Search results for: crop classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3147

Search results for: crop classification

3147 Application of Rapid Eye Imagery in Crop Type Classification Using Vegetation Indices

Authors: Sunita Singh, Rajani Srivastava

Abstract:

For natural resource management and in other applications about earth observation revolutionary remote sensing technology plays a significant role. One of such application in monitoring and classification of crop types at spatial and temporal scale, as it provides latest, most precise and cost-effective information. Present study emphasizes the use of three different vegetation indices of Rapid Eye imagery on crop type classification. It also analyzed the effect of each indices on classification accuracy. Rapid Eye imagery is highly demanded and preferred for agricultural and forestry sectors as it has red-edge and NIR bands. The three indices used in this study were: the Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) and all of these incorporated the Red Edge band. The study area is Varanasi district of Uttar Pradesh, India and Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Classification was performed with these three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 85% was obtained using three vegetation indices. The study concluded that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the Rapid Eye imagery can get satisfactory results of classification accuracy without original bands.

Keywords: GNDVI, NDRE, NDVI, rapid eye, vegetation indices

Procedia PDF Downloads 325
3146 Crop Classification using Unmanned Aerial Vehicle Images

Authors: Iqra Yaseen

Abstract:

One of the well-known areas of computer science and engineering, image processing in the context of computer vision has been essential to automation. In remote sensing, medical science, and many other fields, it has made it easier to uncover previously undiscovered facts. Grading of diverse items is now possible because of neural network algorithms, categorization, and digital image processing. Its use in the classification of agricultural products, particularly in the grading of seeds or grains and their cultivars, is widely recognized. A grading and sorting system enables the preservation of time, consistency, and uniformity. Global population growth has led to an increase in demand for food staples, biofuel, and other agricultural products. To meet this demand, available resources must be used and managed more effectively. Image processing is rapidly growing in the field of agriculture. Many applications have been developed using this approach for crop identification and classification, land and disease detection and for measuring other parameters of crop. Vegetation localization is the base of performing these task. Vegetation helps to identify the area where the crop is present. The productivity of the agriculture industry can be increased via image processing that is based upon Unmanned Aerial Vehicle photography and satellite. In this paper we use the machine learning techniques like Convolutional Neural Network, deep learning, image processing, classification, You Only Live Once to UAV imaging dataset to divide the crop into distinct groups and choose the best way to use it.

Keywords: image processing, UAV, YOLO, CNN, deep learning, classification

Procedia PDF Downloads 61
3145 Geoinformation Technology of Agricultural Monitoring Using Multi-Temporal Satellite Imagery

Authors: Olena Kavats, Dmitry Khramov, Kateryna Sergieieva, Vladimir Vasyliev, Iurii Kavats

Abstract:

Geoinformation technologies of space agromonitoring are a means of operative decision making support in the tasks of managing the agricultural sector of the economy. Existing technologies use satellite images in the optical range of electromagnetic spectrum. Time series of optical images often contain gaps due to the presence of clouds and haze. A geoinformation technology is created. It allows to fill gaps in time series of optical images (Sentinel-2, Landsat-8, PROBA-V, MODIS) with radar survey data (Sentinel-1) and use information about agrometeorological conditions of the growing season for individual monitoring years. The technology allows to perform crop classification and mapping for spring-summer (winter and spring crops) and autumn-winter (winter crops) periods of vegetation, monitoring the dynamics of crop state seasonal changes, crop yield forecasting. Crop classification is based on supervised classification algorithms, takes into account the peculiarities of crop growth at different vegetation stages (dates of sowing, emergence, active vegetation, and harvesting) and agriculture land state characteristics (row spacing, seedling density, etc.). A catalog of samples of the main agricultural crops (Ukraine) is created and crop spectral signatures are calculated with the preliminary removal of row spacing, cloud cover, and cloud shadows in order to construct time series of crop growth characteristics. The obtained data is used in grain crop growth tracking and in timely detection of growth trends deviations from reference samples of a given crop for a selected date. Statistical models of crop yield forecast are created in the forms of linear and nonlinear interconnections between crop yield indicators and crop state characteristics (temperature, precipitation, vegetation indices, etc.). Predicted values of grain crop yield are evaluated with an accuracy up to 95%. The developed technology was used for agricultural areas monitoring in a number of Great Britain and Ukraine regions using EOS Crop Monitoring Platform (https://crop-monitoring.eos.com). The obtained results allow to conclude that joint use of Sentinel-1 and Sentinel-2 images improve separation of winter crops (rapeseed, wheat, barley) in the early stages of vegetation (October-December). It allows to separate successfully the soybean, corn, and sunflower sowing areas that are quite similar in their spectral characteristics.

Keywords: geoinformation technology, crop classification, crop yield prediction, agricultural monitoring, EOS Crop Monitoring Platform

Procedia PDF Downloads 400
3144 Evaluating Classification with Efficacy Metrics

Authors: Guofan Shao, Lina Tang, Hao Zhang

Abstract:

The values of image classification accuracy are affected by class size distributions and classification schemes, making it difficult to compare the performance of classification algorithms across different remote sensing data sources and classification systems. Based on the term efficacy from medicine and pharmacology, we have developed the metrics of image classification efficacy at the map and class levels. The novelty of this approach is that a baseline classification is involved in computing image classification efficacies so that the effects of class statistics are reduced. Furthermore, the image classification efficacies are interpretable and comparable, and thus, strengthen the assessment of image data classification methods. We use real-world and hypothetical examples to explain the use of image classification efficacies. The metrics of image classification efficacy meet the critical need to rectify the strategy for the assessment of image classification performance as image classification methods are becoming more diversified.

Keywords: accuracy assessment, efficacy, image classification, machine learning, uncertainty

Procedia PDF Downloads 177
3143 Using Time Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa

Authors: Adesuyi Ayodeji Steve, Zahn Munch

Abstract:

This study investigates the use of MODIS NDVI to identify agricultural land cover change areas on an annual time step (2007 - 2012) and characterize the trend in the study area. An ISODATA classification was performed on the MODIS imagery to select only the agricultural class producing 3 class groups namely: agriculture, agriculture/semi-natural, and semi-natural. NDVI signatures were created for the time series to identify areas dominated by cereals and vineyards with the aid of ancillary, pictometry and field sample data. The NDVI signature curve and training samples aided in creating a decision tree model in WEKA 3.6.9. From the training samples two classification models were built in WEKA using decision tree classifier (J48) algorithm; Model 1 included ISODATA classification and Model 2 without, both having accuracies of 90.7% and 88.3% respectively. The two models were used to classify the whole study area, thus producing two land cover maps with Model 1 and 2 having classification accuracies of 77% and 80% respectively. Model 2 was used to create change detection maps for all the other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices over the years as predicted by the land cover classification. 41% of the catchment comprises of cereals with 35% possibly following a crop rotation system. Vineyard largely remained constant over the years, with some conversion to vineyard (1%) from other land cover classes. Some of the changes might be as a result of misclassification and crop rotation system.

Keywords: change detection, land cover, modis, NDVI

Procedia PDF Downloads 368
3142 Reinforcement Learning for Classification of Low-Resolution Satellite Images

Authors: Khadija Bouzaachane, El Mahdi El Guarmah

Abstract:

The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.

Keywords: classification, deep learning, reinforcement learning, satellite imagery

Procedia PDF Downloads 171
3141 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection

Authors: Praveen S. Muthukumarana, Achala C. Aponso

Abstract:

A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.

Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis

Procedia PDF Downloads 104
3140 Urban Land Cover from GF-2 Satellite Images Using Object Based and Neural Network Classifications

Authors: Lamyaa Gamal El-Deen Taha, Ashraf Sharawi

Abstract:

China launched satellite GF-2 in 2014. This study deals with comparing nearest neighbor object-based classification and neural network classification methods for classification of the fused GF-2 image. Firstly, rectification of GF-2 image was performed. Secondly, a comparison between nearest neighbor object-based classification and neural network classification for classification of fused GF-2 was performed. Thirdly, the overall accuracy of classification and kappa index were calculated. Results indicate that nearest neighbor object-based classification is better than neural network classification for urban mapping.

Keywords: GF-2 images, feature extraction-rectification, nearest neighbour object based classification, segmentation algorithms, neural network classification, multilayer perceptron

Procedia PDF Downloads 351
3139 Arabic Text Representation and Classification Methods: Current State of the Art

Authors: Rami Ayadi, Mohsen Maraoui, Mounir Zrigui

Abstract:

In this paper, we have presented a brief current state of the art for Arabic text representation and classification methods. We decomposed Arabic Task Classification into four categories. First we describe some algorithms applied to classification on Arabic text. Secondly, we cite all major works when comparing classification algorithms applied on Arabic text, after this, we mention some authors who proposing new classification methods and finally we investigate the impact of preprocessing on Arabic TC.

Keywords: text classification, Arabic, impact of preprocessing, classification algorithms

Procedia PDF Downloads 434
3138 Application of Deep Learning Algorithms in Agriculture: Early Detection of Crop Diseases

Authors: Manaranjan Pradhan, Shailaja Grover, U. Dinesh Kumar

Abstract:

Farming community in India, as well as other parts of the world, is one of the highly stressed communities due to reasons such as increasing input costs (cost of seeds, fertilizers, pesticide), droughts, reduced revenue leading to farmer suicides. Lack of integrated farm advisory system in India adds to the farmers problems. Farmers need right information during the early stages of crop’s lifecycle to prevent damage and loss in revenue. In this paper, we use deep learning techniques to develop an early warning system for detection of crop diseases using images taken by farmers using their smart phone. The research work leads to building a smart assistant using analytics and big data which could help the farmers with early diagnosis of the crop diseases and corrective actions. The classical approach for crop disease management has been to identify diseases at crop level. Recently, ImageNet Classification using the convolutional neural network (CNN) has been successfully used to identify diseases at individual plant level. Our model uses convolution filters, max pooling, dense layers and dropouts (to avoid overfitting). The models are built for binary classification (healthy or not healthy) and multi class classification (identifying which disease). Transfer learning is used to modify the weights of parameters learnt through ImageNet dataset and apply them on crop diseases, which reduces number of epochs to learn. One shot learning is used to learn from very few images, while data augmentation techniques are used to improve accuracy with images taken from farms by using techniques such as rotation, zoom, shift and blurred images. Models built using combination of these techniques are more robust for deploying in the real world. Our model is validated using tomato crop. In India, tomato is affected by 10 different diseases. Our model achieves an accuracy of more than 95% in correctly classifying the diseases. The main contribution of our research is to create a personal assistant for farmers for managing plant disease, although the model was validated using tomato crop, it can be easily extended to other crops. The advancement of technology in computing and availability of large data has made possible the success of deep learning applications in computer vision, natural language processing, image recognition, etc. With these robust models and huge smartphone penetration, feasibility of implementation of these models is high resulting in timely advise to the farmers and thus increasing the farmers' income and reducing the input costs.

Keywords: analytics in agriculture, CNN, crop disease detection, data augmentation, image recognition, one shot learning, transfer learning

Procedia PDF Downloads 94
3137 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm

Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell

Abstract:

The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.

Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks

Procedia PDF Downloads 294
3136 Estimation of Evapotranspiration and Crop Coefficient of Eggplant with Lysimeter in Al-Hasa Region

Authors: Mishari AlNaim

Abstract:

A field experiment was conducted for two seasons of 2011 and 2012 in The Agricultural Experiment Research Station in King Faisal University at Al-Hasa region, Saudi Arabia to estimate evapotranspiration (ETC) of Eggplant crop using Drainage Lysimeter with surface area of 2 x 2 m and depth of 1.5 m. The irrigation was applied daily. The amount of drainage was measured before each irrigation event. The results showed that there was almost no difference in the seasonal evapotranspiration of eggplant crop in the two seasons. The average evapotranspiration values for eggplant crop for the summer and winter seasons were 823.4 mm and 479.7 mm respectively. The highest and the lowest weekly measured values of (ETC) of eggplant crop during the two summer seasons were 8.6 mm/day and 3.9 mm/day respectively, while the highest and lowest weekly measured values of (ETC) of eggplant crop during the two winter seasons were 3.9 mm/day and 2.0 mm/day respectively. The measured values of ETc, in conjunction with the results of Penmen-Monteith equation for reference Evapotranspiration (ETR), were used to determine the crop coefficient (KC ini, KC mid and KC end) for eggplant crop. The average values were 0.50, 84 and 0.60 for KC ini, KC mid and KC end in Al-Hasa region, respectively. These estimated values for KC were used to approximate (ETc) for eggplant crop. High positive correlation coefficient (0.959) was detected between the approximated and measured values of eggplant crop evapotranspiration.

Keywords: evapotranspiration, eggpant, ETC, Al-Hasa

Procedia PDF Downloads 424
3135 Sensitive Analysis of the ZF Model for ABC Multi Criteria Inventory Classification

Authors: Makram Ben Jeddou

Abstract:

The ABC classification is widely used by managers for inventory control. The classical ABC classification is based on the Pareto principle and according to the criterion of the annual use value only. Single criterion classification is often insufficient for a closely inventory control. Multi-criteria inventory classification models have been proposed by researchers in order to take into account other important criteria. From these models, we will consider the ZF model in order to make a sensitive analysis on the composite score calculated for each item. In fact, this score based on a normalized average between a good and a bad optimized index can affect the ABC items classification. We will then focus on the weights assigned to each index and propose a classification compromise.

Keywords: ABC classification, multi criteria inventory classification models, ZF-model

Procedia PDF Downloads 476
3134 Evaluating the Effects of Weather and Climate Change to Risks in Crop Production

Authors: Marcus Bellett-Travers

Abstract:

Different modelling approaches have been used to determine or predict yield of crops in different geographies. Central to the methodologies are the presumption that it is the absolute yield of the crop in a given location that is of the highest priority to those requiring information on crop productivity. Most individuals, companies and organisations within the agri-food sector need to be able to balance the supply of crops with the demand for them. Different modelling approaches have been used to determine and predict crop yield. The growing need to ensure certainty of supply and stability of prices requires an approach that describes the risk in producing a crop. A review of current methodologies to evaluate the risk to food production from changes in the weather and climate is presented.

Keywords: crop production, risk, climate, modelling

Procedia PDF Downloads 356
3133 A New Approach for Improving Accuracy of Multi Label Stream Data

Authors: Kunal Shah, Swati Patel

Abstract:

Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.

Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer

Procedia PDF Downloads 558
3132 Landsat Data from Pre Crop Season to Estimate the Area to Be Planted with Summer Crops

Authors: Valdir Moura, Raniele dos Anjos de Souza, Fernando Gomes de Souza, Jose Vagner da Silva, Jerry Adriani Johann

Abstract:

The estimate of the Area of Land to be planted with annual crops and its stratification by the municipality are important variables in crop forecast. Nowadays in Brazil, these information’s are obtained by the Brazilian Institute of Geography and Statistics (IBGE) and published under the report Assessment of the Agricultural Production. Due to the high cloud cover in the main crop growing season (October to March) it is difficult to acquire good orbital images. Thus, one alternative is to work with remote sensing data from dates before the crop growing season. This work presents the use of multitemporal Landsat data gathered on July and September (before the summer growing season) in order to estimate the area of land to be planted with summer crops in an area of São Paulo State, Brazil. Geographic Information Systems (GIS) and digital image processing techniques were applied for the treatment of the available data. Supervised and non-supervised classifications were used for data in digital number and reflectance formats and the multitemporal Normalized Difference Vegetation Index (NDVI) images. The objective was to discriminate the tracts with higher probability to become planted with summer crops. Classification accuracies were evaluated using a sampling system developed basically for this study region. The estimated areas were corrected using the error matrix derived from these evaluations. The classification techniques presented an excellent level according to the kappa index. The proportion of crops stratified by municipalities was derived by a field work during the crop growing season. These proportion coefficients were applied onto the area of land to be planted with summer crops (derived from Landsat data). Thus, it was possible to derive the area of each summer crop by the municipality. The discrepancies between official statistics and our results were attributed to the sampling and the stratification procedures. Nevertheless, this methodology can be improved in order to provide good crop area estimates using remote sensing data, despite the cloud cover during the growing season.

Keywords: area intended for summer culture, estimated area planted, agriculture, Landsat, planting schedule

Procedia PDF Downloads 114
3131 Remote Assessment and Change Detection of GreenLAI of Cotton Crop Using Different Vegetation Indices

Authors: Ganesh B. Shinde, Vijaya B. Musande

Abstract:

Cotton crop identification based on the timely information has significant advantage to the different implications of food, economic and environment. Due to the significant advantages, the accurate detection of cotton crop regions using supervised learning procedure is challenging problem in remote sensing. Here, classifiers on the direct image are played a major role but the results are not much satisfactorily. In order to further improve the effectiveness, variety of vegetation indices are proposed in the literature. But, recently, the major challenge is to find the better vegetation indices for the cotton crop identification through the proposed methodology. Accordingly, fuzzy c-means clustering is combined with neural network algorithm, trained by Levenberg-Marquardt for cotton crop classification. To experiment the proposed method, five LISS-III satellite images was taken and the experimentation was done with six vegetation indices such as Simple Ratio, Normalized Difference Vegetation Index, Enhanced Vegetation Index, Green Atmospherically Resistant Vegetation Index, Wide-Dynamic Range Vegetation Index, Green Chlorophyll Index. Along with these indices, Green Leaf Area Index is also considered for investigation. From the research outcome, Green Atmospherically Resistant Vegetation Index outperformed with all other indices by reaching the average accuracy value of 95.21%.

Keywords: Fuzzy C-Means clustering (FCM), neural network, Levenberg-Marquardt (LM) algorithm, vegetation indices

Procedia PDF Downloads 284
3130 Classification of Attacks Over Cloud Environment

Authors: Karim Abouelmehdi, Loubna Dali, Elmoutaoukkil Abdelmajid, Hoda Elsayed, Eladnani Fatiha, Benihssane Abderahim

Abstract:

The security of cloud services is the concern of cloud service providers. In this paper, we will mention different classifications of cloud attacks referred by specialized organizations. Each agency has its classification of well-defined properties. The purpose is to present a high-level classification of current research in cloud computing security. This classification is organized around attack strategies and corresponding defenses.

Keywords: cloud computing, classification, risk, security

Procedia PDF Downloads 505
3129 Image Processing-Based Maize Disease Detection Using Mobile Application

Authors: Nathenal Thomas

Abstract:

In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.

Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot

Procedia PDF Downloads 44
3128 Plot Scale Estimation of Crop Biophysical Parameters from High Resolution Satellite Imagery

Authors: Shreedevi Moharana, Subashisa Dutta

Abstract:

The present study focuses on the estimation of crop biophysical parameters like crop chlorophyll, nitrogen and water stress at plot scale in the crop fields. To achieve these, we have used high-resolution satellite LISS IV imagery. A new methodology has proposed in this research work, the spectral shape function of paddy crop is employed to get the significant wavelengths sensitive to paddy crop parameters. From the shape functions, regression index models were established for the critical wavelength with minimum and maximum wavelengths of multi-spectrum high-resolution LISS IV data. Moreover, the functional relationships were utilized to develop the index models. From these index models crop, biophysical parameters were estimated and mapped from LISS IV imagery at plot scale in crop field level. The result showed that the nitrogen content of the paddy crop varied from 2-8%, chlorophyll from 1.5-9% and water content variation observed from 40-90% respectively. It was observed that the variability in rice agriculture system in India was purely a function of field topography.

Keywords: crop parameters, index model, LISS IV imagery, plot scale, shape function

Procedia PDF Downloads 137
3127 A Different Approach to Smart Phone-Based Wheat Disease Detection System Using Deep Learning for Ethiopia

Authors: Nathenal Thomas Lambamo

Abstract:

Based on the fact that more than 85% of the labor force and 90% of the export earnings are taken by agriculture in Ethiopia and it can be said that it is the backbone of the overall socio-economic activities in the country. Among the cereal crops that the agriculture sector provides for the country, wheat is the third-ranking one preceding teff and maize. In the present day, wheat is in higher demand related to the expansion of industries that use them as the main ingredient for their products. The local supply of wheat for these companies covers only 35 to 40% and the rest 60 to 65% percent is imported on behalf of potential customers that exhaust the country’s foreign currency reserves. The above facts show that the need for this crop in the country is too high and in reverse, the productivity of the crop is very less because of these reasons. Wheat disease is the most devastating disease that contributes a lot to this unbalance in the demand and supply status of the crop. It reduces both the yield and quality of the crop by 27% on average and up to 37% when it is severe. This study aims to detect the most frequent and degrading wheat diseases, Septoria and Leaf rust, using the most efficiently used subset of machine learning technology, deep learning. As a state of the art, a deep learning class classification technique called Convolutional Neural Network (CNN) has been used to detect diseases and has an accuracy of 99.01% is achieved.

Keywords: septoria, leaf rust, deep learning, CNN

Procedia PDF Downloads 46
3126 Drainage Management In A Cascade Hydroponic System: Combination Of Cucumber And Melon Crops

Authors: Nikolaos Katsoulas, Ioannis Naounoulis, Sofia Faliagka

Abstract:

Cascade hydroponic systems have the potential to minimize environmental impact and improve resource efficiency by recycling the nutrient solution drained from a hydroponic (primary-donor) crop to irrigate another (secondary-receiver), less sensitive to salinity crop. However, it remains unclear if the drained solution from the primary crop can fully meet the nutritional requirements of a secondary crop and whether the productivity of the secondary crop is affected. To address this question, a prototype cascade hydroponic system was designed and tested using a cucumber crop as the donor crop and a melon as secondary crop. The performance of the system in terms of productivity and water and nutrient use efficiency was evaluated by measuring plant growth, fresh and dry matter production, nutrients content, and photosynthesis rate in the secondary crop. The amount of water and nutrients used for the primary and secondary crops was also recorded. This work was carried out under the ECONUTRI project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Horizon Europe Grant agreement: 101081858.

Keywords: hydroponics, salinity, water use efficiencu, nutrients use efficiency

Procedia PDF Downloads 38
3125 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.

Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction

Procedia PDF Downloads 505
3124 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics

Authors: Fabio Fabris, Alex A. Freitas

Abstract:

Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.

Keywords: algorithm recommendation, meta-learning, bioinformatics, hierarchical classification

Procedia PDF Downloads 279
3123 Modern Trends in Pest Management Agroindustry

Authors: Amarjit S Tanda

Abstract:

Integrated Pest Management Technology (IPMT) offers a crop protection model with sustainable agriculture production with minimum damage to the environment and human health. A concept of agro-ecological crop protection seems unsuitable under dynamic environmental systems. To remedy this, we are proposing Genetically Engineered Crop Protection System (GECPS), as an alternate concept in IPMT that suggests how GE cultivars can be optimally put to the service of crop protection. Genetically engineered cultivars which are developed by gene editing biotechnology may provide a preventive defense against the insect pests and plant diseases, a suitable alternative crop system for blending in IPMT program, in the future agro-industry.

Keywords: integrated, pest, management, technology

Procedia PDF Downloads 24
3122 Determination of the Seed Vigor of Soybean Cultivated as Main and Second Crop in Turkey

Authors: Mehmet Demir Kaya, Engin Gökhan Kulan, Onur İleri, Süleyman Avcı

Abstract:

This research was conducted to determine the difference in seed vigor between the seed lots cultivated in main and second crop of soybean in Turkey. Seeds from soybean cv. Cinsoy and Umut-2002 were evaluated in the laboratory for germination, emergence, cool test at 18°C for 10 days, and cold test at 10°C for 4 days and 25°C for 6 days. Result showed that the initial oil contents of Cinsoy and Umut-2002 and seeds were determined to be 19.8 and 20.1% in main crop, and 18.7 and 22.1% in second crop, respectively. It was determined that a clear difference between main and second crop soybean seed lots for seed vigor was found. Germination and emergence percentage were higher in the seed from second crop cultivation of the cultivars. There was no significant difference in germination percentage in cool and cold test while seedling growth was better in the seeds of second crop soybean. The highest seed vigor index (477.6) was found in the seeds of the cultivars grown at second crop. Standard germination percentage did not give a sensitive separation for determining seed vigor of soybean lots. It was concluded that second crop soybean seeds were found the most suitable for seed production while main crop soybean gave higher protein lower oil content.

Keywords: Glycine max L., germination, emergence, protein content, vigor test

Procedia PDF Downloads 418
3121 Review on Effective Texture Classification Techniques

Authors: Sujata S. Kulkarni

Abstract:

Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases.

Keywords: compressed sensing, feature extraction, image classification, texture analysis

Procedia PDF Downloads 398
3120 Research on Ultrafine Particles Classification Using Hydrocyclone with Annular Rinse Water

Authors: Tao Youjun, Zhao Younan

Abstract:

The separation effect of fine coal can be improved by the process of pre-desliming. It was significantly enhanced when the fine coal was processed using Falcon concentrator with the removal of -45um coal slime. Ultrafine classification tests using Krebs classification cyclone with annular rinse water showed that increasing feeding pressure can effectively avoid the phenomena of heavy particles passing into overflow and light particles slipping into underflow. The increase of rinse water pressure could reduce the content of fine-grained particles while increasing the classification size. The increase in feeding concentration had a negative effect on the efficiency of classification, meanwhile increased the classification size due to the enhanced hindered settling caused by high underflow concentration. As a result of optimization experiments with response indicator of classification efficiency which based on orthogonal design using Design-Expert software indicated that the optimal classification efficiency reached 91.32% with the feeding pressure of 0.03MPa, the rinse water pressure of 0.02MPa and the feeding concentration of 12.5%. Meanwhile, the classification size was 49.99 μm which had a good agreement with the predicted value.

Keywords: hydrocyclone, ultrafine classification, slime, classification efficiency, classification size

Procedia PDF Downloads 136
3119 Radical Web Text Classification Using a Composite-Based Approach

Authors: Kolade Olawande Owoeye, George R. S. Weir

Abstract:

The widespread of terrorism and extremism activities on the internet has become a major threat to the government and national securities due to their potential dangers which have necessitated the need for intelligence gathering via web and real-time monitoring of potential websites for extremist activities. However, the manual classification for such contents is practically difficult or time-consuming. In response to this challenge, an automated classification system called composite technique was developed. This is a computational framework that explores the combination of both semantics and syntactic features of textual contents of a web. We implemented the framework on a set of extremist webpages dataset that has been subjected to the manual classification process. Therein, we developed a classification model on the data using J48 decision algorithm, this is to generate a measure of how well each page can be classified into their appropriate classes. The classification result obtained from our method when compared with other states of arts, indicated a 96% success rate in classifying overall webpages when matched against the manual classification.

Keywords: extremist, web pages, classification, semantics, posit

Procedia PDF Downloads 115
3118 Hyperspectral Image Classification Using Tree Search Algorithm

Authors: Shreya Pare, Parvin Akhter

Abstract:

Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.

Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm

Procedia PDF Downloads 135