Search results for: ultrasonic techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6674

Search results for: ultrasonic techniques

6674 Evaluation of Ultrasonic Techniques for the Estimation of Air Voids in Asphalt Concrete

Authors: Majid Zargar, Frank Bullen, Ron Ayers

Abstract:

One of the important factors in the design of asphalt concrete mixes is the accurate measurement of air voids and their variable distribution. Both can have significant impact on long and short term fatigue and creep behaviour under traffic. While some simple methods exist for overall evaluation of air voids, measuring air void distribution in asphalt concrete is very complex, involving expensive techniques such as X-ray methodologies. The research reported in the paper investigated the use of non-destructive ultrasonic techniques as an alternative to estimate the amount of air voids and their distribution within asphalt samples. Seventy-four Standard AC–14 asphalt samples made with three types of bitumen; Multigrade, PMB and C320 were analysed using ultrasonic techniques. The results have illustrated that ultrasonic testing has the potential of being a rapid, accurate and cost-effective method of estimating air void distribution in asphalt.

Keywords: asphalt concrete, air voids, ultrasonic, mechanical behaviour

Procedia PDF Downloads 316
6673 Ultrasonic Techniques to Characterize and Monitor Water-in-Oil Emulsion

Authors: E. A. Alshaafi, A. Prakash

Abstract:

Oil-water emulsions are commonly encountered in various industrial operations and at different stages of crude oil production and processing. Emulsions are often difficult to track and treat and can cause a number of costly problems which need to be avoided. The characteristics of the emulsion phase can vary with crude composition and types of impurities present in oil. The objectives of this study are the development of ultrasonic techniques to track and characterize emulsion phase generated during production and cleaning of crude oil. The position of emulsion layer is monitored with the help of ultrasonic probes suitably placed in the vessel. The sensitivity of the technique and its potential has been demonstrated based on extensive testing with different oil samples. The technique is also being developed to monitor emulsion phase characteristics such as stability, composition, and droplet size distribution. The ultrasonic parameters recorded are changes in acoustic velocity, signal attenuation and its frequency spectrum. Emulsion has been prepared with light mineral oil sample and the effects of various factors including mixing speed, temperature, surfactant, and solid particles concentrations have been investigated. The applied frequency for ultrasonic waves has been varied from 1 to 5 MHz to carry out a sensitivity analysis. Emulsion droplet structure is observed with optical microscopy and stability is examined by tracking the changes in ultrasonic parameters with time. A model based on ultrasonic attenuation spectroscopy is being developed and tested to track changes in droplet size distribution with time.

Keywords: ultrasonic techniques, emulsion, characterization, droplet size

Procedia PDF Downloads 141
6672 Autonomous Control of Ultrasonic Transducer Drive System

Authors: Dong-Keun Jeong, Jong-Hyun Kim, Woon-Ha Yoon, Hee-Je Kim

Abstract:

In order to automatically operate the ultrasonic transducer drive system for sonicating aluminum, this paper proposes the ultrasonic transducer sensorless control algorithm. The resonance frequency shift and electrical impedance change is a common phenomenon in the state of the ultrasonic transducer. The proposed control algorithm make use of the impedance change of ultrasonic transducer according to the environment between air state and aluminum alloy state, it controls the ultrasonic transducer drive system autonomous without a sensor. The proposed sensorless autonomous ultrasonic transducer control algorithm was experimentally verified using a 3kW prototype ultrasonic transducer drive system.

Keywords: ultrasonic transducer drive system, impedance change, sensorless, autonomous control algorithm

Procedia PDF Downloads 329
6671 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks

Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han

Abstract:

In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.

Keywords: underwater concrete, rebound hardness, Schmidt hammer, ultrasonic pulse velocity, ultrasonic sensor, artificial neural networks, ANN

Procedia PDF Downloads 491
6670 Non-Destructive Testing of Metal Pipes with Ultrasonic Sensors Based on Determination of Maximum Ultrasonic Frequency

Authors: Herlina Abdul Rahim, Javad Abbaszadeh, Ruzairi Abdul Rahim

Abstract:

In this research, the non-invasive ultrasonic transmission tomography is investigated. In order to model the ultrasonic wave scattering for different thickness of metal pipes, two-dimensional (2D) finite element modeling (FEM) has been utilized. The wall thickness variation of the metal pipe and its influence on propagation of the ultrasonic pressure wave are explored in this paper, includes frequency analysing in order to find the maximum applicable frequency. The simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining the achieved reconstructed images from experimental setup. Finally, the experimental results which are useful for further investigation for the application of ultrasonic transmission tomography in industry are illustrated.

Keywords: ultrasonic transmission tomography, ultrasonic sensors, ultrasonic wave, non-invasive tomography, metal pipe

Procedia PDF Downloads 321
6669 The Design of Acoustic Horns for Ultrasonic Aided Tube Double Side Flange Making

Authors: Kuen-Ming Shu, Jyun-Wei Chen

Abstract:

Encapsulated O-rings are specifically designed to address the problem of sealing the most hostile chemicals and extreme temperature applications. Ultrasonic vibration hot embossing and ultrasonic welding techniques provide a fast and reliable method to fabricate encapsulated O-ring. This paper performs the design and analysis method of the acoustic horns with double extrusion to process tube double side flange simultaneously. The paper deals with study through Finite Element Method (FEM) of ultrasonic stepped horn used to process a capsulated O-ring, the theoretical dimensions of horns, and their natural frequencies and amplitudes are obtained through the simulations of COMOSOL software. Furthermore, real horns were fabricated, tested and verified to proof the practical utility of these horns.

Keywords: encapsulated O-rings, ultrasonic vibration hot embossing, flange making, acoustic horn, finite element analysis

Procedia PDF Downloads 292
6668 Kinetic and Mechanistic Study on the Degradation of Typical Pharmaceutical and Personal Care Products in Water by Using Carbon Nanodots/C₃N₄ Composite and Ultrasonic Irradiation

Authors: Miao Yang

Abstract:

PPCPs (pharmaceutical and personal care products) in water, as an environmental pollutant, becomes an issue of increasing concern. Therefore, the techniques for degradation of PPCPs has been a hotspot in water pollution control field. Since there are several disadvantages for common degradation techniques of PPCPs, such as low degradation efficiency for certain PPCPs (ibuprofen and Carbamazepine) this proposal will adopt a combined technique by using CDs (carbon nanodots)/C₃N₄ composite and ultrasonic irradiation to mitigate or overcome these shortages. There is a significant scientific problem that the mechanism including PPCPs, major reactants, and interfacial active sites is not clear yet in the study of PPCPs degradation. This work aims to solve this problem by using both theoretical and experimental methodologies. Firstly, optimized parameters will be obtained by evaluating the kinetics and oxidation efficiency under different conditions. The competition between H₂O₂ and PPCPs with HO• will be elucidated, after which the degradation mechanism of PPCPs by the synergy of CDs/C₃N₄ composite and ultrasonic irradiation will be proposed. Finally, a sonolysis-adsorption-catalysis coupling mechanism will be established which is the theoretical basis and technical support for developing new efficient degradation techniques for PPCPs in the future.

Keywords: carbon nanodots/C₃N₄, pharmaceutical and personal care products, ultrasonic irradiation, hydroxyl radical, heterogeneous catalysis

Procedia PDF Downloads 147
6667 Non-Destructive Inspection for Tunnel Lining Concrete with Small Void by Using Ultrasonic

Authors: Yasuyuki Nabeshima

Abstract:

Many tunnels which have been constructed since more than 50 years were existing in Japan. Lining concrete in these tunnels have many problems such as crack, flacking and void. Inner void between lining concrete and rock was very hard to find by outside visual check and hammering test. In this paper, non-destructive inspection by using ultrasonic was applied to investigate inner void. A model concrete with inner void was used as specimen and ultrasonic inspection was applied to specify the location and the size of void. As a result, ultrasonic inspection could accurately find the inner void.

Keywords: tunnel, lining concrete, void, non-destructive inspection, ultrasonic

Procedia PDF Downloads 170
6666 Design of a Pulse Generator Based on a Programmable System-on-Chip (PSoC) for Ultrasonic Applications

Authors: Pedro Acevedo, Carlos Díaz, Mónica Vázquez, Joel Durán

Abstract:

This paper describes the design of a pulse generator based on the Programmable System-on-Chip (PSoC) module. In this module, using programmable logic is possible to implement different pulses which are required for ultrasonic applications, either in a single channel or multiple channels. This module can operate with programmable frequencies from 3-74 MHz; its programming may be versatile covering a wide range of ultrasonic applications. It is ideal for low-power ultrasonic applications where PZT or PVDF transducers are used.

Keywords: PSoC, pulse generator, PVDF, ultrasonic transducer

Procedia PDF Downloads 253
6665 Effect of Ultrasonic Treatment on the Suspension Stability, Zeta Potential and Contact Angle of Celestite

Authors: Kiraz Esmeli, Alper Ozkan

Abstract:

In this study, firstly, the effect of ultrasonic treatment on the stability of celestite suspension was investigated. In this context, the variations of the suspension stability with ultrasonic power, treatment time, immersion depth of ultrasonic probe, and treatment regime (batch and continuous) were determined. The experimental results showed that the suspension stability and zeta potential of celestite decreased with ultrasonic treatment. Also, the treatment time, immersion depth of probe, and treatment regime affected the stability of celestite suspension. Secondly, the effect of pre-treatment of the suspension with the ultrasonic process on the shear flocculation of celestite using sodium dodecyl sulfate (SDS) was studied and the variations of the flocculation, zeta potential, and contact angle of the mineral with SDS concentration were presented. It was found that the ultrasonic pre-treatment slightly improved the shear flocculation of celestite particles in accordance with the increase in the contact angles. In addition, the ultrasonic process again relatively reduced the magnitude of the negative potential of celestite particles in the presence of SDS.

Keywords: celestite, contact angle, suspension stability, ultrasonic treatment, zeta potential

Procedia PDF Downloads 196
6664 Calcium Silicate Bricks – Ultrasonic Pulse Method: Effects of Natural Frequency of Transducers on Measurement Results

Authors: Jiri Brozovsky

Abstract:

Modulus of elasticity is one of the important parameters of construction materials, which considerably influence their deformation properties and which can also be determined by means of non-destructive test methods like ultrasonic pulse method. However, measurement results of ultrasonic pulse methods are influenced by various factors, one of which is the natural frequency of the transducers. The paper states knowledge about influence of natural frequency of the transducers (54; 82 and 150kHz) on ultrasonic pulse velocity and dynamic modulus of elasticity (Young's Dynamic modulus of elasticity). Differences between ultrasonic pulse velocity and dynamic modulus of elasticity were found with the same smallest dimension of test specimen in the direction of sounding and density their value decreases as the natural frequency of transducers grew.

Keywords: calcium silicate brick, ultrasonic pulse method, ultrasonic pulse velocity, dynamic modulus of elasticity

Procedia PDF Downloads 386
6663 Characterization of Ultrasonic Nonlinearity in Concrete under Cyclic Change of Prestressing Force

Authors: Gyu-Jin Kim, Hyo-Gyoung Kwak

Abstract:

In this research, the effect of prestressing force on the nonlinearity of concrete was investigated by an experimental study. For the measurement of ultrasonic nonlinearity, a prestressed concrete beam was prepared and a nonlinear resonant ultrasound method was adopted. When the prestressing force changes, the stress state of the concrete inside the beam is affected, which leads to the occurrence of micro-cracks and changes in mechanical properties. Therefore, it is necessary to introduce nonlinear ultrasonic technology which sensitively reflects microstructural changes. Repetitive prestressing load history, including maximum levels of 45%, 60% and 75%, depending on the compressive strength, is designed to evaluate the impact of loading levels on the nonlinearity. With the experimental results, the possibility of ultrasonic nonlinearity as a trial indicator of stress was evaluated.

Keywords: micro crack, nonlinear ultrasonic resonant spectroscopy, prestressed concrete beam, prestressing force, ultrasonic nonlinearity

Procedia PDF Downloads 209
6662 Effect of Vibration Amplitude and Welding Force on Weld Strength of Ultrasonic Metal Welding

Authors: Ziad. Sh. Al Sarraf

Abstract:

Ultrasonic metal welding has been the subject of ongoing research and development, most recently concentrating on metal joining in miniature devices, for example to allow solder-free wire bonding. As well as at the small scale, there are also opportunities to research the joining of thicker sheet metals and to widen the range of similar and dissimilar materials that can be successfully joined using this technology. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal spot welding device. The ultrasonic metal spot welding horn is modelled using finite element analysis (FEA) and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered effectively to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. The results show how the weld strength is particularly sensitive to the combination of clamping force and ultrasonic vibration amplitude of the welding tip, but there are optimal combinations of these and also limits that must be clearly identified.

Keywords: ultrasonic welding, vibration amplitude, welding force, weld strength

Procedia PDF Downloads 338
6661 Blood Clot Emulsification via Ultrasonic Thrombolysis Device

Authors: Sun Tao, Lou Liang, Tan Xing Haw Marvin, Gu Yuandong Alex

Abstract:

Patients with blood clots in their brains can experience problems with their vision or speech, seizures and general weakness. To treat blood clots, clinicians presently have two options. The first involves drug therapy to thin the blood and thus reduce the clot. The second choice is to invasively remove the clot using a plastic tube called a catheter. Both approaches carry a high risk of bleeding, and invasive procedures, such as catheter intervention, can also damage the blood vessel wall and cause infection. Ultrasonic treatment as a potential alternative therapy to break down clots is attracting growing interests due to the reduced adverse effects. To demonstrate the concept, in this investigation a microfabricated ultrasonic device was electrically packaged with printed circuit board to treat healthy human blood. The red blood cells could be broken down after 3-hour ultrasonic treatment.

Keywords: microfabrication, blood clot, ultrasonic thrombolysis device, ultrasonic device

Procedia PDF Downloads 413
6660 Effect of Ultrasonic Vibration on the Dilution, Mechanical, and Metallurgical Properties in Cladding of 308 on Mild Steel

Authors: Sandeep Singh Sandhu, Karanvir Singh Ghuman, Parminder Singh Saini

Abstract:

The aim of the present investigation was to study the effect of ultrasonic vibration on the cladding of the AISI 308 on the mild steel plates using the shielded metal arc welding (SMAW). Ultrasonic vibrations were applied to molten austenitic stainless steel during the welding process. Due to acoustically induced cavitations and streaming there is a complete mixture of the clad metal and the base metal. It was revealed that cladding of AISI 308 over mild steel along with ultrasonic vibrations result in uniform and finer grain structures. The effect of the vibration on the dilution, mechanical properties and metallographic studies were also studied. It was found that the welding done using the ultrasonic vibration has the less dilution and CVN value for the vibrated sample was also high.

Keywords: surfacing, ultrasonic vibrations, mechanical properties, shielded metal arc welding

Procedia PDF Downloads 451
6659 Ultrasonic Evaluation of Periodic Rough Inaccessible Surfaces from Back Side

Authors: Chanh Nghia Nguyen, Yu Kurokawa, Hirotsugu Inoue

Abstract:

The surface roughness is an important parameter for evaluating the quality of material surfaces since it affects functions and performance of industrial components. Although stylus and optical techniques are commonly used for measuring the surface roughness, they are applicable only to accessible surfaces. In practice, surface roughness measurement from the back side is sometimes demanded, for example, in inspection of safety-critical parts such as inner surface of pipes. However, little attention has been paid to the measurement of back surface roughness so far. Since back surface is usually inaccessible by stylus or optical techniques, ultrasonic technique is one of the most effective among others. In this research, an ultrasonic pulse-echo technique is considered for evaluating the pitch and the height of back surface having periodic triangular profile as a very first step. The pitch of the surface profile is measured by applying the diffraction grating theory for oblique incidence; then the height is evaluated by numerical analysis based on the Kirchhoff theory for normal incidence. The validity of the proposed method was verified by both numerical simulation and experiment. It was confirmed that the pitch is accurately measured in most cases. The height was also evaluated with good accuracy when it is smaller than a half of the pitch because of the approximation in the Kirchhoff theory.

Keywords: back side, inaccessible surface, periodic roughness, pulse-echo technique, ultrasonic NDE

Procedia PDF Downloads 248
6658 Air-Coupled Ultrasonic Testing for Non-Destructive Evaluation of Various Aerospace Composite Materials by Laser Vibrometry

Authors: J. Vyas, R. Kazys, J. Sestoke

Abstract:

Air-coupled ultrasonic is the contactless ultrasonic measurement approach which has become widespread for material characterization in Aerospace industry. It is always essential for the requirement of lightest weight, without compromising the durability. To archive the requirements, composite materials are widely used. This paper yields analysis of the air-coupled ultrasonics for composite materials such as CFRP (Carbon Fibre Reinforced Polymer) and GLARE (Glass Fiber Metal Laminate) and honeycombs for the design of modern aircrafts. Laser vibrometry could be the key source of characterization for the aerospace components. The air-coupled ultrasonics fundamentals, including principles, working modes and transducer arrangements used for this purpose is also recounted in brief. The emphasis of this paper is to approach the developed NDT techniques based on the ultrasonic guided waves applications and the possibilities of use of laser vibrometry in different materials with non-contact measurement of guided waves. 3D assessment technique which employs the single point laser head using, automatic scanning relocation of the material to assess the mechanical displacement including pros and cons of the composite materials for aerospace applications with defects and delaminations.

Keywords: air-coupled ultrasonics, contactless measurement, laser interferometry, NDT, ultrasonic guided waves

Procedia PDF Downloads 209
6657 An Investigation on Ultrasonic Pulse Velocity of Hybrid Fiber Reinforced Concretes

Authors: Soner Guler, Demet Yavuz, Refik Burak Taymuş, Fuat Korkut

Abstract:

Because of the easy applying and not costing too much, ultrasonic pulse velocity (UPV) is one of the most used non-destructive techniques to determine concrete characteristics along with impact-echo, Schmidt rebound hammer (SRH) and pulse-echo. This article investigates the relationship between UPV and compressive strength of hybrid fiber reinforced concretes. Water/cement ratio (w/c) was kept at 0.4 for all concrete mixes. Compressive strength of concrete was targeted at 35 MPa. UPV testing and compressive strength tests were carried out at the curing age of 28 days. The UPV of concrete containing steel fibers has been found to be higher than plain concrete for all the testing groups. It is decided that there is not a certain relationship between fiber addition and strength.

Keywords: ultrasonic pulse velocity, hybrid fiber, compressive strength, fiber

Procedia PDF Downloads 320
6656 2D Numerical Modeling of Ultrasonic Measurements in Concrete: Wave Propagation in a Multiple-Scattering Medium

Authors: T. Yu, L. Audibert, J. F. Chaix, D. Komatitsch, V. Garnier, J. M. Henault

Abstract:

Linear Ultrasonic Techniques play a major role in Non-Destructive Evaluation (NDE) for civil engineering structures in concrete since they can meet operational requirements. Interpretation of ultrasonic measurements could be improved by a better understanding of ultrasonic wave propagation in a multiple scattering medium. This work aims to develop a 2D numerical model of ultrasonic wave propagation in a heterogeneous medium, like concrete, integrating the multiple scattering phenomena in SPECFEM software. The coherent field of multiple scattering is obtained by averaging numerical wave fields, and it is used to determine the effective phase velocity and attenuation corresponding to an equivalent homogeneous medium. First, this model is applied to one scattering element (a cylinder) in a homogenous medium in a linear-elastic system, and its validation is completed thanks to the comparison with analytical solution. Then, some cases of multiple scattering by a set of randomly located cylinders or polygons are simulated to perform parametric studies on the influence of frequency and scatterer size, concentration, and shape. Also, the effective properties are compared with the predictions of Waterman-Truell model to verify its validity. Finally, the mortar viscoelastic behavior is introduced in the simulation in order to considerer the dispersion and the attenuation due to porosity included in the cement paste. In the future, different steps will be developed: The comparisons with experimental results, the interpretation of NDE measurements, and the optimization of NDE parameters before an auscultation.

Keywords: attenuation, multiple-scattering medium, numerical modeling, phase velocity, ultrasonic measurements

Procedia PDF Downloads 222
6655 Laser Ultrasonic Diagnostics and Acoustic Emission Technique for Examination of Rock Specimens under Uniaxial Compression

Authors: Elena B. Cherepetskaya, Vladimir A. Makarov, Dmitry V. Morozov, Ivan E. Sas

Abstract:

Laboratory studies of the stress-strain behavior of rocks specimens were conducted by using acoustic emission and laser-ultrasonic diagnostics. The sensitivity of the techniques allowed changes in the internal structure of the specimens under uniaxial compressive load to be examined at micro- and macro scales. It was shown that microcracks appear in geologic materials when the stress level reaches about 50% of breaking strength. Also, the characteristic stress of the main crack formation was registered in the process of single-stage compression of rocks. On the base of laser-ultrasonic echoscopy, 2D visualization of the internal structure of rocky soil specimens was realized, and the microcracks arising during uniaxial compression were registered.

Keywords: acoustic emission, geomaterial, laser ultrasound, uniaxial compression

Procedia PDF Downloads 337
6654 Ultrasonic Densitometry of Bone Tissue of Jaws and Phalanges of Fingers in Patients after Orthodontic Treatment

Authors: Margarita Belousova

Abstract:

The ultrasonic densitometry (RU patent № 2541038) was used to assess the density of the bone tissue in the jaws of patients after orthodontic treatment. In addition, by ultrasonic densitometry assessed the state of the bone tissue in the region III phalanges of middle fingers in above mentioned patients. A comparative study was carried out in healthy volunteers of same age. It was established a significant decrease of the ultrasound wave speed and bone mineral density after active period of orthodontic treatment. Statistically, significant differences in bone mineral density of the fingers by ultrasonic densitometry in both groups of patients were not detected.

Keywords: intraoral ultrasonic densitometry, bone tissue density of jaws, bone tissue density of phalanges of fingers, orthodontic treatment

Procedia PDF Downloads 238
6653 Vibration Analysis and Optimization Design of Ultrasonic Horn

Authors: Kuen Ming Shu, Ren Kai Ho

Abstract:

Ultrasonic horn has the functions of amplifying amplitude and reducing resonant impedance in ultrasonic system. Its primary function is to amplify deformation or velocity during vibration and focus ultrasonic energy on the small area. It is a crucial component in design of ultrasonic vibration system. There are five common design methods for ultrasonic horns: analytical method, equivalent circuit method, equal mechanical impedance, transfer matrix method, finite element method. In addition, the general optimization design process is to change the geometric parameters to improve a single performance. Therefore, in the general optimization design process, we couldn't find the relation of parameter and objective. However, a good optimization design must be able to establish the relationship between input parameters and output parameters so that the designer can choose between parameters according to different performance objectives and obtain the results of the optimization design. In this study, an ultrasonic horn provided by Maxwide Ultrasonic co., Ltd. was used as the contrast of optimized ultrasonic horn. The ANSYS finite element analysis (FEA) software was used to simulate the distribution of the horn amplitudes and the natural frequency value. The results showed that the frequency for the simulation values and actual measurement values were similar, verifying the accuracy of the simulation values. The ANSYS DesignXplorer was used to perform Response Surface optimization, which could shows the relation of parameter and objective. Therefore, this method can be used to substitute the traditional experience method or the trial-and-error method for design to reduce material costs and design cycles.

Keywords: horn, natural frequency, response surface optimization, ultrasonic vibration

Procedia PDF Downloads 81
6652 Measurement of Viscosity and Moisture of Oil in Supradistribution Transformers Using Ultrasonic Waves

Authors: Ehsan Kadkhodaie, Shahin Parvar, Soroush Senemar, Mostafa Shriat, Abdolrasoul Malekpour

Abstract:

The role of oil in supra distribution transformers is so critical and, several standards in determining the quality of oil have been offered. So far, moisture, viscosity and insulation protection of the oil have been measured based on mechanical and chemical methods and systems such as kart fisher, falling ball and TDM 4000 that most of these techniques are destructive and have many problems such as pollution. In this study, due to the properties of oil and also physical behavior of ultrasound wave new method was designed to in the determination of oil indicators including viscosity and moisture. The results show the oil viscosity can be found from the relationship μ = 42.086/√EE and moisture from (PLUS+) = −15.65 (PPM) + 26040 relationship.

Keywords: oil, viscosity, moisture, ultrasonic waves

Procedia PDF Downloads 543
6651 Non-Destructing Testing of Sandstones from Unconventional Reservoir in Poland with Use of Ultrasonic Pulse Velocity Technique and X-Ray Computed Microtomography

Authors: Michał Maksimczuk, Łukasz Kaczmarek, Tomasz Wejrzanowski

Abstract:

This study concerns high-resolution X-ray computed microtomography (µCT) and ultrasonic pulse analysis of Cambrian sandstones from a borehole located in the Baltic Sea Coast of northern Poland. µCT and ultrasonic technique are non-destructive methods commonly used to determine the internal structure of reservoir rock sample. The spatial resolution of the µCT images obtained was 27 µm, which enabled the author to create accurate 3-D visualizations of structure geometry and to calculate the ratio of pores volume to the total sample volume. A copper X-ray source filter was used to reduce image artifacts. Furthermore, samples Young’s modulus and Poisson ratio were obtained with use of ultrasonic pulse technique. µCT and ultrasonic pulse technique provide complex information which can be used for explorations and characterization of reservoir rocks.

Keywords: elastic parameters, linear absorption coefficient, northern Poland, tight gas

Procedia PDF Downloads 216
6650 An Ultrasonic Signal Processing System for Tomographic Imaging of Reinforced Concrete Structures

Authors: Edwin Forero-Garcia, Jaime Vitola, Brayan Cardenas, Johan Casagua

Abstract:

This research article presents the integration of electronic and computer systems, which developed an ultrasonic signal processing system that performs the capture, adaptation, and analog-digital conversion to later carry out its processing and visualization. The capture and adaptation of the signal were carried out from the design and implementation of an analog electronic system distributed in stages: 1. Coupling of impedances; 2. Analog filter; 3. Signal amplifier. After the signal conditioning was carried out, the ultrasonic information was digitized using a digital microcontroller to carry out its respective processing. The digital processing of the signals was carried out in MATLAB software for the elaboration of A-Scan, B and D-Scan types of ultrasonic images. Then, advanced processing was performed using the SAFT technique to improve the resolution of the Scan-B-type images. Thus, the information from the ultrasonic images was displayed in a user interface developed in .Net with Visual Studio. For the validation of the system, ultrasonic signals were acquired, and in this way, the non-invasive inspection of the structures was carried out and thus able to identify the existing pathologies in them.

Keywords: acquisition, signal processing, ultrasound, SAFT, HMI

Procedia PDF Downloads 70
6649 Effect of Inclusions in the Ultrasonic Fatigue Endurance of Maraging 300 Steel

Authors: G. M. Dominguez Almaraz, J. A. Ruiz Vilchez, M. A. Sanchez Miranda

Abstract:

Ultrasonic fatigue tests have been carried out in the maraging 300 steel. Experimental results show that fatigue endurance under this modality of testing is closely related to the nature and geometrical properties of inclusions present in this alloy. A model was proposed to correlate the ultrasonic fatigue endurance with the nature and geometrical properties of the crack initiation inclusion. Scanning Electron Microscopy analyses were obtained on the fracture surfaces, in order to assess the crack initiation inclusion and to introduce these parameters in the proposed model, with good agreement for the fatigue life prediction.

Keywords: inclusions, ultrasonic fatigue, maraging 300 steel, crack initiation

Procedia PDF Downloads 172
6648 Ultrasonic Spectroscopy of Polymer Based PVDF-TrFE Composites with CNT Fillers

Authors: J. Belovickis, V. Samulionis, J. Banys, M. V. Silibin, A. V. Solnyshkin, A. V. Sysa

Abstract:

Ferroelectric polymers exhibit good flexibility, processability and low cost of production. Doping of ferroelectric polymers with nanofillers may modify its dielectric, elastic or piezoelectric properties. Carbon nanotubes are one of the ingredients that can improve the mechanical properties of polymer based composites. In this work, we report on both the ultrasonic and the dielectric properties of the copolymer polyvinylidene fluoride/tetrafluoroethylene (P(VDF-TrFE)) of the composition 70/30 mol% with various concentrations of carbon nanotubes (CNT). Experimental study of ultrasonic wave attenuation and velocity in these composites has been performed over wide temperature range (100 K – 410 K) using an ultrasonic automatic pulse-echo tecnique. The temperature dependences of ultrasonic velocity and attenuation showed anomalies attributed to the glass transition and paraelectric-ferroelectric phase transition. Our investigations showed mechanical losses to be dependent on the volume fraction of the CNTs within the composites. The existence of broad hysteresis of the ultrasonic wave attenuation and velocity within the nanocomposites is presented between cooling and heating cycles. By the means of dielectric spectroscopy, it is shown that the dielectric properties may be tuned by varying the volume fraction of the CNT fillers.

Keywords: carbon nanotubes, polymer composites, PVDF-TrFE, ultrasonic spectroscopy

Procedia PDF Downloads 311
6647 Zinc Borate Synthesis Using Hydrozincite and Boric Acid with Ultrasonic Method

Authors: D. S. Vardar, A. S. Kipcak, F. T. Senberber, E. M. Derun, S. Piskin, N. Tugrul

Abstract:

Zinc borate is an important inorganic hydrate borate material, which can be use as a flame retardant agent and corrosion resistance material. This compound can loss its structural water content at higher than 290°C. Due to thermal stability; Zinc Borate can be used as flame reterdant at high temperature process of plastic and gum. In this study, the ultrasonic reaction of zinc borates were studied using hydrozincite (Zn5(CO3)2•(OH)6) and boric acid (H3BO3) raw materials. Before the synthesis raw materials were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Ultrasonic method is a new application on the zinc borate synthesis. The synthesis parameters were set to 90°C reaction temperature and 55 minutes of reaction time, with 1:1, 1:2, 1:3, 1:4 and 1:5 molar ratio of starting materials (Zn5(CO3)2•(OH)6 : H3BO3). After the zinc borate synthesis, the products analyzed by XRD and FT-IR. As a result, optimum molar ratio of 1:5 (Zn5(CO3)2•(OH)6:H3BO3) is determined for the synthesis of zinc borates with ultrasonic method.

Keywords: borate, ultrasonic method, zinc borate, zinc borate synthesis

Procedia PDF Downloads 363
6646 Experimental Investigation on Over-Cut in Ultrasonic Machining of WC-Co Composite

Authors: Ravinder Kataria, Jatinder Kumar, B. S. Pabla

Abstract:

Ultrasonic machining is one of the most widely used non-traditional machining processes for machining of materials that are relatively brittle, hard, and fragile such as advanced ceramics, refractories, crystals, quartz etc. Present article has been targeted at investigating the impact of different experimental conditions (power rating, cobalt content, tool material, thickness of work piece, tool geometry, and abrasive grit size) on over cut in ultrasonic drilling of WC-Co composite material. Taguchi’s L-36 orthogonal array has been employed for conducting the experiments. Significant factors have been identified using analysis of variance (ANOVA) test. The experimental results revealed that abrasive grit size and tool material are most significant factors for over cut.

Keywords: ANOVA, abrasive grit size, Taguchi, WC-Co, ultrasonic machining

Procedia PDF Downloads 368
6645 Structural and Leaching Properties of Irradiated Lead Commercial Glass by Using XRD, Ultrasonic, UV-VIS and AAS Technique

Authors: N. H. Alias, S. A. Aziz, Y. Abdullah, H. M. Kamari, S. Sani, M. P. Ismail, N. U. Saidin, N. A. A. Salim, N. E. E. Abdullah

Abstract:

Gamma (γ) irradiation study has been investigated on the 6 rectangular shape of the standard X-Ray lead glass with 5/16” thick, providing 2.00 mm lead shielding value; at selected Sievert doses (C1; 0, C2; 0.07, C3; 0.035, C4; 0.07, C5; 0.105 and C6; 0.14) by using (XRD) X-ray Diffraction techniques, ultrasonic and (UV-VIS) Ultraviolet-Visible Spectroscopy. Concentration of lead in 0.5 N acid nitric (HNO3) environments is then studied by means of Atomic Absorption Spectroscopy (AAS) as to observe the glass corrosion behavior after irradiation at room temperature. This type of commercial glass is commonly used as radiation shielding glass in medical application.

Keywords: gamma irradiation, lead glass, leaching, structural

Procedia PDF Downloads 395