Search results for: total solids concentration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13140

Search results for: total solids concentration

13140 The Effect of Flow Discharge on Suspended Solids Transport in the Nakhon-Nayok River

Authors: Apichote Urantinon

Abstract:

Suspended solid is one factor for water quality in open channel. It affects various problems in waterways that could cause high sedimentation in the channels, leading to shallowness in the river. It is composed of the organic and inorganic materials which can settle down anywhere along the open channel. Thus, depends on the solid amount and its composition, it occupies the water body capacity and causes the water quality problems simultaneously. However, the existing of suspended solid in the water column depends on the flow discharge (Q) and secchi depth (sec). This study aims to examine the effect of flow discharge (Q) and secchi depth (sec) on the suspended solids concentration in open channel and attempts to establish the formula that represents the relationship between flow discharges (Q), secchi depth (sec) and suspended solid concentration. The field samplings have been conducted in the Nakhon-Nayok river, during the wet season, September 15-16, 2014 and dry season, March 10-11, 2015. The samplings with five different locations are measured. The discharge has been measured onsite by floating technics, the secchi depth has been measured by secchi disc and the water samples have been collected at the center of the water column. They have been analyzed in the laboratory for the suspended solids concentration. The results demonstrate that the decrease in suspended solids concentration is dependent on flow discharge, since the natural processes in erosion consists of routing of eroded material. Finally, an empirical equation to compute the suspended solids concentration that shows an equation (SScon = 9.852 (sec)-0.759 Q0.0355) is developed. The calculated suspended solids concentration, with uses of empirical formula, show good agreement with the record data as the R2 = 0.831. Therefore, the empirical formula in this study is clearly verified.

Keywords: suspended solids concentration, the Nakhon-Nayok river, secchi depth, floating technics

Procedia PDF Downloads 248
13139 Anaerobic Digestion of Green Wastes at Different Solids Concentrations and Temperatures to Enhance Methane Generation

Authors: A. Bayat, R. Bello-Mendoza, D. G. Wareham

Abstract:

Two major categories of green waste are fruit and vegetable (FV) waste and garden and yard (GY) waste. Although, anaerobic digestions (AD) is able to manage FV waste; there is less confidence in the conditions for AD to handle GY wastes (grass, leaves, trees and bush trimmings); mainly because GY contains lignin and other recalcitrant organics. GY in the dry state (TS ≥ 15 %) can be digested at mesophilic temperatures; however, little methane data has been reported under thermophilic conditions, where conceivably better methane yields could be achieved. In addition, it is suspected that at lower solids concentrations, the methane yield could be increased. As such, the aim of this research is to find the temperature and solids concentration conditions that produce the most methane; under two different temperature regimes (mesophilic, thermophilic) and three solids states (i.e. 'dry', 'semi-dry' and 'wet'). Twenty liters of GY waste was collected from a public park located in the northern district in Tehran. The clippings consisted of freshly cut grass as well as dry branches and leaves. The GY waste was chopped before being fed into a mechanical blender that reduced it to a paste-like consistency. An initial TS concentration of approximately 38 % was achieved. Four hundred mL of anaerobic inoculum (average total solids (TS) concentration of 2.03 ± 0.131 % of which 73.4% were volatile solid (VS), soluble chemical oxygen demand (sCOD) of 4.59 ± 0.3 g/L) was mixed with the GY waste substrate paste (along with distilled water) to achieve a TS content of approximately 20 %. For comparative purposes, approximately 20 liters of FV waste was ground in the same manner as the GY waste. Since FV waste has a much higher natural water content than GY, it was dewatered to obtain a starting TS concentration in the dry solid-state range (TS ≥ 15 %). Three samples were dewatered to an average starting TS concentration of 32.71 %. The inoculum was added (along with distilled water) to dilute the initial FV TS concentrations down to semi-dry conditions (10-15 %) and wet conditions (below 10 %). Twelve 1-L batch bioreactors were loaded simultaneously with either GY or FV waste at TS solid concentrations ranging from 3.85 ± 1.22 % to 20.11 ± 1.23 %. The reactors were sealed and were operated for 30 days while being immersed in water baths to maintain a constant temperature of 37 ± 0.5 °C (mesophilic) or 55 ± 0.5 °C (thermophilic). A maximum methane yield of 115.42 (L methane/ kg VS added) was obtained for the GY thermophilic-wet AD combination. Methane yield was enhanced by 240 % compared to the GY waste mesophilic-dry condition. The results confirm that high temperature regimes and small solids concentrations are conditions that enhance methane yield from GY waste. A similar trend was observed for the anaerobic digestion of FV waste. Furthermore, a maximum value of VS (53 %) and sCOD (84 %) reduction was achieved during the AD of GY waste under the thermophilic-wet condition.

Keywords: anaerobic digestion, thermophilic, mesophilic, total solids concentration

Procedia PDF Downloads 138
13138 Impact of Meteorological Events and Sand Excavation on Turbidity and Total Suspended Solids Levels of Imo River

Authors: Ihejirika Chinedu Emeka, Njoku John Didacus, Obenade Moses

Abstract:

This study was aimed at determining the impact of meteorological events (seasonal variations) and sand excavation activities on turbidity and Total Suspended Solids (TSS) of Imo River, Southeastern Nigeria. In-situ measurements of the parameters were carried out at the peaks of two consecutive seasons–dry and rainy season at seven major points of sand excavation along the river, under standard analytical methods. There were significant variations in seasons (P<0.05) for turbidity and TSS at all locations. The average turbidity concentration of locations were 36.71 NTU, during the rainy season, and 17 NTU in a dry season, while the average TSS concentration were 27.14 mg/L, during the rainy season, and 8.86mg/L in a dry season. Turbidity correlated positively (strongly) with TSS (r=0.956) at R–Square=0.91. Turbidity and TSS values were higher during the rainy season than the dry season. Turbidity increased when Total Suspended Solids increased. Sand excavation increased turbidity and TSS values of Imo River. The river had moderate water quality during the rainy season and unimpaired water quality during a dry season. The river was not very clear in both seasons, but clearer in a dry season than in rainy season. The increase in turbidity and TSS can lead to the destruction of aquatic biodiversity and stagnation of ecosystem processes. Exposure of aquatic animals to the recorded turbidity level in a rainy season can lead to stress.

Keywords: biodiversity destruction, meteorological events, pollution, sand excavation

Procedia PDF Downloads 494
13137 Assessment of Different Industrial Wastewater Quality in the Most Common Industries in Kuwait

Authors: Mariam Aljumaa

Abstract:

Industrial wastewater has been increased rapidly in the last decades, however, the generated wastewater is not treated properly on site before transfer it to the treatment plant. In this study, the most common industries (dairy, soft drinks, detergent, and petrochemical) has been studied in term of wastewater quality. The main aim of this study is to characterize and evaluate the quality of the most common industrial wastewater in Kuwait. Industrial wastewater samples were collected from detergents, dairy, beverage, and petrochemical factories. The collected wastewater samples were analyzed for temperature, EC, pH, DO, BOD, COD, TOC, TS, TSS, volatile suspended solids (VSS), total volatile solids (TVS), NO2, NO3, NH3, N, P, K, CaCO3, heavy metals, Total coliform, Fecal coliform, and E.coli bacteria. The results showed that petrochemical industry has the highest concentration of organic and nutrients, followed by detergents wastewater, then dairy, and finally, soft drink wastewater. Regarding the heavy metals, the results showed that dairy wastewater had the highest concentration, specifically in Zinc, Arsenic, and Cadmium. In term of biological analysis, the dairy industry had the highest concentration of total coliform, followed by soft drinks industry, then shampoo industry, and finally petrochemical industry.

Keywords: industrial wastewater, characterization, heavy metals, wastewater quality

Procedia PDF Downloads 91
13136 Total Dissolved Solids and Total Iron in High Rate Activated Sludge System

Authors: M. Y. Saleh, G. M. ELanany, M. H. Elzahar, M. Z. Elshikhipy

Abstract:

Industrial wastewater discharge, which carries high concentrations of dissolved solids and iron, could be treated by high rate activated sludge stage of the multiple-stage sludge treatment plant, a system which is characterized by high treatment efficiency, optimal prices, and small areas compared with conventional activated sludge treatment plants. A pilot plant with an influent industrial discharge flow of 135 L/h was designed following the activated sludge system to simulate between the biological and chemical treatment with the addition of dosages 100, 150, 200 and 250 mg/L alum salt to the aeration tank. The concentrations of total dissolved solids (TDS) and iron (Fe) in industrial discharge flow had an average range of 140000 TDS and 4.5 mg/L iron. The optimization of the chemical-biological process using a dosage of 200 mg/L alum succeeded to improve the removal efficiency of TDS and total iron to 48.15% and 68.11% respectively.

Keywords: wastewater, activated sludge, TDS, total iron

Procedia PDF Downloads 295
13135 Measurement of Solids Concentration in Hydrocyclone Using ERT: Validation Against CFD

Authors: Vakamalla Teja Reddy, Narasimha Mangadoddy

Abstract:

Hydrocyclones are used to separate particles into different size fractions in the mineral processing, chemical and metallurgical industries. High speed video imaging, Laser Doppler Anemometry (LDA), X-ray and Gamma ray tomography are previously used to measure the two-phase flow characteristics in the cyclone. However, investigation of solids flow characteristics inside the cyclone is often impeded by the nature of the process due to slurry opaqueness and solid metal wall vessels. In this work, a dual-plane high speed Electrical resistance tomography (ERT) is used to measure hydrocyclone internal flow dynamics in situ. Experiments are carried out in 3 inch hydrocyclone for feed solid concentrations varying in the range of 0-50%. ERT data analysis through the optimized FEM mesh size and reconstruction algorithms on air-core and solid concentration tomograms is assessed. Results are presented in terms of the air-core diameter and solids volume fraction contours using Maxwell’s equation for various hydrocyclone operational parameters. It is confirmed by ERT that the air core occupied area and wall solids conductivity levels decreases with increasing the feed solids concentration. Algebraic slip mixture based multi-phase computational fluid dynamics (CFD) model is used to predict the air-core size and the solid concentrations in the hydrocyclone. Validation of air-core size and mean solid volume fractions by ERT measurements with the CFD simulations is attempted.

Keywords: air-core, electrical resistance tomography, hydrocyclone, multi-phase CFD

Procedia PDF Downloads 379
13134 Treatment of Tannery Effluents by the Process of Coagulation

Authors: Gentiana Shegani

Abstract:

Coagulation is a process that sanitizes leather effluents. It aims to reduce pollutants such as Chemical Oxygen Demand (COD), chloride, sulphate, chromium, suspended solids, and other dissolved solids. The current study aimed to evaluate coagulation efficiency of tannery wastewater by analysing the change in organic matter, odor, colour, ammonium ions, nutrients, chloride, H2S, sulphate, suspended solids, total dissolved solids, faecal pollution, and chromium hexavalent before and after treatment. Effluent samples were treated with coagulants Ca(OH)2 and FeSO4 .7H2O. The best advantages of this treatment included the removal of: COD (81.60%); ammonia ions (98.34%); nitrate ions (92%); chromium hexavalent (75.00%); phosphate (70.00%); chloride (69.20%); and H₂S (50%). Results also indicated a high level of efficiency in the reduction of fecal pollution indicators. Unfortunately, only a modest reduction of sulphate (19.00%) and TSS (13.00%) and an increase in TDS (15.60%) was observed.

Keywords: coagulation, effluent, tannery, treatment

Procedia PDF Downloads 343
13133 An Investigation into the Impact of the Relocation of Tannery Industry on Water Quality Parameters of Urban River Buriganga

Authors: Md Asif Imrul, Maria Rafique, M. Habibur Rahman

Abstract:

The study deals with an investigation into the impact of the relocation of tannery industry on water quality parameters of Buriganga. For this purpose, previous records have been collected from authentic data resources and for the attainment of present values, several samples were collected from three major locations of the Buriganga River during summer and winter seasons in 2018 to determine the distribution and variation of water quality parameters. Samples were collected six ft below the river water surface. Analysis indicates slightly acidic to slightly alkaline (6.8-7.49) in nature. Bio-Chemical Oxygen Demand, Total Dissolved Solids, Total Solids (TS) & Total Suspended Solids (TSS) have been found greater in summer. On the other hand, Dissolved Oxygen is found greater in rainy seasons. Relocation shows improvement in water quality parameters. Though the improvement related to relocation of tannery industry is not adequate to turn the water body to be an inhabitable place for aquatic lives.

Keywords: Buriganga river, river pollution, tannery industry, water quality parameters

Procedia PDF Downloads 160
13132 Comparison of Non-Organic (Suspended and Solved) Solids Removal with and without Sediments in Treatment of an Industrial Wastewater with and without Ozonation

Authors: Amir Hajiali, Gevorg P. Pirumyan

Abstract:

In this research, removal of Non-Organic Suspended Solids and Non-Organic Solved Solids with and without sediment in treatment of an industrial wastewater system before and after ozonation was studied and compared. The most hazardous part of these substances is monomers of chlorophenolic combinations which in biological reactors in a liquid phase could be absorbed much easier and with a high velocity. These monomers and particularly monomers with high molecular weights are seen a lot in such wastewater treatment systems. After the treatment, the measured non-organic solved and suspended solids contents in the cyclic ozonation-biotreatment system compared to the non-organic solved and suspended solids values in the treatment method without ozonation. Sedimentation was the other factor which was considered in this experiment.The solids removals were measured with and without sediments. The comparison revealed that the remarkable efficiency of the cyclic ozonation-biotreatment system in removing the non-organic solids both with and without sediments is extremely considerable. Results of the experiments showed that ozone can be dramatically effective for solving most organic materials in activated sludge in such a wastewater or for making them mineral. Moreover, bio dissolubility increase related to the solved materials was reported.

Keywords: non-organic solids, ozonation, sediment, wastewater treatment

Procedia PDF Downloads 187
13131 Characterization of Brewery Wastewater Composition

Authors: Abimbola M. Enitan, Josiah Adeyemo, Sheena Kumari, Feroz M. Swalaha, Faizal Bux

Abstract:

With the competing demand on water resources and water reuse, discharge of industrial effluents into the aquatic environment has become an important issue. Much attention has been placed on the impact of industrial wastewater on water bodies worldwide due to the accumulation of organic and inorganic matter in the receiving water bodies. The scope of the present work is to assess the physic-chemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus, and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of the peak period of beer production on the water usage.

Keywords: Brewery wastewater, environmental pollution, industrial effluents, physic-chemical composition

Procedia PDF Downloads 452
13130 Improving the Uniformity of Electrostatic Meter’s Spatial Sensitivity

Authors: Mohamed Abdalla, Ruixue Cheng, Jianyong Zhang

Abstract:

In pneumatic conveying, the solids are mixed with air or gas. In industries such as coal fired power stations, blast furnaces for iron making, cement and flour processing, the mass flow rate of solids needs to be monitored or controlled. However the current gas-solids two-phase flow measurement techniques are not as accurate as the flow meters available for the single phase flow. One of the problems that the multi-phase flow meters to face is that the flow profiles vary with measurement locations and conditions of pipe routing, bends, elbows and other restriction devices in conveying system as well as conveying velocity and concentration. To measure solids flow rate or concentration with non-even distribution of solids in gas, a uniform spatial sensitivity is required for a multi-phase flow meter. However, there are not many meters inherently have such property. The circular electrostatic meter is a popular choice for gas-solids flow measurement with its high sensitivity to flow, robust construction, low cost for installation and non-intrusive nature. However such meters have the inherent non-uniform spatial sensitivity. This paper first analyses the spatial sensitivity of circular electrostatic meter in general and then by combining the effect of the sensitivity to a single particle and the sensing volume for a given electrode geometry, the paper reveals first time how a circular electrostatic meter responds to a roping flow stream, which is much more complex than what is believed at present. The paper will provide the recent research findings on spatial sensitivity investigation at the University of Tees side based on Finite element analysis using Ansys Fluent software, including time and frequency domain characteristics and the effect of electrode geometry. The simulation results will be compared tothe experimental results obtained on a large scale (14” diameter) rig. The purpose of this research is paving a way to achieve a uniform spatial sensitivity for the circular electrostatic sensor by mean of compensation so as to improve overall accuracy of gas-solids flow measurement.

Keywords: spatial sensitivity, electrostatic sensor, pneumatic conveying, Ansys Fluent software

Procedia PDF Downloads 367
13129 Monitoring and Evaluation of the Water Quality of Taal Lake, Talisay, Batangas, Philippines

Authors: Felipe B. Martinez, Imelda C. Galera

Abstract:

This paper presents an update on the physico-chemical properties of the Taal Lake for local government officials and representatives of non-government organizations by monitoring and evaluating a total of nine (9) water quality parameters. The study further shows that the Taal Lakes surface temperature, pH, total dissolved solids, total suspended solids, color, and dissolved oxygen content conform to the standards set by the Department of Environment and Natural resources (DENR); while phosphate, chlorine, and 5-Day 20°C BOD are below the standard. Likewise, the T-test result shows no significant difference in the overall average of the two sites at the Taal Lake (P > 0.05). Based on the data, the Lake is safe for primary contact recreation such as bathing, swimming and skin diving, and can be used for aqua culture purposes.

Keywords: cool dry season, hot dry season, rainy season, Taal Lake, water quality

Procedia PDF Downloads 308
13128 Renewable Energy Potential of Diluted Poultry Manure during Ambient Anaerobic Stabilisation

Authors: Cigdem Yangin-Gomec, Aigerim Jaxybayeva, Orhan Ince

Abstract:

In this study, the anaerobic treatability of chicken manure diluted with tap water (with an influent feed ratio of 1 kg of fresh chicken manure to 6 liter of tap water) was investigated in a lab-scale anaerobic sludge bed (ASB) reactor inoculated with the granular sludge already adapted to chicken manure. The raw waste digested in this study was the manure from laying-hens having average total solids (TS) of about 30% with ca. 60% volatile content. The ASB reactor was fed semi-continuously at ambient operating temperature range (17-23C) at a HRT of 13 and 26 days for about 6 months, respectively. The respective average total and soluble chemical oxygen demand (COD) removals were ca. 90% and 75%, whereas average biomethane production rate was calculated ca. 180 lt per kg of CODremoved from the ASB reactor at an average HRT of 13 days. Moreover, total suspended solids (TSS) and volatile suspended solids (VSS) in the influent were reduced more than 97%. Hence, high removals of the organic compounds with respective biogas production made anaerobic stabilization of the diluted chicken manure by ASB reactor at ambient operating temperatures viable. By this way, external heating up to 35C (i.e. anaerobic processes have been traditionally operated at mesophilic conditions) could be avoided in the scope of this study.

Keywords: ambient anaerobic digestion, biogas recovery, poultry manure, renewable energy

Procedia PDF Downloads 420
13127 Assessment of Water Quality of Euphrates River at Babylon Governorate, for Drinking, Irrigation and general, Using Water Quality Index (Canadian Version) (CCMEWQI)

Authors: Amer Obaid Saud

Abstract:

Water quality index (WQI) is considered as an effective tool in categorization of water resources for its quality and suitability for different uses. The Canadian version of water quality index (CCME WQI) which based on the comparison of the water quality parameters to regulatory standards and give a single value to the water quality of a source was applied in this study to assess the water quality of Euphrates river in Iraq at Babylon Governorate north of Baghdad and determine its suitability for aquatic environment (GWQI), drinking water (PWSI) and irrigation(IWQI). Five stations were selected on the river in Babylon (Euphrates River/AL-Musiab, Hindia barrage, two stations at Hilla city and the fifth station at Al-Hshmeya north of Hilla. Fifteen water samples were collected every month during August 2013 to July 2014 at the study sites and analyzed for the physico-chemical parameters like (Temperature, pH, Electrical Conductivity, Total Dissolved Solids(TDS), Total Suspended Solids(TSS), Total Alkalinity, Total Hardness, Calcium and Magnesium Concentration, some of nutrient like Nitrite, Nitrate, Phosphate also the study of concentration of some heavy metals (Fe, Pb, Zn, Cu, Mn, and Cd) in water and comparison of measures to benchmarks such as guidelines and objectives to assess change in water quality. The result of Canadian version of(CCME .WQI) to assess the irrigation water quality (IWQI) of Euphrates river was (83-good) at site one during second seasonal period while the lowest was (66-Fair) in the second station during the fourth seasonal period, the values of potable water supply index (PWSI)that the highest value was (68-Fair) in the fifth site during the second period while the lowest value (42 -Poor) in the second site during the first seasonal period,the highest value for general water quality (GWQI) was (74-Fair) in site five during the second seasonal period, the lowest value (48-Marginal) in the second site during the first seasonal period. It was observed that the main cause of deterioration in water quality was due to the lack of, unprotected river sites ,high anthropogenic activities and direct discharge of industrial effluent.

Keywords: Babylon governorate, Canadian version, water quality, Euphrates river

Procedia PDF Downloads 398
13126 Shear Enhanced Flotation Technology Applied to Treat Winery Wastewater

Authors: Bernard Bladergroen, David Vlotman, Bradley Cerff

Abstract:

The agricultural sector is one which requires and consumes large amounts of water globally. Commercial wine production, in particular, uses extensive volumes of fresh water and generates significant volumes of wastewater through various processes. The wastewater produced by wineries typically exhibits elevated levels of chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), acidic pH and varying salinity and nutrient contents. This study investigates the performance of a shear-enhanced flotation separation (SEFS) pilot plant as a primary treatment stage during winery wastewater processing by modifying a conventional Dissolved Air Flotation (DAF) system. The SEFS pilot plant achieved a 99% reduction in both turbidity and TSS in comparison to the 97% achieved with the conventional DAF system. The COD was reduced by 66% and 51% for the SEFS and DAF systems, respectively. SEFS shows the advantages of hydrodynamic shear to enhance the coagulation and subsequent flocculation processes with a significant reduction of coagulant and flocculant (36% and 31%, respectively).

Keywords: shear enhanced flotation, suspended solids, primary wastewater treatment, zeta potential

Procedia PDF Downloads 62
13125 Surface Water Quality in Orchard Area, Amphawa District, Samut Songkram Province, Thailand

Authors: Sisuwan Kaseamsawat, Sivapan Choo-In

Abstract:

This study aimed to evaluated the surface water quality for agriculture and consumption in the district. Surface water quality parameters in this study in cluding water temperature, turbidity, conductivity. salinity, pH, dissolved oxygen, BOD, nitrate, Suspended solids, phosphorus. Total dissolve solids, iron, copper, zinc, manganese, lead and cadmium. Water samples were collected from small excavation, Lychee, Pomelo, and Coconut orchard for 3 season during January to December 2011. The surface water quality from small excavation, Lychee, pomelo, and coconut orchard are meet the type III of surface water quality standard issued by the National Environmental Quality Act B. E. 1992. except the concentration of heavy metal. And did not differ significantly at 0.05 level, except dissolved oxygen. The water is suitable for consumption by the usual sterile and generally improving water quality through the process before. And is suitable for agriculture.

Keywords: water quality, surface water quality, Thailand, water

Procedia PDF Downloads 356
13124 Impact of Biological Treatment Effluent on the Physico-Chemical Quality of a Receiving Stream in Ile-Ife, Southwest Nigeria

Authors: Asibor Godwin, Adeniyi Funsho

Abstract:

This study was carried out to investigate the impact of biological treated effluent on the physico-chemical properties of receiving waterbodies and also to establish its suitability for other purposes. It focused on the changes of some physic-chemical variables as one move away from the point of discharge downstream of the waterbodies. Water samples were collected from 14 sampling stations made up of the untreated effluent, treated effluent and receiving streams (before and after treated effluent discharge) over a period of 6 months spanning the dry and rainy seasons. Analyses were carried out on the following: temperature, turbidity, pH, conductivity, major anions and cation, dissolved oxygen, percentage oxygen Saturation, biological oxygen demand (BOD), solids (total solids, suspended solids and dissolved solids), nitrates, phosphates, organic matter and flow discharge using standard analytical methods. The relationships between investigated sites with regards to their physico-chemical properties were analyzed using student-t statistics. Also changes in the treated effluent receiving streams after treated effluent outfall was discussed fully. The physico-chemical water quality of the receiving water bodies meets most of the general water requirements for both domestic and industrial uses. The untreated effluent quality was shown to be of biological origin based on the biological oxygen demand, chloride, dissolved oxygen, total solids, pH and organic matter. The treated effluent showed significant improvement over the raw untreated effluent based on most parameters assessed. There was a significant difference (p<0.05) between the physico-chemical quality of untreated effluent and the treated effluent for the most of the investigated physico-chemical quality. The difference between the discharged treated effluent and the unimpacted section of the receiving waterbodies was also significant (p<0.05) for the most of the physico-chemical parameters.

Keywords: eflluent, Opa River, physico-chemical, waterbody

Procedia PDF Downloads 261
13123 Surface and Drinking Water Quality Monitoring of Thomas Reservoir, Kano State, Nigeria

Authors: G. A. Adamu, M. S. Sallau, S. O. Idris, E. B. Agbaji

Abstract:

Drinking water is supplied to Danbatta, Makoda and some parts of Minjibir local government areas of Kano State from the surface water of Thomas Reservoir. The present land use in the catchment area of the reservoir indicates high agricultural activities, fishing, as well as domestic and small scale industrial activities. To study and monitor the quality of surface and drinking water of the area, water samples were collected from the reservoir, treated water at the treatment plant and potable water at the consumer end in three seasons November - February (cold season), March - June (dry season) and July - September (rainy season). The samples were analyzed for physical and chemical parameters, pH, temperature, total dissolved solids (TDS), conductivity, turbidity, total hardness, suspended solids, total solids, colour, dissolved oxygen (DO), biological oxygen demand (BOD), chloride ion (Cl-) nitrite (NO2-), nitrate (NO3-), chemical oxygen demand (COD) and phosphate (PO43-). The higher values obtained in some parameters with respect to the acceptable standard set by World Health Organization (WHO) and Nigerian Industrial Standards (NIS) indicate the pollution of both the surface and drinking water. These pollutants were observed to have a negative impact on water quality in terms of eutrophication, largely due to anthropogenic activities in the watershed.

Keywords: surface water, drinking water, water quality, pollution, Thomas reservoir, Kano

Procedia PDF Downloads 295
13122 Upflow Anaerobic Sludge Blanket Reactor Followed by Dissolved Air Flotation Treating Municipal Sewage

Authors: Priscila Ribeiro dos Santos, Luiz Antonio Daniel

Abstract:

Inadequate access to clean water and sanitation has become one of the most widespread problems affecting people throughout the developing world, leading to an unceasing need for low-cost and sustainable wastewater treatment systems. The UASB technology has been widely employed as a suitable and economical option for the treatment of sewage in developing countries, which involves low initial investment, low energy requirements, low operation and maintenance costs, high loading capacity, short hydraulic retention times, long solids retention times and low sludge production. Whereas dissolved air flotation process is a good option for the post-treatment of anaerobic effluents, being capable of producing high quality effluents in terms of total suspended solids, chemical oxygen demand, phosphorus, and even pathogens. This work presents an evaluation and monitoring, over a period of 6 months, of one compact full-scale system with this configuration, UASB reactors followed by dissolved air flotation units (DAF), operating in Brazil. It was verified as a successful treatment system, and an issue of relevance since dissolved air flotation process treating UASB reactor effluents is not widely encompassed in the literature. The study covered the removal and behavior of several variables, such as turbidity, total suspend solids (TSS), chemical oxygen demand (COD), Escherichia coli, total coliforms and Clostridium perfringens. The physicochemical variables were analyzed according to the protocols established by the Standard Methods for Examination of Water and Wastewater. For microbiological variables, such as Escherichia coli and total coliforms, it was used the “pour plate” technique with Chromocult Coliform Agar (Merk Cat. No.1.10426) serving as the culture medium, while the microorganism Clostridium perfringens was analyzed through the filtering membrane technique, with the Ágar m-CP (Oxoid Ltda, England) serving as the culture medium. Approximately 74% of total COD was removed in the UASB reactor, and the complementary removal done during the flotation process resulted in 88% of COD removal from the raw sewage, thus the initial concentration of COD of 729 mg.L-1 decreased to 87 mg.L-1. Whereas, in terms of particulate COD, the overall removal efficiency for the whole system was about 94%, decreasing from 375 mg.L-1 in raw sewage to 29 mg.L-1 in final effluent. The UASB reactor removed on average 77% of the TSS from raw sewage. While the dissolved air flotation process did not work as expected, removing only 30% of TSS from the anaerobic effluent. The final effluent presented an average concentration of 38 mg.L-1 of TSS. The turbidity was significantly reduced, leading to an overall efficiency removal of 80% and a final turbidity of 28 NTU.The treated effluent still presented a high concentration of fecal pollution indicators (E. coli, total coliforms, and Clostridium perfringens), showing that the system did not present a good performance in removing pathogens. Clostridium perfringens was the organism which suffered the higher removal by the treatment system. The results can be considered satisfactory for the physicochemical variables, taking into account the simplicity of the system, besides that, it is necessary a post-treatment to improve the microbiological quality of the final effluent.

Keywords: dissolved air flotation, municipal sewage, UASB reactor, treatment

Procedia PDF Downloads 331
13121 Physico-Chemical and Phytoplankton Analyses of Kazaure Dam, Jigawa State, Nigeria

Authors: Aminu Musa Muhammad, Muhammad Kabiru Abubakar

Abstract:

Monthly changes in Phytoplankton periodicity, nutrient levels, temperature, pH, suspended solids, dissolved solids, conductivity, dissolved oxygen and biochemical oxygen demand of Kazaure Dam, Jigawa State, Nigeria were studied for a period of six months (July-Dec.-2011). Physico-chemical result showed that temperature and pH ranged between17-25˚C and 5.5-7.5, while dissolved solids and suspended solids ranged between 95-155 mg/L and 0.13-112 mg/L respectively. Dissolved oxygen (DO), Biochemical oxygen demand (BOD), Chemical oxygen demand (COD), conductivity, nitrate, phosphate and sulphate ion concentrations were within the ranges of 3.5-3.6 mg/L, 4.8-7.2 mg/L, 8.10-12.30 mg/L, 21-58µΩ/cm, 0.2-8.1 mg/L, 2.4-18.1 mg/L, and 1.22-15.60 mg/L respectively. A total of 4514 Org/L phytoplankton were recorded, of which four classes of algae were identified. These comprised of Chlorophyta (44.1%), Cyanophyta(30.62%), Bacillariophyta(3.2%), Euglenophyta (32.1%). Descriptive statistics of the result showed that phytoplankton count varied with variation of physico-chemical parameters at 5% level during the study period. The abundance and distribution of the algae varied with the variation in the physico-chemical parameters. Pearson correlation showed that temperature and nutrients were significantly correlated with phytoplankton, while DO, sulphate and pH were insignificantly correlated, while there was no significant correlation with COD and phytoplankton.

Keywords: correlation, phytoplankton, physico chemical, kazaure dam

Procedia PDF Downloads 571
13120 Three-Stage Anaerobic Co-digestion of High-Solids Food Waste and Horse Manure

Authors: Kai-Chee Loh, Jingxin Zhang, Yen-Wah Tong

Abstract:

Hydrolysis and acidogenesis are the rate-controlling steps in an anaerobic digestion (AD) process. Considering that the optimum conditions for each stage can be diverse diverse, the development of a multi-stage AD system is likely to the AD efficiency through individual optimization. In this research, we developed a highly integrate three-stage anaerobic digester (HM3) to combine the advantages of dry AD and wet AD for anaerobic co-digestion of food waste and horse manure. The digester design comprised mainly of three chambers - high-solids hydrolysis, high-solids acidogenesis and wet methanogensis. Through comparing the treatment performance with other two control digesters, HM3 presented 11.2 ~22.7% higher methane yield. The improved methane yield was mainly attributed to the functionalized partitioning in the integrated digester, which significantly accelerated the solubilization of solid organic matters and the formation of organic acids, as well as ammonia in the high-solids hydrolytic and acidogenic stage respectively. Additionally, HM3 also showed the highest volatile solids reduction rate among the three digesters. Real-time PCR and pyrosequencing analysis indicated that the abundance and biodiversity of microorganisms including bacteria and archaea in HM3 was much higher than that in the control reactors.

Keywords: anaerobic digestion, high-solids, food waste and horse manure, microbial community

Procedia PDF Downloads 414
13119 Water Quality Assessment of Owu Falls for Water Use Classification

Authors: Modupe O. Jimoh

Abstract:

Waterfalls create an ambient environment for tourism and relaxation. They are also potential sources for water supply. Owu waterfall located at Isin Local Government, Kwara state, Nigeria is the highest waterfall in the West African region, yet none of its potential usefulness has been fully exploited. Water samples were taken from two sections of the fall and were analyzed for various water quality parameters. The results obtained include pH (6.71 ± 0.1), Biochemical oxygen demand (4.2 ± 0.5 mg/l), Chemical oxygen demand (3.07 ± 0.01 mg/l), Dissolved oxygen (6.59 ± 0.6 mg/l), Turbidity (4.43 ± 0.11 NTU), Total dissolved solids (8.2 ± 0.09 mg/l), Total suspended solids (18.25 ± 0.5 mg/l), Chloride ion (0.48 ± 0.08 mg/l), Calcium ion (0.82 ± 0.02 mg/l)), Magnesium ion (0.63 ± 0.03 mg/l) and Nitrate ion (1.25 ± 0.01 mg/l). The results were compared to the World Health Organisations standard for drinking water and the Nigerian standard for drinking water. From the comparison, it can be deduced that due to the Biochemical oxygen demand value, the water is not suitable for drinking unless it undergoes treatment. However, it is suitable for other classes of water usage.

Keywords: Owu falls, waterfall, water quality, water quality parameters, water use

Procedia PDF Downloads 179
13118 Valorization of Mineralogical Byproduct TiO₂ Using Photocatalytic Degradation of Organo-Sulfur Industrial Effluent

Authors: Harish Kuruva, Vedasri Bai Khavala, Tiju Thomas, K. Murugan, B. S. Murty

Abstract:

Industries are growing day to day to increase the economy of the country. The biggest problem with industries is wastewater treatment. Releasing these wastewater directly into the river is more harmful to human life and a threat to aquatic life. These industrial effluents contain many dissolved solids, organic/inorganic compounds, salts, toxic metals, etc. Phenols, pesticides, dioxins, herbicides, pharmaceuticals, and textile dyes were the types of industrial effluents and more challenging to degrade eco-friendly. So many advanced techniques like electrochemical, oxidation process, and valorization have been applied for industrial wastewater treatment, but these are not cost-effective. Industrial effluent degradation is complicated compared to commercially available pollutants (dyes) like methylene blue, methylene orange, rhodamine B, etc. TiO₂ is one of the widely used photocatalysts which can degrade organic compounds using solar light and moisture available in the environment (organic compounds converted to CO₂ and H₂O). TiO₂ is widely studied in photocatalysis because of its low cost, non-toxic, high availability, and chemically and physically stable in the atmosphere. This study mainly focused on valorizing the mineralogical product TiO₂ (IREL, India). This mineralogical graded TiO₂ was characterized and compared with its structural and photocatalytic properties (industrial effluent degradation) with the commercially available Degussa P-25 TiO₂. It was testified that this mineralogical TiO₂ has the best photocatalytic properties (particle shape - spherical, size - 30±5 nm, surface area - 98.19 m²/g, bandgap - 3.2 eV, phase - 95% anatase, and 5% rutile). The industrial effluent was characterized by TDS (total dissolved solids), ICP-OES (inductively coupled plasma – optical emission spectroscopy), CHNS (Carbon, Hydrogen, Nitrogen, and sulfur) analyzer, and FT-IR (fourier-transform infrared spectroscopy). It was observed that it contains high sulfur (S=11.37±0.15%), organic compounds (C=4±0.1%, H=70.25±0.1%, N=10±0.1%), heavy metals, and other dissolved solids (60 g/L). However, the organo-sulfur industrial effluent was degraded by photocatalysis with the industrial mineralogical product TiO₂. In this study, the industrial effluent pH value (2.5 to 10), catalyst concentration (50 to 150 mg) were varied, and effluent concentration (0.5 Abs) and light exposure time (2 h) were maintained constant. The best degradation is about 80% of industrial effluent was achieved at pH 5 with a concentration of 150 mg - TiO₂. The FT-IR results and CHNS analyzer confirmed that the sulfur and organic compounds were degraded.

Keywords: wastewater treatment, industrial mineralogical product TiO₂, photocatalysis, organo-sulfur industrial effluent

Procedia PDF Downloads 116
13117 Spatial Variation of Trace Elements in Suspended Sediments from Urban River

Authors: Daniel Macedo Neto, Sandro Froehner, Juan Sanez

Abstract:

Suspended sediments (SS) are an environmental constituent able to represent the effects of land use changes on watersheds. One important consideration of land use change is its implication on trace element loading. Water bodies have the capacity to retain trace elements. Spatial variation in trace elements concentrations can be associated with land occupation and sources of pollution. In this work, the spatial variation of trace elements in suspended sediments from an urban river was assessed. Time-integrated fluvial suspended sediment samples were installed in three different sites of Barigui River. The suspend solids were collected every 30 days, from May 2015 to August 2015 (total samples 12). Site P1 covers 44 km2 drainage area and has low land occupation, whilst P2 cover an area of 87 km2 and it is totally urban as P3, which area is higher than 130 km2. Trace elements (As, Cd, Cr, P, Pb and Zn) were analysed by ICP-ES. All elements analyzed showed a similar pattern, i.e., the concentration raise with the urbanization, exception for As (P1=7.75; P2=5.75; P3=5.60mg/kg). There was increase in concentration for Cd (P1=0.75; P2=0.78; P3=1.45mg/kg), Cr (P1=59.50; P2=101.75; P3=102.00 mg/kg), Zn (P1=142.25; P2=152.50; P3=223.00mg/kg), P (P1=937.50; P2=1,545.00; P3=2,355.00 mg/kg) and for Pb (P1=31.25; P2=32.75; P3=39.17±2.56 mg/kg). The variation in concentrations were as follow -27.74% (As), +93.33% (Cd), +71.43% (Cr), +151.20% (P), +25.33% (Pb) e +56.77% (Zn). Cd, Cr, P, Pb and Zn presented a clear trend of increasing the concentration from upstream to downstream. Such variation is more notorious for P, Cd and Cr, possibly due the urbanization.

Keywords: trace elements, erosion, urbanization, suspended sediments

Procedia PDF Downloads 313
13116 Treatment of Oil Recovery Water Using Direct and Indirect Electrochemical Oxidation

Authors: Tareg Omar Mansour, Khaled Omar Elhaji

Abstract:

Model solutions of pentanol in the salt water of various concentrations were subjected to electrochemical oxidation using a dimensionally stable anode (DSA) and a platinised titanium cathode. The removal of pentanol was analysed over time using gas chromatography (GC) and by monitoring the total organic carbon (TOC) concentration of the reaction mixture. It was found that the removal of pentanol occurred more efficiently at higher salinities and higher applied electrical current values. When using a salt concentration of 20,000 ppm and an applied current of 100 mA there was a decrease in concentration of pentanol of 15 %. When the salt concentration and applied current were increased to 58,000 ppm and 500 mA respectively, the decrease in concentration was improved to 64 %.

Keywords: dimensionally stable anode (DSA), total organic hydrocarbon (TOC), gas chromatography mass spectrometry (GCMS), electrochemical oxidation

Procedia PDF Downloads 383
13115 A Comprehensive Study on Freshwater Aquatic Life Health Quality Assessment Using Physicochemical Parameters and Planktons as Bio Indicator in a Selected Region of Mahaweli River in Kandy District, Sri Lanka

Authors: S. M. D. Y. S. A. Wijayarathna, A. C. A. Jayasundera

Abstract:

Mahaweli River is the longest and largest river in Sri Lanka and it is the major drinking water source for a large portion of 2.5 million inhabitants in the Central Province. The aim of this study was to the determination of water quality and aquatic life health quality in a selected region of Mahaweli River. Six sampling locations (Site 1: 7° 16' 50" N, 80° 40' 00" E; Site 2: 7° 16' 34" N, 80° 40' 27" E; Site 3: 7° 16' 15" N, 80° 41' 28" E; Site 4: 7° 14' 06" N, 80° 44' 36" E; Site 5: 7° 14' 18" N, 80° 44' 39" E; Site 6: 7° 13' 32" N, 80° 46' 11" E) with various anthropogenic activities at bank of the river were selected for a period of three months from Tennekumbura Bridge to Victoria Reservoir. Temperature, pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Dissolved Oxygen (DO), 5-day Biological Oxygen Demand (BOD5), Total Suspended Solids (TSS), hardness, the concentration of anions, and metal concentration were measured according to the standard methods, as physicochemical parameters. Planktons were considered as biological parameters. Using a plankton net (20 µm mesh size), surface water samples were collected into acid washed dried vials and were stored in an ice box during transportation. Diversity and abundance of planktons were identified within 4 days of sample collection using standard manuals of plankton identification under the light microscope. Almost all the measured physicochemical parameters were within the CEA standards limits for aquatic life, Sri Lanka Standards (SLS) or World Health Organization’s Guideline for drinking water. Concentration of orthophosphate ranged between 0.232 to 0.708 mg L-1, and it has exceeded the standard limit of aquatic life according to CEA guidelines (0.400 mg L-1) at Site 1 and Site 2, where there is high disturbance by cultivations and close households. According to the Pearson correlation (significant correlation at p < 0.05), it is obvious that some physicochemical parameters (temperature, DO, TDS, TSS, phosphate, sulphate, chloride fluoride, and sodium) were significantly correlated to the distribution of some plankton species such as Aulocoseira, Navicula, Synedra, Pediastrum, Fragilaria, Selenastrum, Oscillataria, Tribonema and Microcystis. Furthermore, species that appear in blooms (Aulocoseira), organic pollutants (Navicula), and phosphate high eutrophic water (Microcystis) were found, indicating deteriorated water quality in Mahaweli River due to agricultural activities, solid waste disposal, and release of domestic effluents. Therefore, it is necessary to improve environmental monitoring and management to control the further deterioration of water quality of the river.

Keywords: bio indicator, environmental variables, planktons, physicochemical parameters, water quality

Procedia PDF Downloads 106
13114 Treatment of Industrial Effluents by Using Polyethersulfone/Chitosan Membrane Derived from Fishery Waste

Authors: Suneeta Kumari, Abanti Sahoo

Abstract:

Industrial effluents treatment is a major problem in the world. All wastewater treatment methods have some problems in the environment. Due to this reason, today many natural biopolymers are being used in the waste water treatment because those are safe for our environment. In this study, synthesis and characterization of polyethersulfone/chitosan membranes (Thin film composite membrane) are carried out. Fish scales are used as raw materials. Different characterization techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM) and Thermal gravimetric analysis (TGA) are analysed for the synthesized membrane. The performance of membranes such as flux, rejection, and pore size are also checked. The synthesized membrane is used for the treatment of steel industry waste water where Biochemical oxygen demand (BOD), Chemical Oxygen Demand (COD), pH, colour, Total dissolved solids (TDS), Total suspended solids (TSS), Electrical conductivity (EC) and Turbidity aspects are analysed.

Keywords: fish scale, membrane synthesis, treatment of industrial effluents, chitosan

Procedia PDF Downloads 321
13113 Optimisation of Extraction of Phenolic Compounds in Algerian Lavandula multifida, Algeria, NW

Authors: Mustapha Mahmoud Dif, Fouzia Benali-Toumi, Mohamed Benyahia, Sofiane Bouazza, Abbes Dellal, Slimane Baha

Abstract:

L. multifida is applied to treat rheumatism and cold and has hypoglycemic and anti-inflammatory properties. The present study is to optimize the extraction of phenolic compounds in Algerian Lavandula multifida. The influences of parameters including temperature (decoction and maceration) and extraction time (15min to 45 min) on the flavonoids concentration are studied. The optimal conditions are determined and the quadratic response surfaces draw from the mathematical models. Total phenols were evaluated using Folin sicaltieu methods, total flavonoids were estimated using the Tri chloral aluminum method. The maximum concentration extracted, for total flavonoids, equal to 0.043 mg/g was achieved with decoction and extraction time of 41.55 min. However, for total phenol compounds highest concentration of 0.218 mg/g, is obtained with 45 min at 49.99°C.

Keywords: L multifidi, phenolic content, optimization, time, temperature

Procedia PDF Downloads 420
13112 Factors Influencing Milk Yield, Quality, and Revenue of Dairy Farms in Southern Vietnam

Authors: Ngoc-Hieu Vu

Abstract:

Dairy production in Vietnam is a relatively new agricultural activity and milk production increased remarkably in recent years. Smallholders are still the main drivers for this development, especially in the southern part of the country. However, information on the farming practices is very limited. Therefore, this study aimed to determine factors influencing milk yield and quality (milk fat, total solids, solids-not-fat, total number of bacteria, and somatic cell count) and revenue of dairy farms in Southern Vietnam. The collection of data was at the farm level; individual animal records were unavailable. The 539 studied farms were located in the provinces Lam Dong (N=111 farms), Binh Duong (N=69 farms), Long An (N=174 farms), and Ho Chi Minh city (N=185 farms). The dataset included 9221 monthly test-day records of the farms from January 2013 to May 2015. Seasons were defined as rainy and dry. Farms sizes were classified as small (< 10 milking cows), medium (10 to 19 milking cows) and large (≥ 20 milking cows). The model for each trait contained year-season and farm region-farm size as subclass fixed effects, and individual farm and residual as random effects. Results showed that year-season, region, and farm size were determining sources of variation affecting all studied traits. Milk yield was higher in dry than in rainy seasons (P < 0.05), while it tended to increase from years 2013 to 2015. Large farms had higher yields (445.6 kg/cow) than small (396.7 kg/cow) and medium (428.0 kg/cow) farms (P < 0.05). Small farms, in contrast, were superior to large farms in terms of milk fat, total solids, solids-not-fat, total number of bacteria, and somatic cell count than large farms (P < 0.05). Revenue per cow was higher in large compared with medium and small farms. In conclusion, large farms achieved higher milk yields and revenues per cow, while small farms were superior in milk quality. Overall, milk yields were low and better training, financial support and marketing opportunities for farmers are needed to improve dairy production and increase farm revenues in Southern Vietnam.

Keywords: farm size, milk yield and quality, season, Southern Vietnam

Procedia PDF Downloads 361
13111 Physicochemical and Bacteriological Assessment of Water Resources in Ughelli and Its Environs, Delta State Nigeria

Authors: M. O. Eyankware, D. O. Ufomata

Abstract:

Groundwater samples were collected from Otovwodo-Ughelli and Environ with the aim of assessing groundwater quality of the area. Twenty (20) water samples from Boreholes (BH) (six) and Hand Dug Wells (HDW) (fourteen) were randomly sampled and were analysed for different physiochemical and bacteriological parameters. The following 16 parameters have been considered viz: pH, electrical conductivity, temperature, total hardness, total dissolved solids, dissolved oxygen, biological oxygen demand, phosphate, sulphate, chloride, nitrate, calcium, sodium, chloride, magnesium, and total suspended solids. On comparing the results against drinking quality standards laid by World Health Organization and Nigeria industrial standard, it was found that the water quality parameters were not above the (WHO, 2011 and NIS, 2007) permissible limit. Microbial analysis reveals the presence of coliform and E.coli in two hand-dug well (HDW7 and 13) and one borehole well (BH20). These contaminations are perhaps traceable to have originated from human activities (septic tanks, latrines, dumpsites) and have affected the quality of groundwater in Otovwodo-Ughelli. From the piper trilinear diagram, the dominant ionic species is alkali bicarbonate water type, with bicarbonate as the predominant ion (Na+ + K+)-HCO3.

Keywords: groundwater, surface water, Ughelli, Nigeria industrial standard, who standard

Procedia PDF Downloads 444