Search results for: technology monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9998

Search results for: technology monitoring

9968 Microseismics: Application in Hydrocarbon Reservoir Management

Authors: Rahul Kumar Singh, Apurva Sharma, Dilip Kumar Srivastava

Abstract:

Tilting of our interest towards unconventional exploitation of hydrocarbons has raised a serious concern to environmentalists. Emerging technologies like horizontal/multi-lateral drilling with subsequent hydraulic fracturing or fracking etc., for exploitation of different conventional/unconventional hydrocarbon reservoirs, are related to creating micro-level seismic events below the surface of the earth. Monitoring of these micro-level seismic events is not possible by the conventional methodology of the seismic method. So, to tackle this issue, a new technology that is microseismic is very much in discussions around the globe. Multiple researches are being carried out these days around the globe in order to prove microseismic as a new essential in the E & P industry, especially for unconventional reservoir management. Microseismic monitoring is now used for reservoir surveillance, and the best application is checking the integrity of the caprock and containment of fluid in it. In general, in whatever terms we want to use micro-seismic related events monitoring and understanding the effectiveness of stimulation, this technology offers a lot of value in terms of insight into the subsurface characteristics and processes, and this makes it really a good geophysical method to be used in future.

Keywords: microseismic, monitoring, hydraulic fracturing or fracking, reservoir surveillance, seismic hazards

Procedia PDF Downloads 157
9967 Scooping Review Towards Different Use of Monitoring Technology Devices in Caring with Older Adults with Cognitive Impairment: A Model for Nursing Care Management

Authors: Hind Mohammed A. Asiri, Asia Mohammed Asiri, Hana Falah Alruwaili, Joseph Almazan

Abstract:

With the rapid growth of the older adult population, an underlying growth of public health concern is also seen. Various technologies were developed to help mitigate the arising problems of older adults with cognitive impairment and the improvement of their cognitive functions. This scooping review used the Joanna Briggs Institute (JBI) and the PRISMA extension for scoping reviews. The eligibility criteria were defined using the Population, Concept, Context (PCC) framework, as described in the JBI’s Reviewers Manual (Peters et al.,2020). The population of interest for this review is older adults 65 years old or older. Studies involving monitoring technology devices utilized in caring with older adult with cognitive impairment. This scoping review has shown information that researchers are more focused on creating alternative and novel methods or technological devices and use these as a tool for designing interventions depending on the data of the patient. This study has shown the type of technologies that have been explored in terms of assessing, detecting, monitoring, and interventions for cognitive impairment. Thus, there is a need for this technology to be applied in the practical field to further strengthen the evidence that it could enhance the lives of older adults.

Keywords: technology devices, cognitive impairment, older adult, nursing care, caring

Procedia PDF Downloads 88
9966 Cloud Monitoring and Performance Optimization Ensuring High Availability

Authors: Inayat Ur Rehman, Georgia Sakellari

Abstract:

Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.

Keywords: cloud computing, cloud monitoring, performance optimization, high availability, scalability, resource allocation, load balancing, auto-scaling, data security, data privacy

Procedia PDF Downloads 29
9965 Livestock Activity Monitoring Using Movement Rate Based on Subtract Image

Authors: Keunho Park, Sunghwan Jeong

Abstract:

The 4th Industrial Revolution, the next-generation industrial revolution, which is made up of convergence of information and communication technology (ICT), is no exception to the livestock industry, and various studies are being conducted to apply the livestock smart farm. In order to monitor livestock using sensors, it is necessary to drill holes in the organs such as the nose, ears, and even the stomach of the livestock to wear or insert the sensor into the livestock. This increases the stress of livestock, which in turn lowers the quality of livestock products or raises the issue of animal ethics, which has become a major issue in recent years. In this paper, we conducted a study to monitor livestock activity based on vision technology, effectively monitoring livestock activity without increasing animal stress and violating animal ethics. The movement rate was calculated based on the difference images between the frames, and the livestock activity was evaluated. As a result, the average F1-score was 96.67.

Keywords: barn monitoring, livestock, machine vision, smart farm

Procedia PDF Downloads 98
9964 A Survey on a Critical Infrastructure Monitoring Using Wireless Sensor Networks

Authors: Khelifa Benahmed, Tarek Benahmed

Abstract:

There are diverse applications of wireless sensor networks (WSNs) in the real world, typically invoking some kind of monitoring, tracking, or controlling activities. In an application, a WSN is deployed over the area of interest to sense and detect the events and collect data through their sensors in a geographical area and transmit the collected data to a Base Station (BS). This paper presents an overview of the research solutions available in the field of environmental monitoring applications, more precisely the problems of critical area monitoring using wireless sensor networks.

Keywords: critical infrastructure monitoring, environment monitoring, event region detection, wireless sensor networks

Procedia PDF Downloads 317
9963 Monitoring and Analysis of Bridge Crossing Ground Fissures

Authors: Zhiqing Zhang, Xiangong Zhou, Zihan Zhou

Abstract:

Ground fissures can be seen in some cities all over the world. As a special urban geological disaster, ground fissures in Xi'an have caused great harm to infrastructure. Chang'an Road Interchange in Xi'an City is a bridge across ground fissures. The damage to Chang'an Road interchange is the most serious and typical. To study the influence of ground fissures on the bridge, we established a bridge monitoring system. The main monitoring items include elevation monitoring, structural displacement monitoring, etc. The monitoring results show that the typical failure is mainly reflected in the bridge deck damage caused by horizontal tension and vertical dislocation. For the construction of urban interchange spanning ground fissures, the interchange should be divided reasonably, a simple support structure with less restriction should be adopted, and the monitoring of supports should be strengthened to prevent the occurrence of beam falling.

Keywords: bridge monitoring, ground fissures, typical disease, structural displacement

Procedia PDF Downloads 181
9962 Electronic Tongue as an Innovative Non-Destructive Tool for the Quality Monitoring of Fruits

Authors: Mahdi Ghasemi-Varnamkhasti, Ayat Mohammad-Razdari, Seyedeh-Hoda Yoosefian

Abstract:

Taste is an important sensory property governing acceptance of products for administration through mouth. The advent of artificial sensorial systems as non-destructive tools able to mimic chemical senses such as those known as electronic tongue (ET) has open a variety of practical applications and new possibilities in many fields where the presence of taste is the phenomenon under control. In recent years, electronic tongue technology opened the possibility to exploit information on taste attributes of fruits providing real time information about quality and ripeness. Electronic tongue systems have received considerable attention in the field of sensor technology during the last two decade because of numerous applications in diverse fields of applied sciences. This paper deals with some facets of this technology in the quality monitoring of fruits along with more recent its applications.

Keywords: fruit, electronic tongue, non-destructive, taste machine, horticultural

Procedia PDF Downloads 232
9961 Ensuring Safe Operation by Providing an End-To-End Field Monitoring and Incident Management Approach for Autonomous Vehicle Based on ML/Dl SW Stack

Authors: Lucas Bublitz, Michael Herdrich

Abstract:

By achieving the first commercialization approval in San Francisco the Autonomous Driving (AD) industry proves the technology maturity of the SAE L4 AD systems and the corresponding software and hardware stack. This milestone reflects the upcoming phase in the industry, where the focus is now about scaling and supervising larger autonomous vehicle (AV) fleets in different operation areas. This requires an operation framework, which organizes and assigns responsibilities to the relevant AV technology and operation stakeholders from the AV system provider, the Remote Intervention Operator, the MaaS provider and regulatory & approval authority. This holistic operation framework consists of technological, processual, and organizational activities to ensure safe operation for fully automated vehicles. Regarding the supervision of large autonomous vehicle fleets, a major focus is on the continuous field monitoring. The field monitoring approach must reflect the safety and security criticality of incidents in the field during driving operation. This includes an automatic containment approach, with the overall goal to avoid safety critical incidents and reduce downtime by a malfunction of the AD software stack. An End-to-end (E2E) field monitoring approach detects critical faults in the field, uses a knowledge-based approach for evaluating the safety criticality and supports the automatic containment of these E/E faults. Applying such an approach will ensure the scalability of AV fleets, which is determined by the handling of incidents in the field and the continuous regulatory compliance of the technology after enhancing the Operational Design Domain (ODD) or the function scope by Functions on Demand (FoD) over the entire digital product lifecycle.

Keywords: field monitoring, incident management, multicompliance management for AI in AD, root cause analysis, database approach

Procedia PDF Downloads 41
9960 Data-Mining Approach to Analyzing Industrial Process Information for Real-Time Monitoring

Authors: Seung-Lock Seo

Abstract:

This work presents a data-mining empirical monitoring scheme for industrial processes with partially unbalanced data. Measurement data of good operations are relatively easy to gather, but in unusual special events or faults it is generally difficult to collect process information or almost impossible to analyze some noisy data of industrial processes. At this time some noise filtering techniques can be used to enhance process monitoring performance in a real-time basis. In addition, pre-processing of raw process data is helpful to eliminate unwanted variation of industrial process data. In this work, the performance of various monitoring schemes was tested and demonstrated for discrete batch process data. It showed that the monitoring performance was improved significantly in terms of monitoring success rate of given process faults.

Keywords: data mining, process data, monitoring, safety, industrial processes

Procedia PDF Downloads 369
9959 Satellite Technology Usage for Greenhouse Gas Emissions Monitoring and Verification: Policy Considerations for an International System

Authors: Timiebi Aganaba-Jeanty

Abstract:

Accurate and transparent monitoring, reporting and verification of Greenhouse Gas (GHG) emissions and removals is a requirement of the United Nations Framework Convention on Climate Change (UNFCCC). Several countries are obligated to prepare and submit an annual national greenhouse gas inventory covering anthropogenic emissions by sources and removals by sinks, subject to a review conducted by an international team of experts. However, the process is not without flaws. The self-reporting varies enormously in thoroughness, frequency and accuracy including inconsistency in the way such reporting occurs. The world’s space agencies are calling for a new generation of satellites that would be precise enough to map greenhouse gas emissions from individual nations. The plan is delicate politically because the global system could verify or cast doubt on emission reports from the member states of the UNFCCC. A level playing field is required and an idea that an international system should be perceived as an instrument to facilitate fairness and equality rather than to spy on or punish. This change of perspective is required to get buy in for an international verification system. The research proposes the viability of a satellite system that provides independent access to data regarding greenhouse gas emissions and the policy and governance implications of its potential use as a monitoring and verification system for the Paris Agreement. It assesses the foundations of the reporting monitoring and verification system as proposed in Paris and analyzes this in light of a proposed satellite system. The use of remote sensing technology has been debated for verification purposes and as evidence in courts but this is not without controversy. Lessons can be learned from its use in this context.

Keywords: greenhouse gas emissions, reporting, monitoring and verification, satellite, UNFCCC

Procedia PDF Downloads 263
9958 Using Multiple Strategies to Improve the Nursing Staff Edwards Lifesciences Hemodynamic Monitoring Correctness of Operation

Authors: Hsin-Yi Lo, Huang-Ju Jiun, Yu-Chiao Chu

Abstract:

Hemodynamic monitoring is an important in the intensive care unit. Advances in medical technology in recent years, more diversification of intensive care equipment, there are many kinds of instruments available for monitoring of hemodynamics, Edwards Lifesciences Hemodynamic Monitoring (FloTrac) is one of them. The recent medical safety incidents in parameters were changed, nurses have not to notify doctor in time, therefore, it is hoped to analyze the current problems and find effective improvement strategies. In August 2021, the survey found that only 74.0% of FloTrac correctness of operation, reasons include lack of education, the operation manual is difficulty read, lack of audit mechanism, nurse doesn't know those numerical changes need to notify doctor, work busy omission, unfamiliar with operation and have many nursing records then omissions. Improvement methods include planning professional nurse education, formulate the secret arts of FloTrac, enacting an audit mechanism, establish FloTrac action learning, make「follow the sun」care map, hold simulated training and establish monitoring data automatically upload nursing records. After improvement, FloTrac correctness of operation increased to 98.8%. The results are good, implement to the ICU of the hospital.

Keywords: hemodynamic monitoring, edwards lifesciences hemodynamic monitoring, multiple strategies, intensive care

Procedia PDF Downloads 52
9957 Development, Testing, and Application of a Low-Cost Technology Sulphur Dioxide Monitor as a Tool for use in a Volcanic Emissions Monitoring Network

Authors: Viveka Jackson, Erouscilla Joseph, Denise Beckles, Thomas Christopher

Abstract:

Sulphur Dioxide (SO2) has been defined as a non-flammable, non-explosive, colourless gas, having a pungent, irritating odour, and is one of the main gases emitted from volcanoes. Sulphur dioxide has been recorded in concentrations hazardous to humans (0.25 – 0.5 ppm (~650 – 1300 μg/m3), downwind of many volcanoes and hence warrants constant air-quality monitoring around these sites. It has been linked to an increase in chronic respiratory disease attributed to long-term exposures and alteration in lung and other physiological functions attributed to short-term exposures. Sulphur Springs in Saint Lucia is a highly active geothermal area, located within the Soufrière Volcanic Centre, and is a park widely visited by tourists and locals. It is also a current source of continuous volcanic emissions via its many fumaroles and bubbling pools, warranting concern by residents and visitors to the park regarding the effects of exposure to these gases. In this study, we introduce a novel SO2 measurement system for the monitoring and quantification of ambient levels of airborne volcanic SO2 using low-cost technology. This work involves the extensive production of low-cost SO2 monitors/samplers, as well as field examination in tandem with standard commercial samplers (SO2 diffusion tubes). It also incorporates community involvement in the volcanic monitoring process as non-professional users of the instrument. We intend to present the preliminary monitoring results obtained from the low-cost samplers, to identify the areas in the Park exposed to high concentrations of ambient SO2, and to assess the feasibility of the instrument for non-professional use and application in volcanic settings

Keywords: ambient SO2, community-based monitoring, risk-reduction, sulphur springs, low-cost

Procedia PDF Downloads 443
9956 On-Site Management from Reactive to Proactive

Authors: Yu-Tzu Chen, Luh-Maan Chang

Abstract:

Construction is an inherently risky industry. The projects have been dominated by reactive actions owing to non-routine in nature. The on-site activities are especially crucial for successful project control. In order to alter actions from reactive to proactive, this paper presents an on-site data collection system utilizing advanced technology RFID and GPS in assisting on-site management with near real time progress monitoring.

Keywords: On-Site management, progress monitoring, RFID, GPS

Procedia PDF Downloads 535
9955 Off-Line Detection of "Pannon Wheat" Milling Fractions by Near-Infrared Spectroscopic Methods

Authors: E. Izsó, M. Bartalné-Berceli, Sz. Gergely, A. Salgó

Abstract:

The aims of this investigation is to elaborate near-infrared methods for testing and recognition of chemical components and quality in “Pannon wheat” allied (i.e. true to variety or variety identified) milling fractions as well as to develop spectroscopic methods following the milling processes and evaluate the stability of the milling technology by different types of milling products and according to sampling times, respectively. This wheat categories produced under industrial conditions where samples were collected versus sampling time and maximum or minimum yields. The changes of the main chemical components (such as starch, protein, lipid) and physical properties of fractions (particle size) were analysed by dispersive spectrophotometers using visible (VIS) and near-infrared (NIR) regions of the electromagnetic radiation. Close correlation were obtained between the data of spectroscopic measurement techniques processed by various chemometric methods (e.g. principal component analysis (PCA), cluster analysis (CA) and operation condition of milling technology. Its obvious that NIR methods are able to detect the deviation of the yield parameters and differences of the sampling times by a wide variety of fractions, respectively. NIR technology can be used in the sensitive monitoring of milling technology.

Keywords: near infrared spectroscopy, wheat categories, milling process, monitoring

Procedia PDF Downloads 386
9954 A Multi-Agent Intelligent System for Monitoring Health Conditions of Elderly People

Authors: Ayman M. Mansour

Abstract:

In this paper, we propose a multi-agent intelligent system that is used for monitoring the health conditions of elderly people. Monitoring the health condition of elderly people is a complex problem that involves different medical units and requires continuous monitoring. Such expert system is highly needed in rural areas because of inadequate number of available specialized physicians or nurses. Such monitoring must have autonomous interactions between these medical units in order to be effective. A multi-agent system is formed by a community of agents that exchange information and proactively help one another to achieve the goal of elderly monitoring. The agents in the developed system are equipped with intelligent decision maker that arms them with the rule-based reasoning capability that can assist the physicians in making decisions regarding the medical condition of elderly people.

Keywords: fuzzy logic, inference system, monitoring system, multi-agent system

Procedia PDF Downloads 573
9953 Geoinformation Technology of Agricultural Monitoring Using Multi-Temporal Satellite Imagery

Authors: Olena Kavats, Dmitry Khramov, Kateryna Sergieieva, Vladimir Vasyliev, Iurii Kavats

Abstract:

Geoinformation technologies of space agromonitoring are a means of operative decision making support in the tasks of managing the agricultural sector of the economy. Existing technologies use satellite images in the optical range of electromagnetic spectrum. Time series of optical images often contain gaps due to the presence of clouds and haze. A geoinformation technology is created. It allows to fill gaps in time series of optical images (Sentinel-2, Landsat-8, PROBA-V, MODIS) with radar survey data (Sentinel-1) and use information about agrometeorological conditions of the growing season for individual monitoring years. The technology allows to perform crop classification and mapping for spring-summer (winter and spring crops) and autumn-winter (winter crops) periods of vegetation, monitoring the dynamics of crop state seasonal changes, crop yield forecasting. Crop classification is based on supervised classification algorithms, takes into account the peculiarities of crop growth at different vegetation stages (dates of sowing, emergence, active vegetation, and harvesting) and agriculture land state characteristics (row spacing, seedling density, etc.). A catalog of samples of the main agricultural crops (Ukraine) is created and crop spectral signatures are calculated with the preliminary removal of row spacing, cloud cover, and cloud shadows in order to construct time series of crop growth characteristics. The obtained data is used in grain crop growth tracking and in timely detection of growth trends deviations from reference samples of a given crop for a selected date. Statistical models of crop yield forecast are created in the forms of linear and nonlinear interconnections between crop yield indicators and crop state characteristics (temperature, precipitation, vegetation indices, etc.). Predicted values of grain crop yield are evaluated with an accuracy up to 95%. The developed technology was used for agricultural areas monitoring in a number of Great Britain and Ukraine regions using EOS Crop Monitoring Platform (https://crop-monitoring.eos.com). The obtained results allow to conclude that joint use of Sentinel-1 and Sentinel-2 images improve separation of winter crops (rapeseed, wheat, barley) in the early stages of vegetation (October-December). It allows to separate successfully the soybean, corn, and sunflower sowing areas that are quite similar in their spectral characteristics.

Keywords: geoinformation technology, crop classification, crop yield prediction, agricultural monitoring, EOS Crop Monitoring Platform

Procedia PDF Downloads 402
9952 Using Wearable Technology to Monitor Workers’ Stress for Construction Safety: A Conceptual Framework

Authors: Namhun Lee, Seong Jin Kim

Abstract:

The construction industry represents one of the largest industries in the United States, yet it continues to face several occupational health and safety challenges. Many workers on construction sites are suffering from extended exposure to stressful situations such as poor and hazardous work environments and task complexity. Stress can be commonly defined as a feeling of emotional or physical tension, which can easily impact construction safety and result in a higher rate of job-related injuries in the construction industry. Physiological signals transmitted from wearable biosensors can be used to detect excessive stress. Therefore, workers’ stress should be detected and mitigated to prevent any type of serious incident or accident proactively. By doing this, construction productivity, as well as job satisfaction, would also be improved in the construction industry. To establish a foundation in this field of research, a conceptual framework for using wearable technology for construction safety has been developed for continuous and automatic monitoring of worker’s stress. The conceptual framework will serve as a foothold in future studies on the application of wearable technology for construction safety.

Keywords: construction safety, occupational stress, stress monitoring, wearable biosensors

Procedia PDF Downloads 123
9951 Analysis of Energy Flows as An Approach for The Formation of Monitoring System in the Sustainable Regional Development

Authors: Inese Trusina, Elita Jermolajeva

Abstract:

Global challenges require a transition from the existing linear economic model to a model that will consider nature as a life support system for the developmenton the way to social well-being in the frame of the ecological economics paradigm. The article presentsbasic definitions for the development of formalized description of sustainabledevelopment monitoring. It provides examples of calculating the parameters of monitoring for the Baltic Sea region countries and their primary interpretation.

Keywords: sustainability, development, power, ecological economics, regional economic, monitoring

Procedia PDF Downloads 93
9950 Efficacy of Educational Program on the Performance of Internship Nursing Students Regarding Electronic Fetal Monitoring

Authors: Aida Abd El-Razek, Alyaa Salman Madian, Gamila Gaber Ayoub

Abstract:

Background: Electronic fetal monitoring is an obstetric technology that helps to record any changes in fetal heart rate and uterine activity. The aim of this study was to determine the efficacy of educational programs on the performance of internship nursing students regarding electronic fetal monitoring in obstetrics and gynecology departments. Design: A quasi-experimental research design (pre- and post-test) was used. Sample: A convenient sample of all internship nursing students (180 internship nursing students) from the Faculty of Nursing at Menoufia University during the academic year 2022-2023). The instruments of this study were a structured, self-administered interview questionnaire consisting of two parts: the socio-demographic characteristics of the study participants and an assessment of internship nursing students’ knowledge regarding electronic fetal monitoring (pre- and post-test). Observational checklist to assess internship nursing students’ performance regarding EFM. Results: There were highly statistically significant differences between the internship nurses' students’ knowledge and performance on the pretest and posttest. Conclusion: An educational program on electronic fetal monitoring carries a vital value for enhancing internship nursing students’ knowledge and performance, which ultimately leads to improved maternal and fetal outcomes. Recommendation: Regular educational programs and workshops about electronic fetal monitoring should be encouraged for all maternity nurses and internship nursing students.

Keywords: educational program, internship nursing students, performance, efficacy

Procedia PDF Downloads 13
9949 Intelligent Process Data Mining for Monitoring for Fault-Free Operation of Industrial Processes

Authors: Hyun-Woo Cho

Abstract:

The real-time fault monitoring and diagnosis of large scale production processes is helpful and necessary in order to operate industrial process safely and efficiently producing good final product quality. Unusual and abnormal events of the process may have a serious impact on the process such as malfunctions or breakdowns. This work try to utilize process measurement data obtained in an on-line basis for the safe and some fault-free operation of industrial processes. To this end, this work evaluated the proposed intelligent process data monitoring framework based on a simulation process. The monitoring scheme extracts the fault pattern in the reduced space for the reliable data representation. Moreover, this work shows the results of using linear and nonlinear techniques for the monitoring purpose. It has shown that the nonlinear technique produced more reliable monitoring results and outperforms linear methods. The adoption of the qualitative monitoring model helps to reduce the sensitivity of the fault pattern to noise.

Keywords: process data, data mining, process operation, real-time monitoring

Procedia PDF Downloads 609
9948 Challenges with Synchrophasor Technology Deployments in Electric Power Grids

Authors: Emmanuel U. Oleka, Anil Khanal, Gary L. Lebby, Ali R. Osareh

Abstract:

Synchrophasor technology is fast being deployed in electric power grids all over the world and is fast changing the way the grids are managed. This trend is to continue until the entire power grids are fully connected so they can be monitored and controlled in real-time. Much achievement has been made in the synchrophasor technology development and deployment, and much more are yet to be achieved. Real-time power grid control and protection potentials of synchrophasor are yet to be explored. It is of necessity that researchers keep in view the various challenges that still need to be overcome in expanding the frontiers of synchrophasor technology. This paper outlines the major challenges that should be dealt with in order to achieve the goal of total power grid visualization, monitoring and control using synchrophasor technology.

Keywords: electric power grid, grid visualization, phasor measurement unit, synchrophasor

Procedia PDF Downloads 523
9947 Foot Self-Monitoring Knowledge, Attitude, Practice, and Related Factors among Diabetic Patients: A Descriptive and Correlational Study in a Taiwan Teaching Hospital

Authors: Li-Ching Lin, Yu-Tzu Dai

Abstract:

Recurrent foot ulcers or foot amputation have a major impact on patients with diabetes mellitus (DM), medical professionals, and society. A critical procedure for foot care is foot self-monitoring. Medical professionals’ understanding of patients’ foot self-monitoring knowledge, attitude, and practice is beneficial for raising patients’ disease awareness. This study investigated these and related factors among patients with DM through a descriptive study of the correlations. A scale for measuring the foot self-monitoring knowledge, attitude, and practice of patients with DM was used. Purposive sampling was adopted, and 100 samples were collected from the respondents’ self-reports or from interviews. The statistical methods employed were an independent-sample t-test, one-way analysis of variance, Pearson correlation coefficient, and multivariate regression analysis. The findings were as follows: the respondents scored an average of 12.97 on foot self-monitoring knowledge, and the correct answer rate was 68.26%. The respondents performed relatively lower in foot health screenings and recording, and awareness of neuropathy in the foot. The respondents held a positive attitude toward self-monitoring their feet and a negative attitude toward having others check the soles of their feet. The respondents scored an average of 12.64 on foot self-monitoring practice. Their scores were lower in their frequency of self-monitoring their feet, recording their self-monitoring results, checking their pedal pulse, and examining if their soles were red immediately after taking off their shoes. Significant positive correlations were observed among foot self-monitoring knowledge, attitude, and practice. The correlation coefficient between self-monitoring knowledge and self-monitoring practice was 0.20, and that between self-monitoring attitude and self-monitoring practice was 0.44. Stepwise regression analysis revealed that the main predictive factors of the foot self-monitoring practice in patients with DM were foot self-monitoring attitude, prior experience in foot care, and an educational attainment of college or higher. These factors predicted 33% of the variance. This study concludes that patients with DM lacked foot self-monitoring practice and advises that the patients’ self-monitoring abilities be evaluated first, including whether patients have poor eyesight, difficulties in bending forward due to obesity, and people who can assist them in self-monitoring. In addition, patient education should emphasize self-monitoring knowledge and practice, such as perceptions regarding the symptoms of foot neurovascular lesions, pulse monitoring methods, and new foot self-monitoring equipment. By doing so, new or recurring ulcers may be discovered in their early stages.

Keywords: diabetic foot, foot self-monitoring attitude, foot self-monitoring knowledge, foot self-monitoring practice

Procedia PDF Downloads 169
9946 Experimental Study and Evaluation of Farm Environmental Monitoring System Based on the Internet of Things, Sudan

Authors: Farid Eltom A. E., Mustafa Abdul-Halim, Abdalla Markaz, Sami Atta, Mohamed Azhari, Ahmed Rashed

Abstract:

Smart environment sensors integrated with ‘Internet of Things’ (IoT) technology can provide a new concept in tracking, sensing, and monitoring objects in the environment. The aim of the study is to evaluate the farm environmental monitoring system based on (IoT) and to realize the automated management of agriculture and the implementation of precision production. Until now, irrigation monitoring operations in Sudan have been carried out using traditional methods, which is a very costly and unreliable mechanism. However, by utilizing soil moisture sensors, irrigation can be conducted only when needed without fear of plant water stress. The result showed that software application allows farmers to display current and historical data on soil moisture and nutrients in the form of line charts. Design measurements of the soil factors: moisture, electrical, humidity, conductivity, temperature, pH, phosphorus, and potassium; these factors, together with a timestamp, are sent to the data server using the Lora WAN interface. It is considered scientifically agreed upon in the modern era that artificial intelligence works to arrange the necessary procedures to take care of the terrain, predict the quality and quantity of production through deep analysis of the various operations in agricultural fields, and also support monitoring of weather conditions.

Keywords: smart environment, monitoring systems, IoT, LoRa Gateway, center pivot

Procedia PDF Downloads 21
9945 Real-Time Fitness Monitoring with MediaPipe

Authors: Chandra Prayaga, Lakshmi Prayaga, Aaron Wade, Kyle Rank, Gopi Shankar Mallu, Sri Satya, Harsha Pola

Abstract:

In today's tech-driven world, where connectivity shapes our daily lives, maintaining physical and emotional health is crucial. Athletic trainers play a vital role in optimizing athletes' performance and preventing injuries. However, a shortage of trainers impacts the quality of care. This study introduces a vision-based exercise monitoring system leveraging Google's MediaPipe library for precise tracking of bicep curl exercises and simultaneous posture monitoring. We propose a three-stage methodology: landmark detection, side detection, and angle computation. Our system calculates angles at the elbow, wrist, neck, and torso to assess exercise form. Experimental results demonstrate the system's effectiveness in distinguishing between good and partial repetitions and evaluating body posture during exercises, providing real-time feedback for precise fitness monitoring.

Keywords: physical health, athletic trainers, fitness monitoring, technology driven solutions, Google’s MediaPipe, landmark detection, angle computation, real-time feedback

Procedia PDF Downloads 35
9944 Implementation of Clinical Monitoring System of Physiological Parameters

Authors: Abdesselam Babouri, Ahcène Lemzadmi, M Rahmane, B. Belhadi, N. Abouchi

Abstract:

Medical monitoring aims at monitoring and remotely controlling the vital physiological parameters of the patient. The physiological sensors provide repetitive measurements of these parameters in the form of electrical signals that vary continuously over time. Various measures allow informing us about the health of the person's physiological data (weight, blood pressure, heart rate or specific to a disease), environmental conditions (temperature, humidity, light, noise level) and displacement and movements (physical efforts and the completion of major daily living activities). The collected data will allow monitoring the patient’s condition and alerting in case of modification. They are also used in the diagnosis and decision making on medical treatment and the health of the patient. This work presents the implementation of a monitoring system to be used for the control of physiological parameters.

Keywords: clinical monitoring, physiological parameters, biomedical sensors, personal health

Procedia PDF Downloads 438
9943 Tele-Monitoring and Logging of Patient Health Parameters Using Zigbee

Authors: Kirubasankar, Sanjeevkumar, Aravindh Nagappan

Abstract:

This paper addresses a system for monitoring patients using biomedical sensors and displaying it in a remote place. The main challenges in present health monitoring devices are lack of remote monitoring and logging for future evaluation. Typical instruments used for health parameter measurement provide basic information regarding health status. This paper identifies a set of design principles to address these challenges. This system includes continuous measurement of health parameters such as Heart rate, electrocardiogram, SpO2 level and Body temperature. The accumulated sensor data is relayed to a processing device using a transceiver and viewed by the implementation of cloud services.

Keywords: bio-medical sensors, monitoring, logging, cloud service

Procedia PDF Downloads 486
9942 Optimization of Monitoring Networks for Air Quality Management in Urban Hotspots

Authors: Vethathirri Ramanujam Srinivasan, S. M. Shiva Nagendra

Abstract:

Air quality management in urban areas is a serious concern in both developed and developing countries. In this regard, more number of air quality monitoring stations are planned to mitigate air pollution in urban areas. In India, Central Pollution Control Board has set up 574 air quality monitoring stations across the country and proposed to set up another 500 stations in the next few years. The number of monitoring stations for each city has been decided based on population data. The setting up of ambient air quality monitoring stations and their operation and maintenance are highly expensive. Therefore, there is a need to optimize monitoring networks for air quality management. The present paper discusses the various methods such as Indian Standards (IS) method, US EPA method and European Union (EU) method to arrive at the minimum number of air quality monitoring stations. In addition, optimization of rain-gauge method and Inverse Distance Weighted (IDW) method using Geographical Information System (GIS) are also explored in the present work for the design of air quality network in Chennai city. In summary, additionally 18 stations are required for Chennai city, and the potential monitoring locations with their corresponding land use patterns are ranked and identified from the 1km x 1km sized grids.

Keywords: air quality monitoring network, inverse distance weighted method, population based method, spatial variation

Procedia PDF Downloads 156
9941 Design and Implementation of a Monitoring System Using Arduino and MATLAB

Authors: Jonas P. Reges, Jessyca A. Bessa, Auzuir R. Alexandria

Abstract:

The research came up with the need of monitoring them of temperature and relative moisture in past work that enveloped the study of a greenhouse located in the Research and Extension Unit(UEPE). This research brought several unknowns that were resolved from bibliographical research. Based on the studies performed were found some monitoring methods, including the serial communication between the arduino and matlab which showed a great option due to the low cost. The project was conducted in two stages, the first, an algorithm was developed to the Arduino and Matlab, and second, the circuits were assembled and performed the monitoring tests the following variables: moisture, temperature, and distance. During testing it was possible to momentarily observe the change in the levels of monitored variables. The project showed satisfactory results, such as: real-time verification of the change of state variables, the low cost of acquisition of the prototype, possibility of easy change of programming for the execution of monitoring of other variables. Therefore, the project showed the possibility of monitoring through software and hardware that have easy programming and can be used in several areas. However, it is observed also the possibility of improving the project from a remote monitoring via Bluetooth or web server and through the control of monitored variables.

Keywords: automation, monitoring, programming, arduino, matlab

Procedia PDF Downloads 481
9940 The Review of Permanent Downhole Monitoring System

Authors: Jing Hu, Dong Yang

Abstract:

With the increasingly difficult development and operating environment of exploration, there are many new challenges and difficulties in developing and exploiting oil and gas resources. These include the ability to dynamically monitor wells and provide data and assurance for the completion and production of high-cost and complex wells. A key technology in providing these assurances and maximizing oilfield profitability is real-time permanent reservoir monitoring. The emergence of optical fiber sensing systems has gradually begun to replace traditional electronic systems. Traditional temperature sensors can only achieve single-point temperature monitoring, but fiber optic sensing systems based on the Bragg grating principle have a high level of reliability, accuracy, stability, and resolution, enabling cost-effective monitoring, which can be done in real-time, anytime, and without well intervention. Continuous data acquisition is performed along the entire wellbore. The integrated package with the downhole pressure gauge, packer, and surface system can also realize real-time dynamic monitoring of the pressure in some sections of the downhole, avoiding oil well intervention and eliminating the production delay and operational risks of conventional surveys. Real-time information obtained through permanent optical fibers can also provide critical reservoir monitoring data for production and recovery optimization.

Keywords: PDHM, optical fiber, coiled tubing, photoelectric composite cable, digital-oilfield

Procedia PDF Downloads 53
9939 Remote Wireless Patient Monitoring System

Authors: Sagar R. Patil, Dinesh R. Gawade, Sudhir N. Divekar

Abstract:

One of the medical devices we found when we visit a hospital care unit such device is ‘patient monitoring system’. This device (patient monitoring system) informs doctors and nurses about the patient’s physiological signals. However, this device (patient monitoring system) does not have a remote monitoring capability, which is necessitates constant onsite attendance by support personnel (doctors and nurses). Thus, we have developed a Remote Wireless Patient Monitoring System using some biomedical sensors and Android OS, which is a portable patient monitoring. This device(Remote Wireless Patient Monitoring System) monitors the biomedical signals of patients in real time and sends them to remote stations (doctors and nurse’s android Smartphone and web) for display and with alerts when necessary. Wireless Patient Monitoring System different from conventional device (Patient Monitoring system) in two aspects: First its wireless communication capability allows physiological signals to be monitored remotely and second, it is portable so patients can move while there biomedical signals are being monitor. Wireless Patient Monitoring is also notable because of its implementation. We are integrated four sensors such as pulse oximeter (SPO2), thermometer, respiration, blood pressure (BP), heart rate and electrocardiogram (ECG) in this device (Wireless Patient Monitoring System) and Monitoring and communication applications are implemented on the Android OS using threads, which facilitate the stable and timely manipulation of signals and the appropriate sharing of resources. The biomedical data will be display on android smart phone as well as on web Using web server and database system we can share these physiological signals with remote place medical personnel’s or with any where in the world medical personnel’s. We verified that the multitasking implementation used in the system was suitable for patient monitoring and for other Healthcare applications.

Keywords: patient monitoring, wireless patient monitoring, bio-medical signals, physiological signals, embedded system, Android OS, healthcare, pulse oximeter (SPO2), thermometer, respiration, blood pressure (BP), heart rate, electrocardiogram (ECG)

Procedia PDF Downloads 541