Search results for: spawning stock biomass
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1790

Search results for: spawning stock biomass

260 Reintroduction and in vitro Propagation of Declapeis arayalpathra: A Critically Endangered Plant of Western Ghats, India

Authors: Zishan Ahmad, Anwar Shahzad

Abstract:

The present studies describe a protocol for high frequency in vitro propagation through nodal segments and shoot tips in D. arayalpathra, a critically endangered medicinal liana of the Western Ghats, India. Nodal segments were more responsive than shoot tips in terms of shoot multiplication. Murashige and Skoog’s (MS) basal medium supplemented with 2.5 µM 6-benzyladenine (BA) was optimum for shoot induction through both the explants. Among different combinations of plant growth regulator (PGRs) and growth additive screened, MS medium supplemented with BA (2.5 µM) + indole-3-acetic acid (IAA) (0.25 µM) + adenine sulphate (ADS) (10.0 µM) induced a maximum of 9.0 shoots per nodal segment and 3.9 shoots per shoot tip with mean shoot length of 8.5 and 3.9 cm respectively. Half-strength MS medium supplemented with Naphthaleneacetic acid (NAA) (2.5 µM) was the best for in vitro root induction. After successful acclimatization in SoilriteTM, 92 % plantlets were survived in field conditions. Acclimatized plantlets were studied for chlorophyll and carotenoid content, net photosynthetic rate (PN) and related attributes such as stomatal conductance (Gs) and transpiration rate during subsequent days of acclimatization. The rise and fall of different biochemical enzymes (SOD, CAT, APX and GR) were also studies during successful days of acclimatization. Moreover, the effect of acclimatization on the synthesis of 2-hydroxy-4-methoxy benzaldehyde (2H4MB) was also studied in relation to the biomass production. Maximum fresh weight (2.8 gm/plant), dry weight (0.35 gm/plant) of roots and 2H4MB content (8.5 µg/ ml of root extract) were recorded after 8 weeks of acclimatization. The screening of in vitro raised plantlet root was also carried out by using GC-MS analysis which witnessed more than 25 compounds. The regenerated plantlets were also screened for homogeneity by using RAPD and ISSR. The proposed protocol surely can be used for the conservation and commercial production of the plant.

Keywords: 6-benzyladenine, PGRs, RAPD, 2H4MB

Procedia PDF Downloads 167
259 Effects of Vitamin E and Vitamin on Growth, Survival and Some Haematological and Immunological Parameters of Caspian Brown Trout, Salmo trutta caspius Juveniles

Authors: Hossein Khara, Mahmoud Sayyadborani, Mohammad Sayyadborani

Abstract:

In the present study, we examined the effects of different dietary levels of ascorbic acid (vitamin C) and α-tocopherol (vitamin E) and their combinations on growth, survival and some haematological and immunological parameters of Caspian brown trout, Salmo trutta caspius juveniles. 15 experimental treatments and one control group with three replicates were considered for experiment. The experimental treatments were fish fed by experimental diets containing different levels of Vit C and E as follow: T1: Vit E (20 mg.kg diet -1) + Vit C (100 mg.kg diet -1), T2: Vit E (30 mg.kg diet -1) + Vit C (100 mg.kg diet -1), T3: Vit E (40 mg.kg diet -1) + Vit C (100 mg.kg diet -1), T4: Vit E (20 mg.kg diet -1) + Vit C (200 mg.kg diet -1), T5: Vit E (30 mg.kg diet -1) + Vit C (200 mg.kg diet -1), T6: Vit E (40 mg.kg diet -1) + Vit C (200 mg.kg diet -1), T7: Vit E (20 mg.kg diet -1) + Vit C (300 mg.kg diet -1), T8: Vit E (30 mg.kg diet -1) + Vit C (300 mg.kg diet -1), T9: Vit E (40 mg.kg diet -1) + Vit C (300 mg.kg diet -1), T10: Vit C (100 mg.kg diet -1), T11: Vit C (200 mg.kg diet -1), T12: Vit C (300 mg.kg diet -1), T13: Vit E (20 mg.kg diet -1), T14: Vit E (30 mg.kg diet -1) T15: Vit E (40 mg.kg diet -1). Also a non-vitamin supplemented was considered as control group. Growth parameters were measured monthly and serum parameters assayed at the end of the experiment. According to our results, Vit C and E improved survival and growth parameters including specific growth rate (SGR), weight gain percent (WG%) and biomass. The highest values of these parameters obtained in T8, T9 and T8 respectively. The lowest FCR obtained in T8. The haematological parameters including red blood cells (RBCs), white blood cells (WBCs), haematocrit (Hct) and haemoglobin (Hb) were higher in vitamin treated groups than control group with highest values in T8. In T13, WBC values were higher compared to other experimental groups. The immunological parameters including lysozyme activity, Immunoglobulin (IgM) and total immunoglobulin (TIg) were significantly higher in vitamin supplemented groups than in control group. In this regard the highest values of these parameters were found in T12. The lowest values of TIg and lysozyme activity were observed in control group and fish fed by only vitamin E i.e. T13, T14 and T15. In conclusion, our results show that Vit C and E in combination or only can improve growth, survival, haematological and immunological indices of Caspian brown trout.

Keywords: vitamins E, vitamins C, growth, survival, haematological parameters, immunological parameters

Procedia PDF Downloads 319
258 Boosting the Agrophysiological Performance of Chickpea Crop (Cicer Arietinum L.) Under Low-P Soil Conditions with the Co-application of Bacterial Consortium (Phosphate Solubilizing Bacteria and Rhizobium) and P-Fertilizers (RP and TSP Forms)

Authors: Rym Saidi, Pape Alioune Ndiaye, Ibnyasser Ammar, Zineb Rchiad, Khalid Daoui, Issam Kadmiri Meftahi, Adnane Bargaz

Abstract:

Chickpea (Cicer arietinum L.) is an important leguminous crop grown worldwide and plays a significant role in humans’ dietary consumption. Alongside nitrogen (N), low phosphorus (P) availability within agricultural soils is one of the major factors limiting chickpea growth and productivity. The combined application of beneficial bacterial inoculants and Rock P-fertilizer could boost chickpea performance and productivity, increasing P-utilization efficiency and minimizing nutrient losses under P-deficiency conditions. A greenhouse experiment was conducted to evaluate the response of chickpeas to two P-fertilizer forms (RP and TSP) under N2-fixer and P-solubilizer consortium inoculation to improve biological N fixation and P nutrition under P-deficient conditions. Under inoculation, chickpea chlorophyll content and chlorophyll fluorescence (RP+I and TSP+I) were increased compared to uninoculated treatments. The RP+I treatment increased both shoot and root dry weights by 48,80% and 72,68%, respectively, compared to the uninoculated RP fertilized control. Indeed, the bacterial consortium contributed to enhancing root morphological traits (e.g., root volume, surface area, and diameter) of all inoculated treatments versus the uninoculated treatments. Furthermore, soil available P and root inorganic P were significantly improved in RP+I by 162,84% and 73,24%, respectively, compared to uninoculated RP control. Our research outcomes suggest that the co-inoculation of chickpeas with N2-fixing, and P-solubilizing bacteria improves biomass yield and nutrient uptake. Eventually, enhancing chickpea agrophysiological performance, especially in restricted P-availability conditions.

Keywords: chickpea, consortium, beneficial bacterial inoculants, phosphorus deficiency, rock p-fertilizer, nutrient uptake

Procedia PDF Downloads 26
257 Biogas Production from Zebra Manure and Winery Waste Co-Digestion

Authors: Wicleffe Musingarimi

Abstract:

Currently, the rising energy demand as a result of an increase in the world’s population and the sustainable use of abundant natural resources are key issues facing many developed and developing countries including South Africa. Most of the energy to meet this growing demand comes from fossil fuel. Use of fossil fuels has led to environmental problems such air pollution, climate change, and acid rain. In addition, fossil fuels are facing continual depletion, which has led to the rise in oil prices, leading to the global economies melt down. Hence development of alternative clean and renewable energy source is a global priority. Renewable biomass from forest products, agricultural crops, and residues, as well as animal and municipal waste are promising alternatives. South Africa is one of the leading wine producers in the world; leading to a lot of winery waste (ww) being produced which can be used in anaerobic digestion (AD) to produce biogas. Biogas was produced from batch anaerobic digestion of zebra manure (zm) and batch anaerobic co-digestion of winery waste (ww) and zebra manure through water displacement. The batch digester with slurry of winery waste and zebra manure in the weight ratio of 1:2 was operated in a 1L container at 37°C for 30days. Co-digestion of winery waste and zebra manure produced higher amount of biogas as compared to zebra manure alone and winery waste alone. No biogas was produced by batch anaerobic digestion of winery waste alone. Chemical analysis of C/N ratio and total solids (TS) of zebra manure was 21.89 and 25.2 respectively. These values of C/N ratio and TS were quite high compared to values of other studied manures. Zebra manure also revealed unusually high concentration of Fe reaching 3600pm compared to other studies of manure. PCR with communal DNA of the digestate gave a positive hit for the presence of archaea species using standard archea primers; suggesting the presence of methanogens. Methanogens are key microbes in the production of biogas. Therefore, this study demonstrated the potential of zebra manure as an inoculum in the production of biogas.

Keywords: anaerobic digestion, biogas, co-digestion, methanogens

Procedia PDF Downloads 207
256 Experimental Study of an Isobaric Expansion Heat Engine with Hydraulic Power Output for Conversion of Low-Grade-Heat to Electricity

Authors: Maxim Glushenkov, Alexander Kronberg

Abstract:

Isobaric expansion (IE) process is an alternative to conventional gas/vapor expansion accompanied by a pressure decrease typical of all state-of-the-art heat engines. The elimination of the expansion stage accompanied by useful work means that the most critical and expensive parts of ORC systems (turbine, screw expander, etc.) are also eliminated. In many cases, IE heat engines can be more efficient than conventional expansion machines. In addition, IE machines have a very simple, reliable, and inexpensive design. They can also perform all the known operations of existing heat engines and provide usable energy in a very convenient hydraulic or pneumatic form. This paper reports measurement made with the engine operating as a heat-to-shaft-power or electricity converter and a comparison of the experimental results to a thermodynamic model. Experiments were carried out at heat source temperature in the range 30–85 °C and heat sink temperature around 20 °C; refrigerant R134a was used as the engine working fluid. The pressure difference generated by the engine varied from 2.5 bar at the heat source temperature 40 °C to 23 bar at the heat source temperature 85 °C. Using a differential piston, the generated pressure was quadrupled to pump hydraulic oil through a hydraulic motor that generates shaft power and is connected to an alternator. At the frequency of about 0.5 Hz, the engine operates with useful powers up to 1 kW and an oil pumping flowrate of 7 L/min. Depending on the temperature of the heat source, the obtained efficiency was 3.5 – 6 %. This efficiency looks very high, considering such a low temperature difference (10 – 65 °C) and low power (< 1 kW). The engine’s observed performance is in good agreement with the predictions of the model. The results are very promising, showing that the engine is a simple and low-cost alternative to ORC plants and other known energy conversion systems, especially at low temperatures (< 100 °C) and low power range (< 500 kW) where other known technologies are not economic. Thus low-grade solar, geothermal energy, biomass combustion, and waste heat with a temperature above 30 °C can be involved into various energy conversion processes.

Keywords: isobaric expansion, low-grade heat, heat engine, renewable energy, waste heat recovery

Procedia PDF Downloads 187
255 Cotton Fiber Quality Improvement by Introducing Sucrose Synthase (SuS) Gene into Gossypium hirsutum L.

Authors: Ahmad Ali Shahid, Mukhtar Ahmed

Abstract:

The demand for long staple fiber having better strength and length is increasing with the introduction of modern spinning and weaving industry in Pakistan. Work on gene discovery from developing cotton fibers has helped to identify dozens of genes that take part in cotton fiber development and several genes have been characterized for their role in fiber development. Sucrose synthase (SuS) is a key enzyme in the metabolism of sucrose in a plant cell, in cotton fiber it catalyzes a reversible reaction, but preferentially converts sucrose and UDP into fructose and UDP-glucose. UDP-glucose (UDPG) is a nucleotide sugar act as a donor for glucose residue in many glycosylation reactions and is essential for the cytosolic formation of sucrose and involved in the synthesis of cell wall cellulose. The study was focused on successful Agrobacterium-mediated stable transformation of SuS gene in pCAMBIA 1301 into cotton under a CaMV35S promoter. Integration and expression of the gene were confirmed by PCR, GUS assay, and real-time PCR. Young leaves of SuS overexpressing lines showed increased total soluble sugars and plant biomass as compared to non-transgenic control plants. Cellulose contents from fiber were significantly increased. SEM analysis revealed that fibers from transgenic cotton were highly spiral and fiber twist number increased per unit length when compared with control. Morphological data from field plants showed that transgenic plants performed better in field conditions. Incorporation of genes related to cotton fiber length and quality can provide new avenues for fiber improvement. The utilization of this technology would provide an efficient import substitution and sustained production of long-staple fiber in Pakistan to fulfill the industrial requirements.

Keywords: agrobacterium-mediated transformation, cotton fiber, sucrose synthase gene, staple length

Procedia PDF Downloads 204
254 Short-Term Impact of a Return to Conventional Tillage on Soil Microbial Attributes

Authors: Promil Mehra, Nanthi Bolan, Jack Desbiolles, Risha Gupta

Abstract:

Agricultural practices affect the soil physical and chemical properties, which in turn influence the soil microorganisms as a function of the soil biological environment. On the return to conventional tillage (CT) from continuing no-till (NT) cropping system, a very little information is available from the impact caused by the intermittent tillage on the soil biochemical properties from a short-term (2-year) study period. Therefore, the contribution made by different microorganisms (fungal, bacteria) was also investigated in order to find out the effective changes in the soil microbial activity under a South Australian dryland faring system. This study was conducted to understand the impact of microbial dynamics on the soil organic carbon (SOC) under NT and CT systems when treated with different levels of mulching (0, 2.5 and 5 t/ha). Our results demonstrated that from the incubation experiment the cumulative CO2 emitted from CT system was 34.5% higher than NT system. Relatively, the respiration from surface layer (0-10 cm) was significantly (P<0.05) higher by 8.5% and 15.8 from CT; 8% and 18.9% from NT system w.r.t 10-20 and 20-30 cm respectively. Further, the dehydrogenase enzyme activity (DHA) and microbial biomass carbon (MBC) were both significantly lower (P<0.05) under CT, i.e., 7.4%, 7.2%, 6.0% (DHA) and 19.7%, 15.7%, 4% (MBC) across the different mulching levels (0, 2.5, 5 t/ha) respectively. In general, it was found that from both the tillage system the enzyme activity and MBC decreased with the increase in depth (0-10, 10-20 and 20-30 cm) and with the increase in mulching rate (0, 2.5 and 5 t/ha). From the perspective of microbial stress, there was 28.6% higher stress under CT system compared to NT system. Whereas, the microbial activity of different microorganisms like fungal and bacterial activities were determined by substrate-induced inhibition respiration using antibiotics like cycloheximide (16 mg/gm of soil) and streptomycin sulphate (14 mg/gm of soil), by trapping the CO2 using an alkali (0.5 M NaOH) solution. The microbial activities were confirmed through platting technique, where it was that found bacterial activities were 46.2% and 38.9% higher than fungal activity under CT and NT system. In conclusion, it was expected that changes in the relative abundance and activity of different microorganisms (bacteria and fungi) under different tillage systems could significantly affect the C cycling and storage due to its unique structures and differential interactions with the soil physical properties.

Keywords: tillage, soil respiration, MBC, fungal-bacterial activity

Procedia PDF Downloads 234
253 The Presence of Investor Overconfidence in the South African Exchange Traded Fund Market

Authors: Damien Kunjal, Faeezah Peerbhai

Abstract:

Despite the increasing popularity of exchange-traded funds (ETFs), ETF investment choices may not always be rational. Excess trading volume, misevaluations of securities, and excess return volatility present in financial markets can be attributed to the influence of the overconfidence bias. Whilst previous research has explored the overconfidence bias in stock markets; this study focuses on trading in ETF markets. Therefore, the objective of this study is to investigate the presence of investor overconfidence in the South African ETF market. Using vector autoregressive models, the lead-lag relationship between market turnover and the market return is examined for the market of South African ETFs tracking domestic benchmarks and for the market of South African ETFs tracking international benchmarks over the period November 2000 till August 2019. Consistent with the overconfidence hypothesis, a positive relationship between current market turnover and lagged market return is found for both markets, even after controlling for market volatility and cross-sectional dispersion. This relationship holds for both market and individual ETF turnover suggesting that investors are overconfident when trading in South African ETFs tracking domestic benchmarks and South African ETFs tracking international benchmarks since trading activity depends on past market returns. Additionally, using the global recession as a structural break, this study finds that investor overconfidence is more pronounced after the global recession suggesting that investors perceive ETFs as risk-reducing assets due to their diversification benefits. Overall, the results of this study indicate that the overconfidence bias has a significant influence on ETF investment choices, therefore, suggesting that the South African ETF market is inefficient since investors’ decisions are based on their biases. As a result, the effect of investor overconfidence can account for the difference between the fair value of ETFs and its current market price. This finding has implications for policymakers whose responsibility is to promote the efficiency of the South African ETF market as well as ETF investors and traders who trade in the South African ETF market.

Keywords: exchange-traded fund, market return, market turnover, overconfidence, trading activity

Procedia PDF Downloads 133
252 Evaluation of Living Mulches Effectiveness in Weed Suppression, and Seed Yield of Black cumin (Nigella sativa L.) Under Salt Stress

Authors: Fatemeh Benakashani, Hossein Tavakoli, Elias Soltani

Abstract:

To ensure the sustainability of crop cultivation and rural economies, it is imperative that we focus on cultivating resilient crops capable of withstanding salt stress. However, the effective management of weeds in salt-affected soils remains a significant challenge. This study investigates the impact of living mulches, specifically Berseem clover (Trifolium alexandrinum) and Barley (Hordeum vulgare), on weed control, as well as the quality and yield of Black cumin (Nigella sativa) in salt-affected soil. In our research, we employed a two-fold mowing strategy for the living mulches: once following crop establishment and once before the flowering stage. Notably, the weed-free plots demonstrated Black cumin's seed yield, and oil content (31.1% to 34.3%), consistent with previous studies, highlighting its potential for the reclamation and utilization of salt-affected lands. However, Black cumin exhibited limited competitiveness against prevalent weeds in the field, such as Amaranthus retroflexus, Chenopodium album, and Portulaca oleracea, which significantly diminished both the 1000 grain mass in plots where weeds were present. Interestingly, the introduction of living mulches led to improvements in seed yield and seed oil content when compared to both weed-free and weed-infested plots. Notably, Berseem clover exhibited greater biomass than Barley, indicating its heightened competitiveness against weeds. Nevertheless, it's worth noting that in the long term, Berseem clover also competed with the main crop, thereby limiting overall productivity. Consequently, we recommend relocating the Berseem clover living mulch following the establishment of Black cumin as a strategy for weed management in Black cumin fields situated in salt-affected soils.

Keywords: weed management, competition, clover, barley, medicinal plant

Procedia PDF Downloads 34
251 Single and Combined Effects of Diclofenac and Ibuprofen on Daphnia Magna and Some Phytoplankton Species

Authors: Ramatu I. Sha’aba, Mathias A. Chia, Abdullahi B. Alhassan, Yisa A. Gana, Ibrahim M. Gadzama

Abstract:

Globally, Diclofenac (DLC) and Ibuprofen (IBU) are the most prescribed drugs due to their antipyretic and analgesic properties. They are, however, highly toxic at elevated doses, with the involvement of an already described oxidative stress pathway. As a result, there is rising concern about the ecological fate of analgesics on non-target organisms such as Daphnia magna and Phytoplankton species. Phytoplankton is a crucial component of the aquatic ecosystem that serves as the primary producer at the base of the food chain. However, the increasing presence and levels of micropollutants such as these analgesics can disrupt their community structure, dynamics, and ecosystem functions. This study presents a comprehensive series of the physiology, antioxidant response, immobilization, and risk assessment of Diclofenac and Ibuprofen’s effects on Daphnia magna and the Phytoplankton community using a laboratory approach. The effect of DLC and IBU at 27.16 µg/L and 20.89 µg/L, respectively, for a single exposure and 22.39 µg/L for combined exposure of DLC and IBU for the experimental setup. The antioxidant response increased with increasing levels of stress. The highest stressor to the organism was 1000 µg/L of DLC and 10,000 µg/L of IBU. Peroxidase and glutathione -S-transferase activity was higher for Diclofenac + Ibuprofen. The study showed 60% and 70% immobilization of the organism at 1000 g L-1 of DLC and IBU. The two drugs and their combinations adversely impacted Phytoplankton biomass with increased exposure time. However, combining the drugs resulted in more significant adverse effects on physiological and pigment content parameters. The risk assessment calculation for the risk quotient and toxic unit of the analgesic reveals from this study was RQ Diclofenac = 8.41, TU Diclofenac = 3.68, and RQ Ibuprofen = 718.05 and TU Ibuprofen = 487.70. Hence, these findings demonstrate that the current exposure concentrations of Diclofenac and Ibuprofen can immobilize D. magna. This study shows the dangers of multiple drugs in the aquatic environment because their combinations could have additive effects on the structure and functions of Phytoplankton and are capable of immobilizing D. magna.

Keywords: algae, analgesic drug, daphnia magna, toxicity

Procedia PDF Downloads 48
250 Agro-Measures Influence Soil Physical Parameters in Alternative Farming

Authors: Laura Masilionyte, Danute Jablonskyte-Rasce, Kestutis Venslauskas, Zita Kriauciuniene

Abstract:

Alternative farming systems are used to cultivate high-quality food products and sustain the viability and fertility of the soil. Plant nutrition in all ecosystems depends not only on fertilization intensity or soil richness in organic matter but also on soil physical parameters –bulk density, structure, pores with the optimum moisture and air ratio available to plants. The field experiments of alternative (sustainable and organic) farming systems were conducted at Joniskelis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry in 2006–2016. The soil of the experimental site was Endocalcari-Endohypogleyic Cambisol (CMg-n-w-can). In alternative farming systems, farmyard manure, straw and catch crops for green manure were used for fertilization both in the soil with low and moderate humus contents. It had a more significant effect in the 0–20 cm depth layer on soil moisture than on other physical soil properties. In the agricultural systems, where catch crops were grown, soil physical characteristics did not differ significantly before their biomass incorporation, except for the moisture content, which was lower in rainy periods and higher in drier periods than in the soil of farming systems without catch crops. Soil bulk density and porosity in the topsoil layer were more dependent on soil humus content than on agricultural measures used: in the soil with moderate humus content, compared with the soil with low humus content, bulk density was by 1.4% lower, and porosity by 1.8% higher. The research findings allow to make improvements in alternative farming systems by choosing appropriate combinations of organic fertilizers and catch crops that have a sustainable effect on soil and maintain the sustainability of soil productivity parameters. Rational fertilization systems, securing the stability of soil productivity parameters and crop rotation productivity will promote the development of organic agriculture.

Keywords: agro-measures, soil physical parameters, organic farming, sustainable farming

Procedia PDF Downloads 105
249 Laboratory Scale Production of Bio-Based Chemicals from Industrial Waste Feedstock in South Africa

Authors: P. Mandree, S. O. Ramchuran, F. O'Brien, L. Sethunya, S. Khumalo

Abstract:

South Africa is identified as one of the five emerging waste management markets, globally. The waste sector in South Africa influences the areas of energy, water and food at an economic and social level. Recently, South African industries have focused on waste valorization and diversification of the current product offerings in an attempt to reduce industrial waste, target a zero waste-to-landfill initiative and recover energy. South Africa has a number of waste streams including industrial and agricultural biomass, municipal waste and marine waste. Large volumes of agricultural and forestry residues, in particular, are generated which provides significant opportunity for production of bio-based fuels and chemicals. This could directly impact development of a rural economy. One of the largest agricultural industries is the sugar industry, which contributes significantly to the country’s economy and job creation. However, the sugar industry is facing challenges due to fluctuations in sugar prices, increasing competition with low-cost global sugar producers, increasing energy and agricultural input costs, lower consumption and aging facilities. This study is aimed at technology development for the production of various bio-based chemicals using feedstock from the sugar refining process. Various indigenous bacteria and yeast species were assessed for the potential to produce platform chemicals in flask studies and at 30 L fermentation scale. Quantitative analysis of targeted bio-based chemicals was performed using either gas chromatography or high pressure liquid chromatography to assess production yields and techno-economics in order to compare performance to current commercial benchmark processes. The study also creates a decision platform for the research direction that is required for strain development using Industrial Synthetic Biology.

Keywords: bio-based chemicals, biorefinery, industrial synthetic biology, waste valorization

Procedia PDF Downloads 98
248 Raising Antibodies against Epoxyscillirosidine, the Toxic Principle Contained in Moraea pallida Bak. in Rabbits

Authors: Hamza I. Isa, Gezina C. H. Ferreira, Jan E. Crafford, Christoffel J. Botha

Abstract:

Moraea pallida Bak. (yellow tulip) poisoning is the most important plant-induced cardiac glycoside toxicosis in South Africa. Cardiac glycoside poisonings collectively account for about 33 and 10 % mortalities due to plants, in large and small stock respectively, in South Africa. The toxic principle is 1α, 2α-epoxyscillirosidine, a bufadienolide. The aim of the study was to investigate the potential to develop a vaccine against epoxyscillirosidine. Epoxyscillirosidine and the related bufadienolides proscillaridin and bufalin, which are commercially available, were conjugated to the carrier proteins [Hen ovalbumin (OVA), bovine serum albumin (BSA) and keyhole limpet haemocyanin (KLH)], rendering them immunogenic. Adult male New Zealand White rabbits were immunized. In Trials 1 and 2, rabbits (n=6) were, each assigned to two groups. Experimental animals (n=3; n=4) were vaccinated with epoxyscillirosidine-OVA conjugate, while the control (n=3; n=2) were vaccinated with OVA, using Freund’s complete and incomplete and Montanide adjuvants, for Trials 1 and 2, respectively. In Trial 3, rabbits (n=15), randomly allocated to 5 equal groups (I, II, III, IV and V), were vaccinated with proscillaridin-BSA, bufalin-BSA, epoxyscillirosidine-KLH, epoxyscillirosidine-BSA conjugates, and BSA respectively, using Montanide as adjuvant. Vaccination was on Days 0, 21 and 42. Additional vaccinations were done on Day 56 and 63 for Trial 1. Vaccination was by intradermal injection of 0.4 ml of the immunogen (4 mg/ml [Trial 1] and 8 mg/ml for Trials 2 and Trial 3, respectively). Blood was collected pre-vaccination and at 3 week intervals following each vaccination. Antibody response was determined using an indirect ELISA. There was poor immune response associated with the dose (0.4 mg per rabbit) and adjuvant used in Trial 1. Antibodies were synthesized against the conjugate administered in Trial 2. For Trail 3, antibodies against the immunogens were successfully raised in rabbits with epoxyscillirosidine-KLH inducing the highest immune response. The antibodies raised against proscillaridin and bufalin cross-reacted with epoxyscillirosidine when used as antigen in the ELISA. The study successfully demonstrated the synthesis of antibodies against the bufadienolide conjugates administered. The cross-reactivity of proscillaridin and bufalin with epoxyscillirosidine could potentially be utilized as alternative to epoxyscillirosidine in future studies to prevent yellow tulp poisoning by vaccination.

Keywords: antibodies , bufadienolides, cross-reactivity, epoxyscillirosidine, Moraea pallida, poisoning

Procedia PDF Downloads 134
247 Anaerobic Digestion Batch Study of Taxonomic Variations in Microbial Communities during Adaptation of Consortium to Different Lignocellulosic Substrates Using Targeted Sequencing

Authors: Priyanka Dargode, Suhas Gore, Manju Sharma, Arvind Lali

Abstract:

Anaerobic digestion has been widely used for production of methane from different biowastes. However, the complexity of microbial communities involved in the process is poorly understood. The performance of biogas production process concerning the process productivity is closely coupled to its microbial community structure and syntrophic interactions amongst the community members. The present study aims at understanding taxonomic variations occurring in any starter inoculum when acclimatised to different lignocellulosic biomass (LBM) feedstocks relating to time of digestion. The work underlines use of high throughput Next Generation Sequencing (NGS) for validating the changes in taxonomic patterns of microbial communities. Biomethane Potential (BMP) batches were set up with different pretreated and non-pretreated LBM residues using the same microbial consortium and samples were withdrawn for studying the changes in microbial community in terms of its structure and predominance with respect to changes in metabolic profile of the process. DNA of samples withdrawn at different time intervals with reference to performance changes of the digestion process, was extracted followed by its 16S rRNA amplicon sequencing analysis using Illumina Platform. Biomethane potential and substrate consumption was monitored using Gas Chromatography(GC) and reduction in COD (Chemical Oxygen Demand) respectively. Taxonomic analysis by QIIME server data revealed that microbial community structure changes with different substrates as well as at different time intervals. It was observed that biomethane potential of each substrate was relatively similar but, the time required for substrate utilization and its conversion to biomethane was different for different substrates. This could be attributed to the nature of substrate and consequently the discrepancy between the dominance of microbial communities with regards to different substrate and at different phases of anaerobic digestion process. Knowledge of microbial communities involved would allow a rational substrate specific consortium design which will help to reduce consortium adaptation period and enhance the substrate utilisation resulting in improved efficacy of biogas process.

Keywords: amplicon sequencing, biomethane potential, community predominance, taxonomic analysis

Procedia PDF Downloads 502
246 Extraction, Characterization, and Applicability of Rich β-Glucan Fractions from Fungal Biomass

Authors: Zaida Perez-Bassart, Berta Polanco-Estibalez, Maria Jose Fabra, Amparo Lopez-Rubio, Antonio Martinez-Abad

Abstract:

Mushroom production has enormously increased in recent years, not only as food products but also for applications in pharmaceuticals, nutraceuticals, and cosmetics. Consequently, interest in its chemical composition, nutritional value, and therapeutic properties has also increased. Fungi are rich in bioactive compounds such as polysaccharides, polyphenols, glycopeptides, and ergosterol, of great medicinal value, but within polysaccharides, β-glucans are the most prominent molecules. They are formed by D-glucose monomers, linked by β-glucosidic bonds β-(1,3) with side chains linked by β-(1,6) bonds. The number and position of the β-(1,6) branches strongly influence the arrangement of the tertiary structure, which, together with the molecular weight, determine the different attributed bioactivities (immunostimulating, anticancer, antimicrobial, prebiotic, etc.) and physico-chemical properties (solubility, bioaccessibility, viscosity or emulsifying). On the other hand, there is a growing interest in the study of fungi as an alternative source of chitin obtained from the by-products of the fungal industry. In this work, a cascade extraction process using aqueous neutral and alkaline treatments was carried out for Grifola frondosa and Lentinula edodes, and the compositional analysis and functional properties of each fraction were characterized. Interestingly, the first fraction obtained by using aqueous treatment at room temperature was the richest in polysaccharides, proteins, and polyphenols, thus obtaining a greater antioxidant capacity than in the other fractions. In contrast, the fractions obtained by alkaline treatments showed a higher degree of β-glucans purification compared to aqueous extractions but a lower extraction yield. Results revealed the different structural recalcitrance of β-glucans, preferentially linked to proteins or chitin depending on the fungus type, which had a direct impact on the functionalities and bioactivities of each fraction.

Keywords: fungi, mushroom, β-glucans, chitin

Procedia PDF Downloads 116
245 Land Degradation Assessment through Spatial Data Integration in Eastern Chotanagpur Plateau, India

Authors: Avijit Mahala

Abstract:

Present study is primarily concerned with the physical processes and status of land degradation in a tropical plateau fringe. Chotanagpur plateau is one of the most water erosion related degraded areas of India. The granite gneiss geological formation, low to medium developed soil cover, undulating lateritic uplands, high drainage density, low to medium rainfall (100-140cm), dry tropical deciduous forest cover makes the Silabati River basin a truly representative of the tropical environment. The different physical factors have been taken for land degradation study includes- physiographic formations, hydrologic characteristics, and vegetation cover. Water erosion, vegetal degradation, soil quality decline are the major processes of land degradation in study area. Granite-gneiss geological formation is responsible for developing undulating landforms. Less developed soil profile, low organic matter, poor structure of soil causes high soil erosion. High relief and sloppy areas cause unstable environment. The dissected highland causes topographic hindrance in productivity. High drainage density and frequency in rugged upland and intense erosion in sloppy areas causes high soil erosion of the basin. Decreasing rainfall and increasing aridity (low P/PET) threats water stress condition. Green biomass cover area is also continuously declining. Through overlaying the different physical factors (geological formation, soil characteristics, geomorphological characteristics, etc.) of considerable importance in GIS environment the varying intensities of land degradation areas has been identified. Middle reaches of Silabati basin with highly eroded laterite soil cover areas are more prone to land degradation.

Keywords: land degradation, tropical environment, lateritic upland, undulating landform, aridity, GIS environment

Procedia PDF Downloads 113
244 Arsenic (III) Removal by Zerovalent Iron Nanoparticles Synthesized with the Help of Tea Liquor

Authors: Tulika Malviya, Ritesh Chandra Shukla, Praveen Kumar Tandon

Abstract:

Traditional methods of synthesis are hazardous for the environment and need nature friendly processes for the treatment of industrial effluents and contaminated water. Use of plant parts for the synthesis provides an efficient alternative method. In this paper, we report an ecofriendly and nonhazardous biobased method to prepare zerovalent iron nanoparticles (ZVINPs) using the liquor of commercially available tea. Tea liquor as the reducing agent has many advantages over other polymers. Unlike other polymers, the polyphenols present in tea extract are nontoxic and water soluble at room temperature. In addition, polyphenols can form complexes with metal ions and thereafter reduce the metals. Third, tea extract contains molecules bearing alcoholic functional groups that can be exploited for reduction as well as stabilization of the nanoparticles. Briefly, iron nanoparticles were prepared by adding 2.0 g of montmorillonite K10 (MMT K10) to 5.0 mL of 0.10 M solution of Fe(NO3)3 to which an equal volume of tea liquor was then added drop wise over 20 min with constant stirring. The color of the mixture changed from whitish yellow to black, indicating the formation of iron nanoparticles. The nanoparticles were adsorbed on montmorillonite K10, which is safe and aids in the separation of hazardous arsenic species simply by filtration. Particle sizes ranging from 59.08±7.81 nm were obtained which is confirmed by using different instrumental analyses like IR, XRD, SEM, and surface area studies. Removal of arsenic was done via batch adsorption method. Solutions of As(III) of different concentrations were prepared by diluting the stock solution of NaAsO2 with doubly distilled water. The required amount of in situ prepared ZVINPs supported on MMT K10 was added to a solution of desired strength of As (III). After the solution had been stirred for the preselected time, the solid mass was filtered. The amount of arsenic [in the form of As (V)] remaining in the filtrate was measured using ion chromatograph. Stirring of contaminated water with zerovalent iron nanoparticles supported on montmorillonite K10 for 30 min resulted in up to 99% removal of arsenic as As (III) from its solution at both high and low pH (2.75 and 11.1). It was also observed that, under similar conditions, montmorillonite K10 alone provided only <10% removal of As(III) from water. Adsorption at low pH with precipitation at higher pH has been proposed for As(III) removal.

Keywords: arsenic removal, montmorillonite K10, tea liquor, zerovalent iron nanoparticles

Procedia PDF Downloads 99
243 The Effect of Relocating a Red Deer Stag on the Size of Its Home Range and Activity

Authors: Erika Csanyi, Gyula Sandor

Abstract:

In the course of the examination, we sought to answer the question of how and to what extent the home range and daily activity of a deer stag relocated from its habitual surroundings changes. We conducted the examination in two hunting areas in Hungary, about 50 km from one another. The control area was in the north of Somogy County, while the sample area was an area of similar features in terms of forest cover, tree stock, agricultural structure, altitude above sea level, climate, etc. in the south of Somogy County. Three middle-aged red deer stags were captured with rocket nets, immobilized and marked with GPS-Plus Collars manufactured by Vectronic Aerospace Gesellschaft mit beschränkter Haftung. One captured species was relocated. We monitored deer movements over 24-hour periods at 3 months. In the course of the examination, we analysed the behaviour of the relocated species and those that remained in their original habitat, as well as the temporal evolution of their behaviour. We examined the characteristics of the marked species’ daily activities and the hourly distance they covered. We intended to find out the difference between the behaviour of the species remaining in their original habitat and of those relocated to a more distant, but similar habitat. In summary, based on our findings, it can be established that such enforced relocations to a different habitat (e.g., game relocation) significantly increases the home range of the species in the months following relocation. Home ranges were calculated using the full data set and the minimum convex polygon (MCP) method. Relocation did not increase the nocturnal and diurnal movement activity of the animal in question. Our research found that the home range of the relocated species proved to be significantly higher than that of those species that were not relocated. The results have been presented in tabular form and have also been displayed on a map. Based on the results, it can be established that relocation inherently includes the risk of falling victim to poaching, vehicle collision. It was only in the third month following relocation that the home range of the relocated species subsided to the level of those species that were not relocated. It is advisable to take these observations into consideration in relocating red deer for nature conservation or game management purposes.

Keywords: Cervus elaphus, home range, relocation, red deer stag

Procedia PDF Downloads 110
242 Spatial Dynamic of Pico- and Nano-Phytoplankton Communities in the Mouth of the Seine River

Authors: M. Schapira, S. Françoise, F. Maheux, O. Pierre-Duplessix, E. Rabiller, B. Simon, R. Le Gendre

Abstract:

Pico- and nano-phytoplankton are abundant and ecologically critical components of the autotrophic communities in the pelagic realm. While the role of physical forcing related to tidal cycle, water mass intrusion, nutrient availability, mixing and stratification on microphytoplankton blooms have been widely investigated, these are often overlooked for pico- and nano-phytoplankton especially in estuarine waters. This study investigates changes in abundances and community composition of pico- and nano-phytoplankton under different estuarine tidal conditions in the mouth of the Seine River in relation to nutrient availability, water column stratification and spatially localized currents. Samples were collected each day at high tide, over spring tide to neap tide cycle, from 21 stations homogeneously distributed in the Seine river month in May 2011. Vertical profiles of temperature, salinity and fluorescence were realized at each sampling station. Sub-surface water samples (i.e. 1 m depth) were collected for nutrients (i.e. N, P and Si), phytoplankton biomass (i.e. Chl a) and pico- and nano-phytoplankton enumeration and identification. Pico- and nano-phytoplankton populations were identified and quantified using flow cytometry. Total abundances tend to decrease from spring tide to neap tide. Samples were characterized by high abundances of Synechococcus and Cryptophyceae. The composition of the pico- and nano-phytoplankton varied greatly under the different estuarine tidal conditions. Moreover, at the scale of the river mouth, the pico- and nano-phytoplankton population exhibited patchy distribution patterns that were closely controlled by water mass intrusion from the Sea, freshwater inputs from the Seine River and the geomorphology of the river mouth. This study highlights the importance of physical forcing to the community composition of pico- and nano-phytoplankton that may be critical for the structure of the pelagic food webs in estuarine and adjacent coastal seas.

Keywords: nanophytoplancton, picophytoplankton, physical forcing, river mouth, tidal cycle

Procedia PDF Downloads 330
241 Potential of Lead Tolerant and Mobilizing Fungus for Plant Growth Promotion through Plant Growth Promoting Activity; A Promising Approach for Enhance Phytoremediation

Authors: Maria Manzoor, Iram Gul, Muhammad Arshad, Jean Kallerhoff

Abstract:

The potential of fungal isolates to be used in phytoremediation of widespread lead contaminated soil has been evaluated in this study. Five different fungal isolates (Trichoderma harzianum, Penicillium simplicissimum, Aspergillus flavus, Aspergillus niger and Mucor spp.) were obtained and tested for their tolerance to increasing concentration of lead (Pb) i.e. 100, 200, 300, 400 and 500 mgL-1 on PDA and PDB culture experiment. All strains were tolerant up to 500 mgL-1 following sequence; A. flavus > A. niger > Mucor spp. > P. simplicissimum > T. harzianum. Further the isolates were then monitored for possible effect on Pb solubility/mobility through soil incubation experiments and characterized for essays including pathogenicity, germination and root elongation and plant growth promoting activities including IAA (indole acetic acid), phosphorus solubilization and gibberellic acid (GA3) production. Results revealed that fungal isolates have positive effect on Pb mobility in soil and plant biomass production. Pb solubility was significantly (P> 0.05) increased in soil upon application of Mucor spp. P. simplicissimum and T. harzianum. when compared to control. Among different strains three isolates (Mucor spp., P. simplicissimum and T. harzianum) were nonpathogenic because no inhibitory effect of fungus was observed to plant growth when exposed to these strains in root shoot elongation essay. Particularly T. harzianum and P. simplicissimum showed great ability to increase root length by 1.1 and 1.3 folds and shoot length by 1.47 and 1.5 folds respectively under Pb stress (500 mgL-1). Significantly high production of IAA was observed in A. niger (26.7 μg/ml), Phosphorus solubilization was observed in T. harzianum (9.15 μg/ml) and GA3 production was observed in P. simplicissimum (11.02 μg/ml). From results it is concluded that Mucor spp., P. simplicissimum and T. harzianum have potential to increase Pb mobility and improving plant growth under highy Pb contamination, therefore can be used in microbially assisted phytoremediation of Pb contaminated soil.

Keywords: Pb tolerant fungus, Pb mobility, plant growth promoting activities, indole acetic acid (IAA)

Procedia PDF Downloads 248
240 An Enzyme Technology - Metnin™ - Enables the Full Replacement of Fossil-Based Polymers by Lignin in Polymeric Composites

Authors: Joana Antunes, Thomas Levée, Barbara Radovani, Anu Suonpää, Paulina Saloranta, Liji Sobhana, Petri Ihalainen

Abstract:

Lignin is an important component in the exploitation of lignocellulosic biomass. It has been shown that within the next years, the yield of added-value lignin-based chemicals and materials will generate renewable alternatives to oil-based products (e.g. polymeric composites, resins and adhesives) and enhance the economic feasibility of biorefineries. In this paper, a novel technology for lignin valorisation (METNIN™) is presented. METNIN™ is based on the oxidative action of an alkaliphilic enzyme in aqueous alkaline conditions (pH 10-11) at mild temperature (40-50 °C) combined with a cascading membrane operation, yielding a collection of lignin fractions (from oligomeric down to mixture of tri-, di- and monomeric units) with distinct molecular weight distribution, low polydispersity and favourable physicochemical properties. The alkaline process conditions ensure the high processibility of crude lignin in an aqueous environment and the efficiency of the enzyme, yielding better compatibility of lignin towards targeted applications. The application of a selected lignin fraction produced by METNIN™ as a suitable lignopolyol to completely replace a commercial polyol in polyurethane rigid foam formulations is presented as a prototype. Liquid lignopolyols with a high lignin content were prepared by oxypropylation and their full utilization in the polyurethane rigid foam formulation was successfully demonstrated. Moreover, selected technical specifications of different foam demonstrators were determined, including closed cell count, water uptake and compression characteristics. These specifications are within industrial standards for rigid foam applications. The lignin loading in the lignopolyol was a major factor determining the properties of the foam. In addition to polyurethane foam demonstrators, other examples of lignin-based products related to resins and sizing applications will be presented.

Keywords: enzyme, lignin valorisation, polyol, polyurethane foam

Procedia PDF Downloads 127
239 EDTA Assisted Phytoremediation of Cadmium by Enhancing Growth and Antioxidant Defense System in Brassica napus L.

Authors: Mujahid Farid, Shafaqat Ali, Muhammad Bilal Shakoor

Abstract:

Heavy metals pollution of soil is a prevalent global problem and oilseed rape (Brassica napus L.) are considered useful for the restoration of metal contaminated soils. Phytoextraction is an in-situ environment-friendly technique for the clean-up of contaminated soils. Response to cadmium (Cd) toxicity in combination with a chelator, Ethylenediamminetetraacetic acid (EDTA) was studied in oilseed rape grown hydroponically in greenhouse conditions under three levels of Cd (0, 10, and 50 µM) and two levels of EDTA (0 and 2.5 mM). Cd decreased plant growth, biomass and chlorophyll concentrations while the application of EDTA enhanced plant growth by reducing Cd-induced effects in Cd-stressed plants. Significant decrease in photosynthetic parameters was found by the Cd alone. Addition of EDTA improved the net photosynthetic and gas exchange capacity of plants under Cd stress. Cd at 10 and 50 μM significantly increased electrolyte leakage, the production of hydrogen peroxidase (H2O2) and malondialdehyde (MDA) and a significant reduction was observed in the activities of catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and superoxide dismutase under Cd stress plants. Application of EDTA at the rate of 2.5 mM alone and with combination of Cd increased the antioxidant enzymes activities and reduced the electrolyte leakage and production of H2O2 and MDA. Oilseed rape (Brassica napus L.) actively accumulated Cd in roots, stems and leaves and the addition of EDTA boosted the uptake and accumulation of Cd in oil seed rape by dissociating Cd in culture media. The present results suggest that under 8 weeks Cd-induced stress, application of EDTA significantly improve plant growth, chlorophyll content, photosynthetic, gas exchange capacity, improving enzymes activities and increased the metal uptake in roots, stems and leaves of oilseed rape (Brassica napus L.) respectively.

Keywords: antioxidant enzymes, cadmium, chelator, EDTA, growth, oilseed rape

Procedia PDF Downloads 359
238 Evaluation of Alternative Energy Sources for Energy Production in Turkey

Authors: Naci Büyükkaracığan, Murat Ahmet Ökmen

Abstract:

In parallel with the population growth rate, the need of human being for energy sources in the world is gradually increasing incessant. The addition of this situation that demand for energy will be busier in the future, industrialization, the rise in living standards and technological developments, especially in developing countries. Alternative energy sources have aroused interest due to reasons such as serious environmental issues that were caused by fossil energy sources, potentially decreasing reserves, different social, political and economic problems caused by dependency on source providing countries and price instability. Especially in developed countries as European countries and also U.S.A particularly, alternative energy sources such as wind, geothermal, solar and biomass energy, hydrolic and hydrogen have been utilized in different forms, especially in electricity production. It includes a review of technical and environmental factors for energy sources that are potential replacements for fossil fuels and examines their fitness to supply the energy for a high standard of living on a worldwide basis. Despite all developments, fossil energy sources have been overwhelmingly used all around the world in primary energy sources consumption and they will outnumber other energy sources in the short term. Today, parallel to population growth and economy in Turkey, energy sources consumption is increasingly continuing. On one side, Turkey, currently 80% dependent on energy providing countries, has been heavily conducting fossil energy sources raw material quest within its own borders in order to lower the percentage, and the other side, there have been many researches for exploring potential of alternative energy sources and utilization. This case will lead to both a decrease in foreign energy dependency and a variety of energy sources. This study showed the current energy potential of Turkey and presents historical development of these energy sources and their share in electricity production. The research also seeked for answers to arguments that if the potential can be sufficient in the future. As a result of this study, it was concluded that observed geothermal energy, particularly active tectonic regions of Turkey, to have an alternative energy potential could be considered to be valuable on bass wind and solar energy.

Keywords: alternative energy sources, energy productions, hydroenergy, solar energy, wind energy

Procedia PDF Downloads 602
237 Companies and Transplant Tourists to China

Authors: Pavel Porubiak, Lukas Kudlacek

Abstract:

Introduction Transplant tourism is a controversial method of obtaining an organ, and that goes all the more for a country such as China, where sources of evidence point out to the possibility of organs being harvested illegally. This research aimed at listing the individual countries these tourists come from, or which medical companies sell transplant related products in there, with China being used as an example. Materials and methods The methodology of scoping study was used for both parts of the research. The countries from which transplant tourists come to China were identified by a search through existing medical studies in the NCBI PubMed database, listed under the keyword ‘transplantation in China’. The search was not limited by any other criteria, but only the studies available for free – directly on PubMed or a linked source – were used. Other research studies on this topic were considered as well. The companies were identified through multiple methods. The first was an online search focused on medical companies and their products. The Bloomberg Service, used by stock brokers worldwide, was then used to identify the revenue of these companies in individual countries – if data were available – as well as their business presence in China. A search through the U.S. Securities and Exchange Commission was done in the same way. Also a search on the Chinese internet was done, and to obtain more results, a second online search was done as well. The results and discussion The extensive search has identified 14 countries with transplant tourists to China. The search for a similar studies or reports resulted in finding additional six countries. The companies identified by our research also amounted to 20. Eight of them are sourcing China with organ preservation products – of which one is just trying to enter the Chinese market, six with immunosuppressive drugs, four with transplant diagnostics, one with medical robots which Chinese doctors use for transplantation as well, and another one trying to enter the Chinese market with a consumable-type product also related to transplantation. The conclusion The question of the ethicality of transplant tourism may be very pressing, since as the research shows, just the sheer amount of participating countries, sourcing transplant tourists to another one, amounts to 20. The identified companies are facing risks due to the nature of transplantation business in China, as officially executed prisoners are used as sources, and widely cited pieces of evidence point out to illegal organ harvesting. Similar risks and ethical questions are also relevant to the countries sourcing the transplant tourists to China.

Keywords: China, illegal organ harvesting, transplant tourism, organ harvesting technology

Procedia PDF Downloads 112
236 Intensifying Approach for Separation of Bio-Butanol Using Ionic Liquid as Green Solvent: Moving Towards Sustainable Biorefinery

Authors: Kailas L. Wasewar

Abstract:

Biobutanol has been considered as a potential and alternative biofuel relative to the most popular biodiesel and bioethanol. End product toxicity is the major problems in commercialization of fermentation based process which can be reduce to some possible extent by removing biobutanol simultaneously. Several techniques have been investigated for removing butanol from fermentation broth such as stripping, adsorption, liquid–liquid extraction, pervaporation, and membrane solvent extraction. Liquid–liquid extraction can be performed with high selectivity and is possible to carry out inside the fermenter. Conventional solvents have few drawbacks including toxicity, loss of solvent, high cost etc. Hence alternative solvents must be explored for the same. Room temperature ionic liquids (RTILs) composed entirely of ions are liquid at room temperature having negligible vapor pressure, non-flammability, and tunable physiochemical properties for a particular application which term them as “designer solvents”. Ionic liquids (ILs) have recently gained much attention as alternatives for organic solvents in many processes. In particular, ILs have been used as alternative solvents for liquid–liquid extraction. Their negligible vapor pressure allows the extracted products to be separated from ILs by conventional low pressure distillation with the potential for saving energy. Morpholinium, imidazolium, ammonium, phosphonium etc. based ionic liquids have been employed for the separation biobutanol. In present chapter, basic concepts of ionic liquids and application in separation have been presented. Further, type of ionic liquids including, conventional, functionalized, polymeric, supported membrane, and other ionic liquids have been explored. Also the effect of various performance parameters on separation of biobutanol by ionic liquids have been discussed and compared for different cation and anion based ionic liquids. The typical methodology for investigation have been adopted such as contacting the equal amount of biobutanol and ionic liquids for a specific time say, 30 minutes to confirm the equilibrium. Further, biobutanol phase were analyzed using GC to know the concentration of biobutanol and material balance were used to find the concentration in ionic liquid.

Keywords: biobutanol, separation, ionic liquids, sustainability, biorefinery, waste biomass

Procedia PDF Downloads 41
235 Effect of Different Factors on Temperature Profile and Performance of an Air Bubbling Fluidized Bed Gasifier for Rice Husk Gasification

Authors: Dharminder Singh, Sanjeev Yadav, Pravakar Mohanty

Abstract:

In this work, study of temperature profile in a pilot scale air bubbling fluidized bed (ABFB) gasifier for rice husk gasification was carried out. Effects of different factors such as multiple cyclones, gas cooling system, ventilate gas pipe length, and catalyst on temperature profile was examined. ABFB gasifier used in this study had two sections, one is bed section and the other is freeboard section. River sand was used as bed material with air as gasification agent, and conventional charcoal as start-up heating medium in this gasifier. Temperature of different point in both sections of ABFB gasifier was recorded at different ER value and ER value was changed by changing the feed rate of biomass (rice husk) and by keeping the air flow rate constant for long durational of gasifier operation. ABFB with double cyclone with gas coolant system and with short length ventilate gas pipe was found out to be optimal gasifier design to give temperature profile required for high gasification performance in long duration operation. This optimal design was tested with different ER values and it was found that ER of 0.33 was most favourable for long duration operation (8 hr continuous operation), giving highest carbon conversion efficiency. At optimal ER of 0.33, bed temperature was found to be stable at 700 °C, above bed temperature was found to be at 628.63 °C, bottom of freeboard temperature was found to be at 600 °C, top of freeboard temperature was found to be at 517.5 °C, gas temperature was found to be at 195 °C, and flame temperature was found to be 676 °C. Temperature at all the points showed fluctuations of 10 – 20 °C. Effect of catalyst i.e. dolomite (20% with sand bed) was also examined on temperature profile, and it was found that at optimal ER of 0.33, the bed temperature got increased to 795 °C, above bed temperature got decreased to 523 °C, bottom of freeboard temperature got decreased to 548 °C, top of freeboard got decreased to 475 °C, gas temperature got decreased to 220 °C, and flame temperature got increased to 703 °C. Increase in bed temperature leads to higher flame temperature due to presence of more hydrocarbons generated from more tar cracking at higher temperature. It was also found that the use of dolomite with sand bed eliminated the agglomeration in the reactor at such high bed temperature (795 °C).

Keywords: air bubbling fluidized bed gasifier, bed temperature, charcoal heating, dolomite, flame temperature, rice husk

Procedia PDF Downloads 249
234 Evaluation of Wheat Varieties on Water Use Efficiency under Staggering Sowing times and Variable Irrigation Regimes under Timely and Late Sown Conditions

Authors: Vaibhav Baliyan, Shweta Mehrotra, S. S. Parihar

Abstract:

The agricultural productivity is challenged by climate change and depletion in natural resources, including water and land, which significantly affects the crop yield. Wheat is a thermo-sensitive crop and is prone to heat stress. High temperature decreases crop duration, yield attributes, and, subsequently, grain yield and biomass production. Terminal heat stress affects grain filling duration, grain yield, and yield attributes, thus causing a reduction in wheat yield. A field experiment was conducted at Indian Agricultural Research Institute, New Delhi, for two consecutive rabi seasons (2017-18 and 2018-19) on six varieties of wheat (early sown - HD 2967, HD 3086, HD 2894 and late sown - WR 544, HD 3059, HD 3117 ) with three moisture regimes (100%, 80%, and 60% ETc, and no irrigation) and six sowing dates in three replications to investigate the effect of different moisture regimes and sowing dates on growth, yield and water use efficiency of wheat for development of best management practices for mitigation of terminal heat stress. HD3086 and HD3059 gave higher grain yield than others under early sown and late sown conditions, respectively. Maximum soil moisture extraction was recorded from 0-30 cm soil depth across the sowing dates, irrigation regimes, and varieties. Delayed sowing resulted in reducing crop growth period and forced maturity, in turn, led to significant deterioration in all the yield attributing characters and, there by, reduction in yield, suggesting that terminal heat stress had greater impact on yield. Early sowing and irrigation at 80% ETc resulted in improved growth and yield attributes and water use efficiency in both the seasons and helped to some extent in reducing the risk of terminal heat stress of wheat grown on sandy loam soils of semi-arid regions of India.

Keywords: sowing, irrigation, yield, heat stress

Procedia PDF Downloads 59
233 Technico-Economical Study of a Rapeseed Based Biorefinery Using High Voltage Electrical Discharges and Ultrasounds as Pretreatment Technologies

Authors: Marwa Brahim, Nicolas Brosse, Nadia Boussetta, Nabil Grimi, Eugene Vorobiev

Abstract:

Rapeseed plant is an established product in France which is mainly dedicated to oil production. However, the economic potential of residues from this industry (rapeseed hulls, rapeseed cake, rapeseed straw etc.), has not been fully exploited. Currently, only low-grade applications are found in the market. As a consequence, it was deemed of interest to develop a technological platform aiming to convert rapeseed residues into value- added products. Specifically, a focus is given on the conversion of rapeseed straw into valuable molecules (e.g. lignin, glucose). Existing pretreatment technologies have many drawbacks mainly the production of sugar degradation products that limit the effectiveness of saccharification and fermentation steps in the overall scheme of the lignocellulosic biorefinery. In addition, the viability of fractionation strategies is a challenge in an environmental context increasingly standardized. Hence, the need to find cleaner alternatives with comparable efficiency by implementing physical phenomena that could destabilize the structural integrity of biomass without necessarily using chemical solvents. To meet environmental standards increasingly stringent, the present work aims to study the new pretreatment strategies involving lower consumption of chemicals with an attenuation of the severity of the treatment. These strategies consist on coupling physical treatments either high voltage electrical discharges or ultrasounds to conventional chemical pretreatments (soda and organosolv). Ultrasounds treatment is based on the cavitation phenomenon, and high voltage electrical discharges cause an electrical breakdown accompanied by many secondary phenomena. The choice of process was based on a technological feasibility study taking into account the economic profitability of the whole chain after products valorization. Priority was given to sugars valorization into bioethanol and lignin sale.

Keywords: high voltage electrical discharges, organosolv, pretreatment strategies, rapeseed straw, soda, ultrasounds

Procedia PDF Downloads 332
232 Exploring the Prebiotic Potential of Glucosamine

Authors: Shilpi Malik, Ramneek Kaur, Archita Gupta, Deepshikha Yadav, Ashwani Mathur, Manisha Singh

Abstract:

Glucosamine (GS) is the most abundant naturally occurring amino monosaccharide and is normally produced in human body via cellular glucose metabolism. It is regarded as the building block of cartilage matrix and is also an essential component of cartilage matrix repair mechanism. Besides that, it can also be explored for its prebiotic potential as many bacterial species are known to utilize the amino sugar by acquiring them to form peptidoglycans and lipopolysaccharides in the bacterial cell wall. Glucosamine can therefore be considered for its fermentation by bacterial species present in the gut. Current study is focused on exploring the potential of glucosamine as prebiotic. The studies were done to optimize considerable concentration of GS to reach GI tract and being fermented by the complex gut microbiota and food grade GS was added to various Simulated Fluids of Gastro-Intestinal Tract (GIT) such as Simulated Saliva, Gastric Fluid (Fast and Fed State), Colonic fluid, etc. to detect its degradation. Since it was showing increase in microbial growth (CFU) with time, GS was Further, encapsulated to increase its residential time in the gut, which exhibited improved resistance to the simulated Gut conditions. Moreover, prepared microspehres were optimized and characterized for their encapsulation efficiency and toxicity. To further substantiate the prebiotic activity of Glucosamine, studies were also performed to determine the effect of Glucosamine on the known probiotic bacterial species, i.e. Lactobacillus delbrueckii (MTCC 911) and Bifidobacteriumbifidum (MTCC 5398). Culture conditions for glucosamine will be added in MRS media in anaerobic tube at 0.20%, 0.40%, 0.60%, 0.80%, and 1.0%, respectively. MRS media without GS was included in this experiment as the control. All samples were autoclaved at 118° C for 15 min. Active culture was added at 5% (v/v) to each anaerobic tube after cooling to room temperature and incubated at 37° C then determined biomass and pH and viable count at incubation 18h. The experiment was completed in triplicate and the results were presented as Mean ± SE (Standard error).The experimental results are conclusive and suggest Glucosamine to hold prebiotic properties.

Keywords: gastro intestinal tract, microspheres, peptidoglycans, simulated fluid

Procedia PDF Downloads 306
231 The Strategic Engine Model: Redefined Strategy Structure, as per Market-and Resource-Based Theory Application, Tested in the Automotive Industry

Authors: Krassimir Todorov

Abstract:

The purpose of the paper is to redefine the levels of structure of corporate, business and functional strategies that were established over the past several decades, to a conceptual model, consisting of corporate, business and operations strategies, that are reinforced by functional strategies. We will propose a conceptual framework of different perspectives in the role of strategic operations as a separate strategic place and reposition the remaining functional strategies as supporting tools, existing at all three levels. The proposed model is called ‘the strategic engine’, since the mutual relationships of its ingredients are identical with main elements and working principle of the internal combustion engine. Based on theoretical essence, related to every strategic level, we will prove that the strategic engine model is useful for managers seeking to safeguard the competitive advantage of their companies. Each strategy level is researched through its basic elements. At the corporate level we examine the scope of firm’s product, the vertical and geographical coverage. At the business level, the point of interest is limited to the SWOT analysis’ basic elements. While at operations level, the key research issue relates to the scope of the following performance indicators: cost, quality, speed, flexibility and dependability. In this relationship, the paper provides a different view for the role of operations strategy within the overall strategy concept. We will prove that the theoretical essence of operations goes far beyond the scope of traditionally accepted business functions. Exploring the applications of Resource-based theory and Market-based theory within the strategic levels framework, we will prove that there is a logical consequence of the theoretical impact in corporate, business and operations strategy – at every strategic level, the validity of one theory is substituted to the level of the other. Practical application of the conceptual model is tested in automotive industry. Actually, the proposed theoretical concept is inspired by a leading global automotive group – Inchcape PLC, listed on the London Stock Exchange, and constituent of the FTSE 250 Index.

Keywords: business strategy, corporate strategy, functional strategies, operations strategy

Procedia PDF Downloads 150