle of rice plant. Population of analysis was conducted by standard plate count method and growth rate was analysed by logarithmic calculation. The results showed that each isolate varied in population and growth rate. The highest population was obtained in the isolates Gowa Methanotrof Reproductive (GMR 8) about 7.06 x 10 11 cfu / ml on 3 days of incubation and the lowest population was obtained in the Gowa Methanotrof Maturation (GMP 5) about 0.27 x 10 11 cfu / ml on 7 day of incubation. Some isolate were demonstrated in long growth rate about 5 days of incubation and another are 3 days.

Keywords: emission, methanotrof, methane, population

Procedia PDF Downloads 418
9113 Highlighting of the Factors and Policies affecting CO2 Emissions level in Malaysian Transportation Sector

Authors: Siti Indati Mustapa, Hussain Ali Bekhet

Abstract:

Global CO2 emission and increasing fuel consumption to meet energy demand requirement has become a threat in recent decades. Effort to reduce the CO2 emission is now a matter of priority in most countries of the world including Malaysia. Transportation has been identified as the most intensive sector of carbon-based fuels and achievement of the voluntary target to meet 40% carbon intensity reduction set at the 15th Conference of the Parties (COP15) means that the emission from the transport sector must be reduced accordingly. This posed a great challenge to Malaysia and effort has to be made to embrace suitable and appropriate energy policy for sustainable energy and emission reduction of this sector. The focus of this paper is to analyse the trends of Malaysia’s energy consumption and emission of four different transport sub-sectors (road, rail, aviation and maritime). Underlying factors influencing the growth of energy consumption and emission trends are discussed. Besides, technology status towards energy efficiency in transportation sub-sectors is presented. By reviewing the existing policies and trends of energy used, the paper highlights prospective policy options towards achieving emission reduction in the transportation sector.

Keywords: CO2 emissions, transportation sector, fuel consumption, energy policy, Malaysia

Procedia PDF Downloads 439
9112 Highly Conducting Ultra Nanocrystalline Diamond Nanowires Decorated ZnO Nanorods for Long Life Electronic Display and Photo-Detectors Applications

Authors: A. Saravanan, B. R. Huang, C. J. Yeh, K. C. Leou, I. N. Lin

Abstract:

A new class of ultra-nano diamond-graphite nano-hybrid (DGH) composite materials containing nano-sized diamond needles was developed at low temperature process. Such kind of diamond- graphite nano-hybrid composite nanowires exhibit high electrical conductivity and excellent electron field emission (EFE) properties. Few earlier reports mention that addition of N2 gas to the growth plasma requires high growth temperature (800°C) to trigger the dopants to generate the conductivity in the films. High growth temperature is not familiar with the Si-based device fabrications. We have used a novel process such as bias-enhanced-grown (beg) MPECVD process to grow diamond films at low substrate temperature (450°C). We observed that the beg-N/UNCD films thus obtained possess high conductivity of σ=987 S/cm, ever reported for diamond films with excellent Electron field emission (EFE) properties. TEM investigation indicated that these films contain needle-like diamond grains about 5 nm in diameter and hundreds of nanometers in length. Each of the grains was encased in graphitic layers about tens of nano-meters in thickness. These materials properties suitable for more specific applications, such as high conductivity for electron field emitters, high robustness for microplasma cathodes and high electrochemical activity for electro-chemical sensing. Subsequently, other hand, the highly conducting DGH films were coated on vertically aligned ZnO nanorods, there is no prior nucleation or seeding process needed due to the use of BEG method. Such a composite structure provides significant enhancement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage 1.78 V/μm with high EFE current density of 3.68 mA/ cm2 (at 4.06V/μm) due to decoration of DGH material on ZnO nanorods. The DGH/ZNRs based device get stable emission for longer duration of 562min than bare ZNRs (104min) without any current degradation because the diamond coating protects the ZNRs from ion bombardment when they are used as the cathode for microplasma devices. The potential application of these materials is demonstrated by the plasma illumination measurements that ignited the plasma at the minimum voltage by 290 V. The photoresponse (Iphoto/Idark) behavior of the DGH/ZNRs based photodetectors exhibits a much higher photoresponse (1202) than bare ZNRs (229). During the process the electron transport is easy from ZNRs to DGH through graphitic layers, the EFE properties of these materials comparable to other primarily used field emitters like carbon nanotubes, graphene. The DGH/ZNRs composite also providing a possibility of their use in flat panel, microplasma and vacuum microelectronic devices.

Keywords: bias-enhanced nucleation and growth, ZnO nanorods, electrical conductivity, electron field emission, photo-detectors

Procedia PDF Downloads 340
9111 Supply Chain Decarbonisation – A Cost-Based Decision Support Model in Slow Steaming Maritime Operations

Authors: Eugene Y. C. Wong, Henry Y. K. Lau, Mardjuki Raman

Abstract:

CO2 emissions from maritime transport operations represent a substantial part of the total greenhouse gas emission. Vessels are designed with better energy efficiency. Minimizing CO2 emission in maritime operations plays an important role in supply chain decarbonisation. This paper reviews the initiatives on slow steaming operations towards the reduction of carbon emission. It investigates the relationship and impact among slow steaming cost reduction, carbon emission reduction, and shipment delay. A scenario-based cost-driven decision support model is developed to facilitate the selection of the optimal slow steaming options, considering the cost on bunker fuel consumption, available speed, carbon emission, and shipment delay. The incorporation of the social cost of cargo is reviewed and suggested. Additional measures on the effect of vessels sizes, routing, and type of fuels towards decarbonisation are discussed.

Keywords: slow steaming, carbon emission, maritime logistics, sustainability, green supply chain

Procedia PDF Downloads 430
9110 Optimizing the Field Emission Performance of SiNWs-Based Heterostructures: Controllable Synthesis, Core-Shell Structure, 3D ZnO/Si Nanotrees and Graphene/SiNWs

Authors: Shasha Lv, Zhengcao Li

Abstract:

Due to the CMOS compatibility, silicon-based field emission (FE) devices as potential electron sources have attracted much attention. The geometrical arrangement and dimensional features of aligned silicon nanowires (SiNWs) have a determining influence on the FE properties. We discuss a multistep template replication process of Ag-assisted chemical etching combined with polystyrene (PS) spheres to fabricate highly periodic and well-aligned silicon nanowires, then their diameter, aspect ratio and density were further controlled via dry oxidation and post chemical treatment. The FE properties related to proximity and aspect ratio were systematically studied. A remarkable improvement of FE propertiy was observed with the average nanowires tip interspace increasing from 80 to 820 nm. On the basis of adjusting SiNWs dimensions and morphology, addition of a secondary material whose properties complement the SiNWs could yield a combined characteristic. Three different nanoheterostructures were fabricated to control the FE performance, they are: NiSi/Si core-shell structures, ZnO/Si nanotrees, and Graphene/SiNWs. We successfully fabricated the high-quality NiSi/Si heterostructured nanowires with excellent conformality. First, nickle nanoparticles were deposited onto SiNWs, then rapid thermal annealing process were utilized to form NiSi shell. In addition, we demonstrate a new and simple method for creating 3D nanotree-like ZnO/Si nanocomposites with a spatially branched hierarchical structure. Compared with the as-prepared SiNRs and ZnO NWs, the high-density ZnO NWs on SiNRs have exhibited predominant FE characteristics, and the FE enhancement factors were attributed to band bending effect and geometrical morphology. The FE efficiency from flat sheet structure of graphene is low. We discussed an effective approach towards full control over the diameter of uniform SiNWs to adjust the protrusions of large-scale graphene sheet deposited on SiNWs. The FE performance regarding the uniformity and dimensional control of graphene protrusions supported on SiNWs was systematically clarified. Therefore, the hybrid SiNWs/graphene structures with protrusions provide a promising class of field emission cathodes.

Keywords: field emission, silicon nanowires, heterostructures, controllable synthesis

Procedia PDF Downloads 244