Search results for: tropical savanna
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 522

Search results for: tropical savanna

522 Estimating Understory Species Diversity of West Timor Tropical Savanna, Indonesia: The Basis for Planning an Integrated Management of Agricultural and Environmental Weeds and Invasive Species

Authors: M. L. Gaol, I. W. Mudita

Abstract:

Indonesia is well known as a country covered by lush tropical rain forests, but in fact, the northeastern part of the country, within the areas geologically known as Lesser Sunda, the dominant vegetation is tropical savanna. Lesser Sunda is a chain of islands located closer to Australia than to islands in the other parts of the country. Among those of islands in the chain which is closes to Australia, and thereby most strongly affected by the hot and dry Australian climate, is the island of Timor, the western part of which belongs to Indonesia and the eastern part is a sovereign state East Timor. Regardless of being the most dominant vegetation cover, tropical savanna in West Timor, especially its understory, is rarely investigated. This research was therefore carried out to investigate the structure, composition and diversity of the understory of this tropical savanna as the basis for looking at the possibility of introducing other spesieis for various purposes. For this research, 14 terrestrial communities representing major types of the existing savannas in West Timor was selected with aid of the most recently available satellite imagery. At each community, one stand of the size of 50 m x 50 m most likely representing the community was as the site of observation for the type of savanna under investigation. At each of the 14 communities, 20 plots of 1 m x 1 m in size was placed at random to identify understory species and to count the total number of individuals and to estimate the cover of each species. Based on such counts and estimation, the important value of each species was later calculated. The results of this research indicated that the understory of savanna in West Timor consisted of 73 understory species. Of this number of species, 18 species are grasses and 55 are non-grasses. Although lower than non-grass species, grass species indeed dominated the savanna as indicated by their number of individuals (65.33 vs 34.67%), species cover (57.80 vs 42.20%), and important value (123.15 vs 76.85). Of the 14 communities, the lowest density of grass was 13.50/m2 and the highest was 417.50/m2. Of 18 grass species found, all were commonly found as agricultural weeds, whereas of 55 non-grass, 10 species were commonly found as agricultural weeds, environmental weeds, or invasive species. In terms of better managing the savanna in the region, these findings provided the basis for planning a more integrated approach in managing such agricultural and environmental weeds as well as invasive species by considering the structure, composition, and species diversity of the understory species existing in each site. These findings also provided the basis for better understanding the flora of the region as a whole and for developing a flora database of West Timor in future.

Keywords: tropical savanna, understory species, integrated management, weedy and invasive species

Procedia PDF Downloads 133
521 Classification of Tropical Semi-Modules

Authors: Wagneur Edouard

Abstract:

Tropical algebra is the algebra constructed over an idempotent semifield S. We show here that every m-dimensional tropical module M over S with strongly independent basis can be embedded into Sm, and provide an algebraic invariant -the Γ-matrix of M- which characterises the isomorphy class of M. The strong independence condition also yields a significant improvement to the Whitney embedding for tropical torsion modules published earlier We also show that the strong independence of the basis of M is equivalent to the unique representation of elements of M. Numerous examples illustrate our results.

Keywords: classification, idempotent semi-modules, strong independence, tropical algebra

Procedia PDF Downloads 367
520 Conversion of Tropical Wood to Bio-oil and Charcoal by Using the Process of Pyrolysis

Authors: Kittiphop Promdee, Somruedee Satitkune, Chakkrich Boonmee, Tharapong Vitidsant

Abstract:

Conversion of tropical wood using the process of pyrolysis, which converts tropical wood into fuel products, i.e. bio-oil and charcoal. The results showed the high thermal in the reactor core was thermally controlled between 0-600°C within 60 minutes. The products yield calculation showed that the liquid yield obtained from tropical wood was at its highest at 39.42 %, at 600°C, indicating that the tropical wood had received good yields because of a low gas yield average and high solid and liquid yield average. This research is not only concerned with the controlled temperatures, but also with the controlled screw rotating and feeding rate of biomass.

Keywords: pyrolysis, tropical wood, bio-oil, charcoal, heating value, SEM

Procedia PDF Downloads 479
519 Carbon Sequestration and Carbon Stock Potential of Major Forest Types in the Foot Hills of Nilgiri Biosphere Reserve, India

Authors: B. Palanikumaran, N. Kanagaraj, M. Sangareswari, V. Sailaja, Kapil Sihag

Abstract:

The present study aimed to estimate the carbon sequestration potential of major forest types present in the foothills of Nilgiri biosphere reserve. The total biomass carbon stock was estimated in tropical thorn forest, tropical dry deciduous forest and tropical moist deciduous forest as 14.61 t C ha⁻¹ 75.16 t C ha⁻¹ and 187.52 t C ha⁻¹ respectively. The density and basal area were estimated in tropical thorn forest, tropical dry deciduous forest, tropical moist deciduous forest as 173 stems ha⁻¹, 349 stems ha⁻¹, 391 stems ha⁻¹ and 6.21 m² ha⁻¹, 31.09 m² ha⁻¹, 67.34 m² ha⁻¹ respectively. The soil carbon stock of different forest ecosystems was estimated, and the results revealed that tropical moist deciduous forest (71.74 t C ha⁻¹) accounted for more soil carbon stock when compared to tropical dry deciduous forest (31.80 t C ha⁻¹) and tropical thorn forest (3.99 t C ha⁻¹). The tropical moist deciduous forest has the maximum annual leaf litter which was 12.77 t ha⁻¹ year⁻¹ followed by 6.44 t ha⁻¹ year⁻¹ litter fall of tropical dry deciduous forest. The tropical thorn forest accounted for 3.42 t ha⁻¹ yr⁻¹ leaf litter production. The leaf litter carbon stock of tropical thorn forest, tropical dry deciduous forest and tropical moist deciduous forest found to be 1.02 t C ha⁻¹ yr⁻¹ 2.28 t⁻¹ C ha⁻¹ yr⁻¹ and 5.42 t C ha⁻¹ yr⁻¹ respectively. The results explained that decomposition percent at the soil surface in the following order.tropical dry deciduous forest (77.66 percent) > tropical thorn forest (69.49 percent) > tropical moist deciduous forest (63.17 percent). Decomposition percent at soil subsurface was studied, and the highest decomposition percent was observed in tropical dry deciduous forest (80.52 percent) followed by tropical moist deciduous forest (77.65 percent) and tropical thorn forest (72.10 percent). The decomposition percent was higher at soil subsurface. Among the three forest type, tropical moist deciduous forest accounted for the highest bacterial (59.67 x 105cfu’s g⁻¹ soil), actinomycetes (74.87 x 104cfu’s g⁻¹ soil) and fungal (112.60 x10³cfu’s g⁻¹ soil) population. The overall observation of the study helps to conclude that, the tropical moist deciduous forest has the potential of storing higher carbon content as biomass with the value of 264.68 t C ha⁻¹ and microbial populations.

Keywords: basal area, carbon sequestration, carbon stock, Nilgiri biosphere reserve

Procedia PDF Downloads 168
518 Soil/Phytofisionomy Relationship in Southeast of Chapada Diamantina, Bahia, Brazil

Authors: Marcelo Araujo da Nóbrega, Ariel Moura Vilas Boas

Abstract:

This study aims to characterize the physicochemical aspects of the soils of southeastern Chapada Diamantina - Bahia related to the phytophysiognomies of this area, rupestrian field, small savanna (savanna fields), small dense savanna (savanna fields), savanna (Cerrado), dry thorny forest (Caatinga), dry thorny forest/savanna, scrub (Carrasco - ecotone), forest island (seasonal semi-deciduous forest - Capão) and seasonal semi-deciduous forest. To achieve the research objective, soil samples were collected in each plant formation and analyzed in the soil laboratory of ESALQ - USP in order to identify soil fertility through the determination of pH, organic matter, phosphorus, potassium, calcium, magnesium, potential acidity, sum of bases, cation exchange capacity and base saturation. The composition of soil particles was also checked; that is, the texture, step made in the terrestrial ecosystems laboratory of the Department of Ecology of USP and in the soil laboratory of ESALQ. Another important factor also studied was to show the variations in the vegetation cover in the region as a function of soil moisture in the different existing physiographic environments. Another study carried out was a comparison between the average soil moisture data with precipitation data from three locations with very different phytophysiognomies. The soils found in this part of Bahia can be classified into 5 classes, with a predominance of oxisols. All of these classes have a great diversity of physical and chemical properties, as can be seen in photographs and in particle size and fertility analyzes. The deepest soils are located in the Central Pediplano of Chapada Diamantina where the dirty field, the clean field, the executioner and the semideciduous seasonal forest (Capão) are located, and the shallower soils were found in the rupestrian field, dry thorny forest, and savanna fields, the latter located on a hillside. As for the variations in water in the region's soil, the data indicate that there were large spatial variations in humidity in both the rainy and dry periods.

Keywords: Bahia, Brazil, chapada diamantina, phytophysiognomies, soils

Procedia PDF Downloads 143
517 Projected Uncertainties in Herbaceous Production Result from Unpredictable Rainfall Pattern and Livestock Grazing in a Humid Tropical Savanna Ecosystem

Authors: Daniel Osieko Okach, Joseph Otieno Ondier, Gerhard Rambold, John Tenhunen, Bernd Huwe, Dennis Otieno

Abstract:

Increased human activities such as grazing, logging, and agriculture alongside unpredictable rainfall patterns have been detrimental to the ecosystem service delivery, therefore compromising its productivity potential. This study aimed at simulating the impact of drought (50%) and enhanced rainfall (150%) on the future herbaceous CO2 uptake, biomass production and soil C:N dynamics in a humid savanna ecosystem influenced by livestock grazing. Rainfall pattern was predicted using manipulation experiments set up to reduce (50%) and increase (150%) ambient (100%) rainfall amounts in grazed and non-grazed plots. The impact of manipulated rainfall regime on herbaceous CO2 fluxes, biomass production and soil C:N dynamics was measured against volumetric soil water content (VWC) logged every 30 minutes using the 5TE (Decagon Devices Inc., Washington, USA) soil moisture sensors installed (at 20 cm soil depth) in every plots. Herbaceous biomass was estimated using destructive method augmented by standardized photographic imaging. CO2 fluxes were measured using the ecosystem chamber method and the gas analysed using LI-820 gas analyzer (USA). C:N ratio was calculated from the soil carbon and Nitrogen contents (analyzed using EA2400CHNS/O and EA2410 N elemental analyzers respectively) of different plots under study. The patterning of VWC was directly influenced by the rainfall amount with lower VWC observed in the grazed compared to the non-grazed plots. Rainfall variability, grazing and their interaction significantly affected changes in VWC (p < 0.05) and subsequently total biomass and CO2 fluxes. VWC had a strong influence on CO2 fluxes under 50% rainfall reduction in the grazed (r2 = 0.91; p < 0.05) and ambient rainfall in the ungrazed (r2 = 0.77; p < 0.05). The dependence of biomass on VWC across plots was enhanced under grazed (r2 = 0.78 - 0.87; p < 0.05) condition as compared to ungrazed (r2 = 0.44 - 0.85; p < 0.05). The C:N ratio was however not correlated to VWC across plots. This study provides insight on how the predicted trends in humid savanna will respond to changes influenced by rainfall variability and livestock grazing and consequently the sustainable management of such ecosystems.

Keywords: CO2 fluxes, rainfall manipulation, soil properties, sustainability

Procedia PDF Downloads 131
516 The Importance of Fruit Trees for Prescribed Burning in a South American Savanna

Authors: Rodrigo M. Falleiro, Joaquim P. L. Parime, Luciano C. Santos, Rodrigo D. Silva

Abstract:

The Cerrado biome is the most biodiverse savanna on the planet. Located in central Brazil, its preservation is seriously threatened by the advance of intensive agriculture and livestock. Conservation Units and Indigenous Lands are increasingly isolated and subject to mega wildfires. Among the characteristics of this savanna, we highlight the high rate of primary biomass production and the reduced occurrence of large grazing animals. In this biome, the predominant fauna is more dependent on the fruits produced by the dicotyledonous species in relation to other tropical savannas. Fire is a key element in the balance between mono and dicotyledons or between the arboreal and herbaceous strata. Therefore, applying fire regimes that maintain the balance between these strata without harming fruit production is essential in the conservation strategies of Cerrado's biodiversity. Recently, Integrated Fire Management has started to be implemented in Brazilian protected areas. As a result, management with prescribed burns has increasingly replaced strategies based on fire exclusion, which in practice have resulted in large wildfires, with highly negative impacts on fruit and fauna production. In the Indigenous Lands, these fires were carried out respecting traditional knowledge. The indigenous people showed great concern about the effects of fire on fruit plants and important animals. They recommended that the burns be carried out between April and May, as it would result in a greater production of edible fruits ("fruiting burning"). In other tropical savannas in the southern hemisphere, the preferential period tends to be later, in the middle of the dry season, when the grasses are dormant (June to August). However, in the Cerrado, this late period coincides with the flowering and sprouting of several important fruit species. To verify the best burning season, the present work evaluated the effects of fire on flowering and fruit production of theByrsonima sp., Mouriri pusa, Caryocar brasiliense, Anacardium occidentale, Pouteria ramiflora, Hancornia speciosa, Byrsonima verbascifolia, Anacardium humille and Talisia subalbens. The evaluations were carried out in the field, covering 31 Indigenous Lands that cover 104,241.18 Km², where 3,386 prescribed burns were carried out between 2015 and 2018. The burning periods were divided into early (carried out during the rainy season), modal or “fruiting” (carried out during the transition between seasons) and late (carried out in the middle of the dry season, when the grasses are dormant). The results corroborate the traditional knowledge, demonstrating that the modal burns result in higher rates of reproduction and fruit production. Late burns showed intermediate results, followed by early burns. We conclude that management strategies based mainly on forage production, which are usually applied in savannas populated by grazing ungulates, may not be the best management strategy for South American savannas. The effects of fire on fruit plants, which have a particular phenologicalsynchronization with the fauna cycle, also need to be observed during the prescription of burns.

Keywords: cerrado biome, fire regimes, native fruits, prescribed burns

Procedia PDF Downloads 215
515 Estimation of Heritability and Repeatability for Pre-Weaning Body Weights of Domestic Rabbits Raised in Derived Savanna Zone of Nigeria

Authors: Adewale I. Adeolu, Vivian U. Oleforuh-Okoleh, Sylvester N. Ibe

Abstract:

Heritability and repeatability estimates are needed for the genetic evaluation of livestock populations and consequently for the purpose of upgrading or improvement. Pooled data on 604 progeny from three consecutive parities of purebred rabbit breeds (Chinchilla, Dutch and New Zealand white) raised in Derived Savanna Zone of Nigeria were used to estimate heritability and repeatability for pre-weaning body weights between 1st and 8th week of age. Traits studied include Individual kit weight at birth (IKWB), 2nd week (IK2W), 4th week (IK4W), 6th week (IK6W) and 8th week (IK8W). Nested random effects analysis of (Co)variances as described by Statistical Analysis System (SAS) were employed in the estimation. Respective heritability estimates from the sire component (h2s) and repeatability (R) as intra-class correlations of repeated measurements from the three parties for IKWB, IK2W, IK4W and IK8W are 0.59±0.24, 0.55±0.24, 0.93±0.31, 0.28±0.17, 0.64±0.26 and 0.12±0.14, 0.05±0.14, 0.58±0.02, 0.60±0.11, 0.20±0.14. Heritability and repeatability (except R for IKWB and IK2W) estimates are moderate to high. In conclusion, since pre-weaning body weights in the present study tended to be moderately to highly heritable and repeatable, improvement of rabbits raised in derived savanna zone can be realized through genetic selection criterions.

Keywords: heritability, nested design, parity, pooled data, repeatability

Procedia PDF Downloads 146
514 Predicting the Frequencies of Tropical Cyclone-Induced Rainfall Events in the US Using a Machine-Learning Model

Authors: Elham Sharifineyestani, Mohammad Farshchin

Abstract:

Tropical cyclones are one of the most expensive and deadliest natural disasters. They cause heavy rainfall and serious flash flooding that result in billions of dollars of damage and considerable mortality each year in the United States. Prediction of the frequency of tropical cyclone-induced rainfall events can be helpful in emergency planning and flood risk management. In this study, we have developed a machine-learning model to predict the exceedance frequencies of tropical cyclone-induced rainfall events in the United States. Model results show a satisfactory agreement with available observations. To examine the effectiveness of our approach, we also have compared the result of our predictions with the exceedance frequencies predicted using a physics-based rainfall model by Feldmann.

Keywords: flash flooding, tropical cyclones, frequencies, machine learning, risk management

Procedia PDF Downloads 246
513 A Review of Common Tropical Culture Trees

Authors: Victoria Tobi Dada, Emmanuel Dada

Abstract:

Culture trees are notable agricultural system in the tropical region of the world because of its great contribution to the economy of this region. Plantation agriculture such as oil palm, cocoa, cashew and rubber are the dominant agricultural trees in the tropical countries with the at least mean annual rainfall of 1500mm and 280c temperature. The study examines the review developmental trend in the common tropical culture trees. The study shows that global area of land occupied by rubber plantation increased from 9464276 hectares to 11739333 hectares between year 2010 and 2017, while oil palm cultivated land area increased from 1851278 in 2010 hectares to 2042718 hectares in 2013 across 35 countries. Global cashew plantation cultivation are dominated by West Africa with 44.8%, South-Eastern Asia with 32.9% and Sothern Asia with 13.8%, while the remaining 8.5% of the cultivated land area were distributed among six other tropical countries of the world. Cocoa cultivation and production globally are dominated by five West African countries, Indonesia and Brazil. The study revealed that notable tropical culture trees have not study together to determine their spatial distribution.

Keywords: culture trees, tropical region, cultivated area, spatial distribution

Procedia PDF Downloads 101
512 Challenges of eradicating neglected tropical diseases

Authors: Marziye Hadian, Alireza Jabbari

Abstract:

Background: Each year, tropical diseases affect large numbers of tropical or subtropical populations and give rise to irreparable financial and human damage. Among these diseases, some are known as Neglected Tropical Disease (NTD) that may cause unusual dangers; however, they have not been appropriately accounted for. Taking into account the priority of eradication of the disease, this study explored the causes of failure to eradicate neglected tropical diseases. Method: This study was a systematized review that was conducted in January 2021 on the articles related to neglected tropical diseases on databases of Web of Science, PubMed, Scopus, Science Direct, Ovid, Pro-Quest, and Google Scholar. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines as well as Critical Appraisal Skills Program (CASP) for articles and AACODS (Authority, Accuracy, Coverage, Objectivity, Date, Significance) for grey literature (provides five criteria for judging the quality of grey information) were integrated. Finding: The challenges in controlling and eradicating neglected tropical diseases in four general themes are as follows: shortcomings in disease management policies and programs, environmental challenges, executive challenges in policy disease and research field and 36 sub-themes. Conclusion: To achieve the goals of eradicating forgotten tropical diseases, it seems indispensable to free up financial, human and research resources, proper management of health infrastructure, attention to migrants and refugees, clear targeting, prioritization appropriate to local conditions and special attention to political and social developments. Reducing the number of diseases should free up resources for the management of neglected tropical diseases prone to epidemics as dengue, chikungunya and leishmaniasis. For the purpose of global support, targeting should be accurate.

Keywords: neglected tropical disease, NTD, preventive, eradication

Procedia PDF Downloads 130
511 Behavior of Helical Piles as Foundation of Photovoltaic Panels in Tropical Soils

Authors: Andrea J. Alarcón, Maxime Daulat, Raydel Lorenzo, Renato P. Da Cunha, Pierre Breul

Abstract:

Brazil has increased the use of renewable energy during the last years. Due to its sunshine and large surface area, photovoltaic panels founded in helical piles have been used to produce solar energy. Since Brazilian territory is mainly cover by highly porous structured tropical soils, when the helical piles are installed this structure is broken and its soil properties are modified. Considering the special characteristics of these soils, helical foundations behavior must be extensively studied. The first objective of this work is to determine the most suitable method to estimate the tensile capacity of helical piles in tropical soils. The second objective is to simulate the behavior of these piles in tropical soil. To obtain the rupture to assess load-displacement curves and the ultimate load, also a numerical modelling using Plaxis software was conducted. Lastly, the ultimate load and the load-displacements curves are compared with experimental values to validate the implemented model.

Keywords: finite element, helical piles, modelling, tropical soil, uplift capacity

Procedia PDF Downloads 172
510 Growth Performance, Body Linear Measurements and Body Condition Score of Savanna Brown Goats Fed Enzyme Treated Sawdust Diets as Replacement for Maize Offal and Managed Semi-intensively

Authors: Alabi Olushola John, Ogbiko Anthonia, Tsado Daniel Nma, Mbajiorgu Ejike Felix, Adama Theophilus Zubairu

Abstract:

A total of thirty (30) goats weighting between 5.8 and 7.3 kg were used to determine the growth performance, body linear measurements and body condition score of Semi intensively manged Savanna Brown goats fed enzyme treated sawdust diets (ETSD). They divided into five dietary treatments (T) groups with three replications using a completely randomized design. Treatment one (1) comprises of animals fed diet on 0 % enzyme treated sawdust while Treatment 2 (T2), Treatment 3 (T3), Treatment 4 (T4) and Treatment 5 (T5) comprises of animals fed diets containing 10, 20, 30 and 40 % enzyme treated sawdust diets, respectively. The study lasted 16 weeks. Data on growth performance parameters, body linear measurement (height at wither, body length, chest girth, hind leg length, foreleg length, facial length) and body condition score were collected and analyzed using one way analysis of variance. No significant difference (p>0.05) was observed in the all growth performance parameters and linear body measurements. However, significant difference was observed in body length and daily body length gains with highest value observed in animals fed the control diets (7.38 and 0.08 cm respectively) and animals on 30 % ETSD (7.25 and 0.07 cm respectively) and lowest values (4.75 and 0.05 cm respectively) were observed in animals fed 10 % ETSD among the treatment groups. It was, therefore, concluded that enzyme treated sawdust can be used in the diets of Savanna Brown goats up to 40 % replacement for maize offal since this treatment improved the body length and daily body length gains.

Keywords: performance, sawdust, enzyme treated, semi-intensively, replacement

Procedia PDF Downloads 102
509 Discovering Traditional Plants Used by Indigenous People in the Tropical Rainforest of Malaysia for the Treatment of Malaria

Authors: Izdihar Ismail, Alona C. Linatoc, Maryati Mohamed

Abstract:

The tropical rainforest of Malaysia is known for its rich biological diversity and high endemicity. The potential for these forests to hold the cure for many diseases and illnesses is high and much is yet to be discovered. This study explores the richness of the tropical rainforest of Endau-Rompin National Park in Johor, Malaysia in search of plants traditionally used by the indigenous people in the treatment of malaria and malaria-like symptoms. Seven species of plants were evaluated and tested for antiplasmodial activities. Different plant parts were subjected to methanolic and aqueous extractions. A total of 24 extracts were evaluated by histidine-rich protein II (HRP2) assay against K1 strain of Plasmodium falciparum chloroquine-resistant. Ten extracts showed significant inhibition of the growth of P. falciparum. Phytochemical screening of the same extracts revealed the presence of alkaloids, flavonoids, terpenoids and anthraquinones. This study affirms that tropical rainforests may still hold undiscovered cures for many diseases and illnesses that have inflicted millions of people worldwide. The species studied herein have not known to have been studied elsewhere before.

Keywords: Endau-Rompin, malaria, Malaysia, tropical rainforest, traditional knowledge

Procedia PDF Downloads 271
508 Performance of Nine Different Types of PV Modules in the Tropical Region

Authors: Jiang Fan

Abstract:

With growth of PV market in tropical region, it is necessary to investigate the performance of different types of PV technology under the tropical weather conditions. Singapore Polytechnic was funded by Economic Development Board (EDB) to set up a solar PV test-bed for the research on performance of different types of PV modules in the country. The PV test-bed installed the nine different types of PV systems that are integrated to power utility grid for monitoring and analyzing their operating performances. This paper presents the 12 months operational data of nine different PV systems and analyses on performances of installed PV systems using energy yield and performance ratio. The nine types of PV systems under test have shown their energy yields ranging from 2.67 to 3.36 kWh/kWp and their performance ratios (PRs) ranging from 70% to 88%.

Keywords: monocrystalline, multicrystalline, amorphous silicon, cadmium telluride, thin film PV

Procedia PDF Downloads 505
507 Experimental Simulations of Aerosol Effect to Landfalling Tropical Cyclones over Philippine Coast: Virtual Seeding Using WRF Model

Authors: Bhenjamin Jordan L. Ona

Abstract:

Weather modification is an act of altering weather systems that catches interest on scientific studies. Cloud seeding is a common form of weather alteration. On the same principle, tropical cyclone mitigation experiment follows the methods of cloud seeding with intensity to account for. This study will present the effects of aerosol to tropical cyclone cloud microphysics and intensity. The framework of Weather Research and Forecasting (WRF) model incorporated with Thompson aerosol-aware scheme is the prime host to support the aerosol-cloud microphysics calculations of cloud condensation nuclei (CCN) ingested into the tropical cyclones before making landfall over the Philippine coast. The coupled microphysical and radiative effects of aerosols will be analyzed using numerical data conditions of Tropical Storm Ketsana (2009), Tropical Storm Washi (2011), and Typhoon Haiyan (2013) associated with varying CCN number concentrations per simulation per typhoon: clean maritime, polluted, and very polluted having 300 cm-3, 1000 cm-3, and 2000 cm-3 aerosol number initial concentrations, respectively. Aerosol species like sulphates, sea salts, black carbon, and organic carbon will be used as cloud nuclei and mineral dust as ice nuclei (IN). To make the study as realistic as possible, investigation during the biomass burning due to forest fire in Indonesia starting October 2015 as Typhoons Mujigae/Kabayan and Koppu/Lando had been seeded with aerosol emissions mainly comprises with black carbon and organic carbon, will be considered. Emission data that will be used is from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). The physical mechanism/s of intensification or deintensification of tropical cyclones will be determined after the seeding experiment analyses.

Keywords: aerosol, CCN, IN, tropical cylone

Procedia PDF Downloads 295
506 A Framework for Early Differential Diagnosis of Tropical Confusable Diseases Using the Fuzzy Cognitive Map Engine

Authors: Faith-Michael E. Uzoka, Boluwaji A. Akinnuwesi, Taiwo Amoo, Flora Aladi, Stephen Fashoto, Moses Olaniyan, Joseph Osuji

Abstract:

The overarching aim of this study is to develop a soft-computing system for the differential diagnosis of tropical diseases. These conditions are of concern to health bodies, physicians, and the community at large because of their mortality rates, and difficulties in early diagnosis due to the fact that they present with symptoms that overlap, and thus become ‘confusable’. We report on the first phase of our study, which focuses on the development of a fuzzy cognitive map model for early differential diagnosis of tropical diseases. We used malaria as a case disease to show the effectiveness of the FCM technology as an aid to the medical practitioner in the diagnosis of tropical diseases. Our model takes cognizance of manifested symptoms and other non-clinical factors that could contribute to symptoms manifestations. Our model showed 85% accuracy in diagnosis, as against the physicians’ initial hypothesis, which stood at 55% accuracy. It is expected that the next stage of our study will provide a multi-disease, multi-symptom model that also improves efficiency by utilizing a decision support filter that works on an algorithm, which mimics the physician’s diagnosis process.

Keywords: medical diagnosis, tropical diseases, fuzzy cognitive map, decision support filters, malaria differential diagnosis

Procedia PDF Downloads 318
505 “Ethiopian Approach” to Combating Desertification: The Case of Semi-Arid Savanna Grasslands in Southern Ethiopia

Authors: Wang Yongdong, Yeneayehu Fenetahun, You Yuan, Ogbue Chukwuka, Yahaya Ibrahim, Xu Xinwen

Abstract:

This paper explores an innovative Ethiopian approach to combatting desertification, focusing on the semi-arid savanna grasslands in Southern Ethiopia. The study investigates the multifaceted strategies employed by Ethiopian communities, governmental bodies, and non-governmental organizations to address desertification challenges in the region. Through an analysis of legislative frameworks, community engagement, afforestation programs, and sustainable land management techniques, this research highlights the efficacy of Ethiopia's strategy in reducing the effects of desertification. The results emphasize how crucial it is to build effective measures for halting desertification in fragile ecosystems by utilizing local knowledge, community involvement, and adaptive governance. In addition, this study also addresses how the Ethiopian approach may be applied to other areas with comparable environmental problems. In summary, this research adds significant perspectives to the worldwide conversation about desertification and provides useful guidance for sustainable land use.

Keywords: adaptive governance, community engagement, desertification, policy frameworks

Procedia PDF Downloads 42
504 Assessing Vertical Distribution of Soil Organic Carbon Stocks in Westleigh Soil under Shrub Encroached Rangeland, Limpopo Province, South Africa

Authors: Abel L. Masotla, Phesheya E. Dlamini, Vusumuzi E. Mbanjwa

Abstract:

Accurate quantification of the vertical distribution of soil organic carbon (SOC) in relation to land cover transformations, associated with shrub encroachment is crucial because deeper lying horizons have been shown to have greater capacity to sequester SOC. Despite this, in-depth soil carbon dynamics remain poorly understood, especially in arid and semi-arid rangelands. The objective of this study was to quantify and compare the vertical distribution of soil organic carbon stocks (SOCs) in shrub-encroached and open grassland sites. To achieve this, soil samples were collected vertically at 10 cm depth intervals under both sites. The results showed that SOC was on average 19% and 13% greater in the topsoil and subsoil respectively, under shrub-encroached grassland compared to open grassland. In both topsoil and subsoil, lower SOCs were found under shrub-encroached (4.53 kg m⁻² and 3.90 kgm⁻²) relative to open grassland (4.39 kgm⁻² and 3.67 kgm⁻²). These results demonstrate that deeper soil horizon play a critical role in the storage of SOC in savanna grassland.

Keywords: savanna grasslands, shrub-encroachment, soil organic carbon, vertical distribution

Procedia PDF Downloads 138
503 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data

Authors: Huinan Zhang, Wenjie Jiang

Abstract:

Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.

Keywords: Artificial intelligence, deep learning, data mining, remote sensing

Procedia PDF Downloads 62
502 Solar Energy: The Alternative Electric Power Resource in Tropical Nigeria

Authors: Okorowo Cyril Agochi

Abstract:

More than ever human activity relating to uncontrolled greenhouse gas (GHG) and its effects on the earth is gaining greater attention in the global academic and policy discussions. Activities of man has greatly influenced climate change over the years as a result of consistent increase in the use of fossil fuel energy. Scientists and researchers globally are making significant and devoted efforts towards the development and implementation of renewable energy technologies that are harmless to the environment. One of such energy is solar energy with its source from the sun. There are currently two primary ways of harvesting this energy from the sun: through photovoltaic (PV) panels and through thermal collectors. This work discuses solar energy the abundant renewable energy in the tropical Nigeria, processes of harvesting and recommends same as an alternative means of electric power generation in a time the demand for power supersedes supply.

Keywords: electric, power, renewable energy, solar energy, sun, tropical

Procedia PDF Downloads 541
501 Woody Plant Encroachment Effects on the Physical Properties of Vertic Soils in Bela-Bela, Limpopo Province

Authors: Rebone E. Mashapa, Phesheya E. Dlamini, Sandile S. Mthimkhulu

Abstract:

Woody plant encroachment, a land cover transformation that reduces grassland productivity may influence soil physical properties. The objective of the study was to determine the effect of woody plant encroachment on physical properties of vertic soils in a savanna grassland. In this study, we quantified and compared soil bulk density, aggregate stability and porosity in the top and subsoil of an open and woody encroached savanna grassland. The results revealed that soil bulk density increases, while porosity and mean weight diameter decreases with depth in both open and woody encroached grassland soil. Compared to open grassland, soil bulk density was 11% and 10% greater in the topsoil and subsoil, while porosity was 6% and 9% lower in the topsoil and subsoil of woody encroached grassland. Mean weight diameter, an indicator of soil aggregation increased by 38% only in the subsoil of encroached grasslands due to increasing clay content with depth. These results suggest that woody plant encroachment leads to compaction of vertic soils, which in turn reduces pore size distribution.

Keywords: soil depth, soil physical properties, vertic soils, woody plant encroachment

Procedia PDF Downloads 146
500 Bioinformatic Screening of Metagenomic Fosmid Libraries for Identification of Biosynthetic Pathways Derived from the Colombian Soils

Authors: María Fernanda Quiceno Vallejo, Patricia del Portillo, María Mercedes Zambrano, Jeisson Alejandro Triana, Dayana Calderon, Juan Manuel Anzola

Abstract:

Microorganisms from tropical ecosystems can be novel in terms of adaptations and conservation. Given the macrodiversity of Colombian ecosystems, it is possible that this diversity is also present in Colombian soils. Tropical soil bacteria could offer a potentially novel source of bioactive compounds. In this study we analyzed a metagenomic fosmid library constructed with tropical bacterial DNAs with the aim of understanding its underlying diversity and functional potential. 8640 clones from the fosmid library were sequenced by NANOPORE MiniOn technology, then analyzed with bioinformatic tools such as Prokka, AntiSMASH and Bagel4 in order to identify functional biosynthetic pathways in the sequences. The strains showed ample difference when it comes to biosynthetic pathways. In total we identified 4 pathways related to aryl polyene synthesis, 12 related to terpenes, 22 related to NRPs (Non ribosomal peptides), 11 related PKs (Polyketide synthases) and 7 related to RiPPs (bacteriocins). We designed primers for the metagenomic clones with the most BGCs (sample 6 and sample 2). Results show the biotechnological / pharmacological potential of tropical ecosystems. Overall, this work provides an overview of the genomic and functional potential of Colombian soil and sets the groundwork for additional exploration of tropical metagenomic sequencing.

Keywords: bioactives, biosyntethic pathways, bioinformatic, bacterial gene clusters, secondary metabolites

Procedia PDF Downloads 164
499 Integrated Passive Cooling Systems for Tropical Residential Buildings: A Review through the Lens of Latent Heat Assessment

Authors: O. Eso, M. Mohammadi, J. Darkwa, J. Calautit

Abstract:

Residential buildings are responsible for 22% of the global end-use energy demand and 17% of global CO₂ emissions. Tropical climates particularly present higher latent heat gains, leading to more cooling loads. However, the cooling processes are all based on conventional mechanical air conditioning systems which are energy and carbon intensive technologies. Passive cooling systems have in the past been considered as alternative technologies for minimizing energy consumption in buildings. Nevertheless, replacing mechanical cooling systems with passive ones will require a careful assessment of the passive cooling system heat transfer to determine if suitable to outperform their conventional counterparts. This is because internal heat gains, indoor-outdoor heat transfer, and heat transfer through envelope affects the performance of passive cooling systems. While many studies have investigated sensible heat transfer in passive cooling systems, not many studies have focused on their latent heat transfer capabilities. Furthermore, combining heat prevention, heat modulation and heat dissipation to passively cool indoor spaces in the tropical climates is critical to achieve thermal comfort. Since passive cooling systems use only one of these three approaches at a time, integrating more than one passive cooling system for effective indoor latent heat removal while still saving energy is studied. This study is a systematic review of recently published peer review journals on integrated passive cooling systems for tropical residential buildings. The missing links in the experimental and numerical studies with regards to latent heat reduction interventions are presented. Energy simulation studies of integrated passive cooling systems in tropical residential buildings are also discussed. The review has shown that comfortable indoor environment is attainable when two or more passive cooling systems are integrated in tropical residential buildings. Improvement occurs in the heat transfer rate and cooling performance of the passive cooling systems when thermal energy storage systems like phase change materials are included. Integrating passive cooling systems in tropical residential buildings can reduce energy consumption by 6-87% while achieving up to 17.55% reduction in indoor heat flux. The review has highlighted a lack of numerical studies regarding passive cooling system performance in tropical savannah climates. In addition, detailed studies are required to establish suitable latent heat transfer rate in passive cooling ventilation devices under this climate category. This should be considered in subsequent studies. The conclusions and outcomes of this study will help researchers understand the overall energy performance of integrated passive cooling systems in tropical climates and help them identify and design suitable climate specific options for residential buildings.

Keywords: energy savings, latent heat, passive cooling systems, residential buildings, tropical residential buildings

Procedia PDF Downloads 147
498 “Multi-Sonic Timbre” of the Biula: The Integral Role of of Tropical Tonewood in Bajau Sama Dilaut Bowed Lute Acoustics

Authors: Wong Siew Ngan, Lee Chie Tsang, Lee See Ling, Lim Ho Yi

Abstract:

The selection of Tonewood is critical in defining tonal and acoustic qualities of string instruments, yet limited research exists on indigenous instruments utilizing tropical woods. This gap is addressed by analyzing the "multi-sonic timbre" of the Biula (Bajau Sama Dilaut), crafted by rainforest indigenous communities using locally accessible tropical species such as jackfruit and coconut, whose distinctive grain patterns, density, and moisture content, significantly contribute to the instrument’s rich harmonic spectrum and dynamic range. Unlike Western violins that utilize temperate woods like Maple and Spruce, the Biula's sound is shaped by the unique acoustic properties of these tropical tonewoods. To further investigate the impact of tropical tonewoods on the biula’s acoustics, frequency response tests were conducted on instruments constructed from various local species using SPEAR (Sinusoidal Partial Editing Analysis and Resynthesis) software for spectral analysis, measurements were taken of resonance frequencies, harmonic content, and sound decay rates. These analyses reveal that jackfruit wood produces warmer tones with enhanced lower frequencies, while coconut wood contributes to brighter timbres with pronounced higher harmonics. Building upon these findings, the materials and construction methods of biula bows were also examined. The study found that the variations in tropical hardwoods and locally sourced bow hair significantly influence the instrument's responsiveness and articulation, shaping its distinctive 'multi-sonic timbre.' These findings deepen the understanding of indigenous instrument acoustics, offering valuable insights for modern luthiers interested in tropical tonewoods. By documenting traditional crafting techniques, this research supports the preservation of cultural heritage and promotes appreciation of indigenous craftsmanship.

Keywords: multi-sonic timbre, biula (bajau sama dilaut bowed lute), tropical tonewoods, spectral analysis, indigenous instrument acoustics

Procedia PDF Downloads 8
497 Cost Analysis of Neglected Tropical Disease in Nigeria: Implication for Programme Control and Elimination

Authors: Lawong Damian Bernsah

Abstract:

Neglected Tropical Diseases (NTDs) are most predominant among the poor and rural populations and are endemic in 149 countries. These diseases are the most prevalent and responsible for infecting 1.4 billion people worldwide. There are 17 neglected tropical diseases recognized by WHO that constitute the fourth largest disease health and economic burden of all communicable diseases. Five of these 17 diseases are considered for the cost analysis of this paper: lymphatic filariasis, onchocerciasis, trachoma, schistosomiasis, and soil transmitted helminth infections. WHO has proposed a roadmap for eradication and elimination by 2020 and treatments have been donated through the London Declaration by pharmaceutical manufacturers. The paper estimates the cost of NTD control programme and elimination for each NTD disease and total in Nigeria. This is necessary as it forms the bases upon which programme budget and expenditure could be based. Again, given the opportunity cost the resources for NTD face it is necessary to estimate the cost so as to provide bases for comparison. Cost of NTDs control and elimination programme is estimated using the population at risk for each NTD diseases and for the total. The population at risk is gotten from the national master plan for the 2015 - 2020, while the cost per person was gotten for similar studies conducted in similar settings and ranges from US$0.1 to US$0.5 for Mass Administration of Medicine (MAM) and between US$1 to US$1.5 for each NTD disease. The combined cost for all the NTDs was estimated to be US$634.88 million for the period 2015-2020 and US$1.9 billion for each NTD disease for the same period. For the purpose of sensitivity analysis and for robustness of the analysis the cost per person was varied and all were still high. Given that health expenditure for Nigeria (% of GDP) averages 3.5% for the period 1995-2014, it is very clear that efforts have to be made to improve allocation to the health sector in general which is hoped could trickle to NTDs control and elimination. Thus, the government and the donor partners would need to step-up budgetary allocation and also to be aware of the costs of NTD control and elimination programme since they have alternative uses. Key Words: Neglected Tropical Disease, Cost Analysis, NTD Programme Control and Elimination, Cost per Person

Keywords: Neglected Tropical Disease, Cost Analysis, Neglected Tropical Disease Programme Control and Elimination, Cost per Person

Procedia PDF Downloads 271
496 Classification of Precipitation Types Detected in Malaysia

Authors: K. Badron, A. F. Ismail, A. L. Asnawi, N. F. A. Malik, S. Z. Abidin, S. Dzulkifly

Abstract:

The occurrences of precipitation, also commonly referred as rain, in the form of "convective" and "stratiform" have been identified to exist worldwide. In this study, the radar return echoes or known as reflectivity values acquired from radar scans have been exploited in the process of classifying the type of rain endured. The investigation use radar data from Malaysian Meteorology Department (MMD). It is possible to discriminate the types of rain experienced in tropical region by observing the vertical characteristics of the rain structure. .Heavy rain in tropical region profoundly affects radiowave signals, causing transmission interference and signal fading. Required wireless system fade margin depends on the type of rain. Information relating to the two mentioned types of rain is critical for the system engineers and researchers in their endeavour to improve the reliability of communication links. This paper highlights the quantification of percentage occurrences over one year period in 2009.

Keywords: stratiform, convective, tropical region, attenuation radar reflectivity

Procedia PDF Downloads 287
495 Understanding the Classification of Rain Microstructure and Estimation of Z-R Relationship using a Micro Rain Radar in Tropical Region

Authors: Tomiwa, Akinyemi Clement

Abstract:

Tropical regions experience diverse and complex precipitation patterns, posing significant challenges for accurate rainfall estimation and forecasting. This study addresses the problem of effectively classifying tropical rain types and refining the Z-R (Reflectivity-Rain Rate) relationship to enhance rainfall estimation accuracy. Through a combination of remote sensing, meteorological analysis, and machine learning, the research aims to develop an advanced classification framework capable of distinguishing between different types of tropical rain based on their unique characteristics. This involves utilizing high-resolution satellite imagery, radar data, and atmospheric parameters to categorize precipitation events into distinct classes, providing a comprehensive understanding of tropical rain systems. Additionally, the study seeks to improve the Z-R relationship, a crucial aspect of rainfall estimation. One year of rainfall data was analyzed using a Micro Rain Radar (MRR) located at The Federal University of Technology Akure, Nigeria, measuring rainfall parameters from ground level to a height of 4.8 km with a vertical resolution of 0.16 km. Rain rates were classified into low (stratiform) and high (convective) based on various microstructural attributes such as rain rates, liquid water content, Drop Size Distribution (DSD), average fall speed of the drops, and radar reflectivity. By integrating diverse datasets and employing advanced statistical techniques, the study aims to enhance the precision of Z-R models, offering a more reliable means of estimating rainfall rates from radar reflectivity data. This refined Z-R relationship holds significant potential for improving our understanding of tropical rain systems and enhancing forecasting accuracy in regions prone to heavy precipitation.

Keywords: remote sensing, precipitation, drop size distribution, micro rain radar

Procedia PDF Downloads 33
494 Hydrodynamics in Wetlands of Brazilian Savanna: Electrical Tomography and Geoprocessing

Authors: Lucas M. Furlan, Cesar A. Moreira, Jepherson F. Sales, Guilherme T. Bueno, Manuel E. Ferreira, Carla V. S. Coelho, Vania Rosolen

Abstract:

Located in the western part of the State of Minas Gerais, Brazil, the study area consists of a savanna environment, represented by sedimentary plateau and a soil cover composed by lateritic and hydromorphic soils - in the latter, occurring the deferruginization and concentration of high-alumina clays, exploited as refractory material. In the hydromorphic topographic depressions (wetlands) the hydropedogical relationships are little known, but it is observed that in times of rainfall, the depressed region behaves like a natural seasonal reservoir - which suggests that the wetlands on the surface of the plateau are places of recharge of the aquifer. The aquifer recharge areas are extremely important for the sustainable social, economic and environmental development of societies. The understanding of hydrodynamics in relation to the functioning of the ferruginous and hydromorphic lateritic soils system in the savanna environment is a subject rarely explored in the literature, especially its understanding through the joint application of geoprocessing by UAV (Unmanned Aerial Vehicle) and electrical tomography. The objective of this work is to understand the hydrogeological dynamics in a wetland (with an area of 426.064 m²), in the Brazilian savanna,as well as the understanding of the subsurface architecture of hydromorphic depressions in relation to the recharge of aquifers. The wetland was compartmentalized in three different regions, according to the geoprocessing. Hydraulic conductivity studies were performed in each of these three portions. Electrical tomography was performed on 9 lines of 80 meters in length and spaced 10 meters apart (direction N45), and a line with 80 meters perpendicular to all others. With the data, it was possible to generate a 3D cube. The integrated analysis showed that the area behaves like a natural seasonal reservoir in the months of greater precipitation (December – 289mm; January – 277,9mm; February – 213,2mm), because the hydraulic conductivity is very low in all areas. In the aerial images, geotag correction of the images was performed, that is, the correction of the coordinates of the images by means of the corrected coordinates of the Positioning by Precision Point of the Brazilian Institute of Geography and Statistics (IBGE-PPP). Later, the orthomosaic and the digital surface model (DSM) were generated, which with specific geoprocessing generated the volume of water that the wetland can contain - 780,922m³ in total, 265,205m³ in the region with intermediate flooding and 49,140m³ in the central region, where a greater accumulation of water was observed. Through the electrical tomography it was possible to identify that up to the depth of 6 meters the water infiltrates vertically in the central region. From the 8 meters depth, the water encounters a more resistive layer and the infiltration begins to occur horizontally - tending to concentrate the recharge of the aquifer to the northeast and southwest of the wetland. The hydrodynamics of the area is complex and has many challenges in its understanding. The next step is to relate hydrodynamics to the evolution of the landscape, with the enrichment of high-alumina clays, and to propose a management model for the seasonal reservoir.

Keywords: electrical tomography, hydropedology, unmanned aerial vehicle, water resources management

Procedia PDF Downloads 144
493 Study of the Best Algorithm to Estimate Sunshine Duration from Global Radiation on Horizontal Surface for Tropical Region

Authors: Tovondahiniriko Fanjirindratovo, Olga Ramiarinjanahary, Paulisimone Rasoavonjy

Abstract:

The sunshine duration, which is the sum of all the moments when the solar beam radiation is up to a minimal value, is an important parameter for climatology, tourism, agriculture and solar energy. Its measure is usually given by a pyrheliometer installed on a two-axis solar tracker. Due to the high cost of this device and the availability of global radiation on a horizontal surface, on the other hand, several studies have been done to make a correlation between global radiation and sunshine duration. Most of these studies are fitted for the northern hemisphere using a pyrheliometric database. The aim of the present work is to list and assess all the existing methods and apply them to Reunion Island, a tropical region in the southern hemisphere. Using a database of ten years, global, diffuse and beam radiation for a horizontal surface are employed in order to evaluate the uncertainty of existing algorithms for a tropical region. The methodology is based on indirect comparison because the solar beam radiation is not measured but calculated by the beam radiation on a horizontal surface and the sun elevation angle.

Keywords: Carpentras method, data fitting, global radiation, sunshine duration, Slob and Monna algorithm, step algorithm

Procedia PDF Downloads 124