Search results for: solvent dependent
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3232

Search results for: solvent dependent

3082 Inventory Decisions for Perishable Products with Age and Stock Dependent Demand Rate

Authors: Maher Agi, Hardik Soni

Abstract:

This paper presents a deterministic model for optimized control of the inventory of a perishable product subject to both physical deterioration and degradation of its freshness condition. The demand for the product depends on its current inventory level and freshness condition. Our model allows for any positive amount of end of cycle inventory. Some useful conditions that characterize the optimal solution of the model are derived and an algorithm is presented for finding the optimal values of the price, the inventory cycle, the end of cycle inventory level and the order quantity. Numerical examples are then given. Our work shows how the product freshness in conjunction with the inventory deterioration affects the inventory management decisions.

Keywords: inventory management, lot sizing, perishable products, deteriorating inventory, age-dependent demand, stock-dependent demand

Procedia PDF Downloads 214
3081 Preparation and Evaluation of Gelatin-Hyaluronic Acid-Polycaprolactone Membrane Containing 0.5 % Atorvastatin Loaded Nanostructured Lipid Carriers as a Nanocomposite Scaffold for Skin Tissue Engineering

Authors: Mahsa Ahmadi, Mehdi Mehdikhani-Nahrkhalaji, Jaleh Varshosaz, Shadi Farsaei

Abstract:

Gelatin and hyaluronic acid are commonly used in skin tissue engineering scaffolds, but because of their low mechanical properties and high biodegradation rate, adding a synthetic polymer such as polycaprolactone could improve the scaffold properties. Therefore, we developed a gelatin-hyaluronic acid-polycaprolactone scaffold, containing 0.5 % atorvastatin loaded nanostructured lipid carriers (NLCs) for skin tissue engineering. The atorvastatin loaded NLCs solution was prepared by solvent evaporation method and freeze drying process. Synthesized atorvastatin loaded NLCs was added to the gelatin and hyaluronic acid solution, and a membrane was fabricated with solvent evaporation method. Thereafter it was coated by a thin layer of polycaprolactone via spine coating set. The resulting scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. Moreover, mechanical properties, in vitro degradation in 7 days period, and in vitro drug release of scaffolds were also evaluated. SEM images showed the uniform distributed NLCs with an average size of 100 nm in the scaffold structure. Mechanical test indicated that the scaffold had a 70.08 Mpa tensile modulus which was twofold of tensile modulus of normal human skin. A Franz-cell diffusion test was performed to investigate the scaffold drug release in phosphate buffered saline (pH=7.4) medium. Results showed that 72% of atorvastatin was released during 5 days. In vitro degradation test demonstrated that the membrane was degradated approximately 97%. In conclusion, suitable physicochemical and biological properties of membrane indicated that the developed gelatin-hyaluronic acid-polycaprolactone nanocomposite scaffold containing 0.5 % atorvastatin loaded NLCs could be used as a good candidate for skin tissue engineering applications.

Keywords: atorvastatin, gelatin, hyaluronic acid, nano lipid carriers (NLCs), polycaprolactone, skin tissue engineering, solvent casting, solvent evaporation

Procedia PDF Downloads 229
3080 Optimization of Synergism Extraction of Toxic Metals (Lead, Copper) from Chlorides Solutions with Mixture of Cationic and Solvating Extractants

Authors: F. Hassaine-Sadi, S. Chelouaou

Abstract:

In recent years, environmental contamination by toxic metals such as Pb, Cu, Ni, Zn ... has become a worldwide crucial problem, particularly in some areas where the population depends on groundwater for drinking daily consumption. Thus, the sources of metal ions come from the metal manufacturing industry, fertilizers, batteries, paints, pigments and so on. Solvent extraction of metal ions has given an important role in the development of metal purification processes such as the synergistic extraction of some divalent cations metals ( M²⁺), the ions metals from various sources. This work consists of a water purification technique that involves the lead and copper systems: Pb²⁺, H₃O+, Cl⁻ and Cu²⁺, H₃O⁺, Cl⁻ for diluted solutions by a mixture of tri-n-octylphosphine oxide (TOPO) or Tri-n-butylphosphate(TBP) and di (2-ethyl hexyl) phosphoric acid (HDEHP) dissolved in kerosene. The study of the fundamental parameters influencing the extraction synergism: cation exchange/extraction solvent have been examined.

Keywords: synergistic extraction, lead, copper, environment

Procedia PDF Downloads 410
3079 Ruta graveolens Fingerprints Obtained with Reversed-Phase Gradient Thin-Layer Chromatography with Controlled Solvent Velocity

Authors: Adrian Szczyrba, Aneta Halka-Grysinska, Tomasz Baj, Tadeusz H. Dzido

Abstract:

Since prehistory, plants were constituted as an essential source of biologically active substances in folk medicine. One of the examples of medicinal plants is Ruta graveolens L. For a long time, Ruta g. herb has been famous for its spasmolytic, diuretic, or anti-inflammatory therapeutic effects. The wide spectrum of secondary metabolites produced by Ruta g. includes flavonoids (eg. rutin, quercetin), coumarins (eg. bergapten, umbelliferone) phenolic acids (eg. rosmarinic acid, chlorogenic acid), and limonoids. Unfortunately, the presence of produced substances is highly dependent on environmental factors like temperature, humidity, or soil acidity; therefore standardization is necessary. There were many attempts of characterization of various phytochemical groups (eg. coumarins) of Ruta graveolens using the normal – phase thin-layer chromatography (TLC). However, due to the so-called general elution problem, usually, some components remained unseparated near the start or finish line. Therefore Ruta graveolens is a very good model plant. Methanol and petroleum ether extract from its aerial parts were used to demonstrate the capabilities of the new device for gradient thin-layer chromatogram development. The development of gradient thin-layer chromatograms in the reversed-phase system in conventional horizontal chambers can be disrupted by problems associated with an excessive flux of the mobile phase to the surface of the adsorbent layer. This phenomenon is most likely caused by significant differences between the surface tension of the subsequent fractions of the mobile phase. An excessive flux of the mobile phase onto the surface of the adsorbent layer distorts the flow of the mobile phase. The described effect produces unreliable, and unrepeatable results, causing blurring and deformation of the substance zones. In the prototype device, the mobile phase solution is delivered onto the surface of the adsorbent layer with controlled velocity (by moving pipette driven by 3D machine). The delivery of the solvent to the adsorbent layer is equal to or lower than that of conventional development. Therefore chromatograms can be developed with optimal linear mobile phase velocity. Furthermore, under such conditions, there is no excess of eluent solution on the surface of the adsorbent layer so the higher performance of the chromatographic system can be obtained. Directly feeding the adsorbent layer with eluent also enables to perform convenient continuous gradient elution practically without the so-called gradient delay. In the study, unique fingerprints of methanol and petroleum ether extracts of Ruta graveolens aerial parts were obtained with stepwise gradient reversed-phase thin-layer chromatography. Obtained fingerprints under different chromatographic conditions will be compared. The advantages and disadvantages of the proposed approach to chromatogram development with controlled solvent velocity will be discussed.

Keywords: fingerprints, gradient thin-layer chromatography, reversed-phase TLC, Ruta graveolens

Procedia PDF Downloads 261
3078 3D Linear and Cyclic Homo-Peptide Crystals Forged by Supramolecular Swelling Self-Assembly

Authors: Wenliang Song, Yu Zhang, Hua Jin, Il Kim

Abstract:

The self-assembly of the polypeptide (PP) into well-defined structures at different length scales is both biomimetic relevant and fundamentally interesting. Although there are various reports of nanostructures fabricated by the self-assembly of various PPs, directed self-assembly of PP into three-dimensional (3D) hierarchical structure has proven to be difficult, despite their importance for biological applications. Herein, an efficient method has been developed through living polymerization of phenylalanine N-Carboxy anhydride (NCA) towards the linear and cyclic polyphenylalanine, and the new invented swelling methodology can form diverse hierarchical polypeptide crystals. The solvent-dependent self-assembly behaviors of these homopolymers were characterized by high-resolution imaging tools such as atomic force microscopy, transmission electron microscopy, scanning electron microscope. The linear and cyclic polypeptide formed 3D nano hierarchical shapes, such as a sphere, cubic, stratiform and hexagonal star in different solvents. Notably, a crystalline packing model was proposed to explain the formation of 3D nanostructures based on the various diffraction patterns, looking forward to give an insight for their dissimilar shape inflection during the self-assembly process.

Keywords: self-assembly, polypeptide, bio-polymer, crystalline polymer

Procedia PDF Downloads 206
3077 Review on Green Synthesis of Gold Nanoparticles

Authors: Shabnam, Jagdeep Kumar

Abstract:

Because of the impact of their greater surface area and smaller quantum sizes in comparison with other metal atoms or bulk metals, metal nanoparticles, such as those formed of gold, exhibit a variety of unusual chemical and physical properties. The size- and shape-dependent properties of gold nanoparticles (GNPs) are particularly notable. Metal nanoparticles have received a lot of attention due to their unique properties and exciting prospective uses in photonics, electronics, biological sensing, and imaging. The latest developments in GNP synthesis are discussed in this review. Green chemistry measures were used to assess the production of gold nanoparticles, with a focus on Process Mass Intensity (PMI). Based on these measurements, opportunities for improving synthetic approaches were found. With PMIs that were often in the thousands, solvent usage was found to be the main obstacle for nanoparticle synthesis, even ones that were otherwise considered to be environmentally friendly. Since ligated metal nanoparticles are the most industrially relevant but least environmentally friendly, their synthesis by arrested precipitation was chosen as the best chance for significant advances. Gold nanoparticles of small sizes and bio-stability are produced biochemically, and they are used in many biological applications.

Keywords: gold, nanoparticles, green synthesis, AuNP

Procedia PDF Downloads 54
3076 Formulation and Evaluation of TDDS for Sustained Release Ondansetron HCL Patches

Authors: Baljinder Singh, Navneet Sharma

Abstract:

The skin can be used as the site for drug administration for continuous transdermal drug infusion into the systemic circulation. For the continuous diffusion/penetration of the drugs through the intact skin surface membrane-moderated systems, matrix dispersion type systems, adhesive diffusion controlled systems and micro reservoir systems have been developed. Various penetration enhancers are used for the drug diffusion through skin. In matrix dispersion type systems, the drug is dispersed in the solvent along with the polymers and solvent allowed to evaporate forming a homogeneous drug-polymer matrix. Matrix type systems were developed in the present study. In the present work, an attempt has been made to develop a matrix-type transdermal therapeutic system comprising of ondansetron-HCl with different ratios of hydrophilic and hydrophobic polymeric combinations using solvent evaporation technique. The physicochemical compatibility of the drug and the polymers was studied by infrared spectroscopy. The results obtained showed no physical-chemical incompatibility between the drug and the polymers. The patches were further subjected to various physical evaluations along with the in-vitro permeation studies using rat skin. On the basis of results obtained form the in vitro study and physical evaluation, the patches containing hydrophilic polymers i.e. polyvinyl alcohol and poly vinyl pyrrolidone with oleic acid as the penetration enhancer(5%) were considered as suitable for large scale manufacturing with a backing layer and a suitable adhesive membrane.

Keywords: transdermal drug delivery, penetration enhancers, hydrophilic and hydrophobic polymers, ondansetron HCl

Procedia PDF Downloads 296
3075 Heroin Withdrawal, Prison and Multiple Temporalities

Authors: Ian Walmsley

Abstract:

The aim of this paper is to explore the influence of time and temporality on the experience of coming off heroin in prison. The presentation draws on qualitative data collected during a small-scale pilot study of the role of self-care in the process of coming off drugs in prison. Time and temporality emerged as a key theme in the interview transcripts. Drug dependent prisoners experience of time in prison has not been recognized in the research literature. Instead, the literature on prison time typically views prisoners as a homogenous group or tends to focus on the influence of aging and gender on prison time. Furthermore, there is a tendency in the literature on prison drug treatment and recovery to conceptualize drug dependent prisoners as passive recipients of prison healthcare, rather than active agents. In building on these gaps, this paper argues that drug dependent prisoners experience multiple temporalities which involve an interaction between the body-times of the drug dependent prisoner and the economy of time in prison. One consequence of this interaction is the feeling that they are doing, at this point in their prison sentence, double prison time. The second part of the argument is that time and temporality were a means through which they governed their withdrawing bodies. In addition, this paper will comment on the challenges of prison research in England.

Keywords: heroin withdrawal, time and temporality, prison, body

Procedia PDF Downloads 253
3074 Optimization of Extraction Conditions for Phenolic Compounds from Deverra Scoparia Coss and Dur

Authors: Roukia Hammoudi, Chabrouk Farid, Dehak Karima, Mahfoud Hadj Mahammed, Mohamed Didi Ouldelhadj

Abstract:

The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (acetone, ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. The optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox.

Keywords: Deverra scoparia, phenolic compounds, ultrasound assisted extraction, total phenolic content, antioxidant activity

Procedia PDF Downloads 569
3073 Optimization of Extraction Conditions for Phenolic Compounds from Deverra scoparia Coss. and Dur

Authors: Roukia Hammoudi, Dehak Karima, Chabrouk Farid, Mahfoud Hadj Mahammed, Mohamed Didi Ouldelhadj

Abstract:

The objective of this study was to optimise the extraction conditions for phenolic compounds from Deverra scoparia Coss and Dur. Apiaceae plant by ultrasound assisted extraction (UAE). The effects of solvent type (Acetone, Ethanol and methanol), solvent concentration (%), extraction time (mins) and extraction temperature (°C) on total phenolic content (TPC) were determined. the optimum extraction conditions were found to be acetone concentration of 80%, extraction time of 25 min and extraction temperature of 25°C. Under the optimized conditions, the value for TPC was 9.68 ± 1.05 mg GAE/g of extract. The study of the antioxidant power of these oils was performed by the method of DPPH. The results showed that antioxidant activity of the Deverra scoparia essential oil was more effective as compared to ascorbic acid and trolox.

Keywords: Deverra scoparia, phenolic compounds, ultrasound assisted extraction, total phenolic content, antioxidant activity

Procedia PDF Downloads 567
3072 The Evaluation of Fuel Desulfurization Performance of Choline-Chloride Based Deep Eutectic Solvents with Addition of Graphene Oxide as Catalyst

Authors: Chiau Yuan Lim, Hayyiratul Fatimah Mohd Zaid, Fai Kait Chong

Abstract:

Deep Eutectic Solvent (DES) is used in various applications due to its simplicity in synthesis procedure, biodegradable, inexpensive and easily available chemical ingredients. Graphene Oxide is a popular catalyst that being used in various processes due to its stacking carbon sheets in layer which theoretically rapid up the catalytic processes. In this study, choline chloride based DESs were synthesized and ChCl-PEG(1:4) was found to be the most effective DES in performing desulfurization, which it is able to remove up to 47.4% of the sulfur content in the model oil in just 10 minutes, and up to 95% of sulfur content after repeat the process for six times. ChCl-PEG(1:4) able to perform up to 32.7% desulfurization on real diesel after 6 multiple stages. Thus, future research works should focus on removing the impurities on real diesel before utilising DESs in petroleum field.

Keywords: choline chloride, deep eutectic solvent, fuel desulfurization, graphene oxide

Procedia PDF Downloads 120
3071 Experimental Study of CO2 Absorption in Different Blend Solutions as Solvent for CO2 Capture

Authors: Rouzbeh Ramezani, Renzo Di Felice

Abstract:

Nowadays, removal of CO2 as one of the major contributors to global warming using alternative solvents with high CO2 absorption efficiency, is an important industrial operation. In this study, three amines, including 2-methylpiperazine, potassium sarcosinate and potassium lysinate as potential additives, were added to the potassium carbonate solution as a base solvent for CO2 capture. In order to study the absorption performance of CO2 in terms of loading capacity of CO2 and absorption rate, the absorption experiments in a blend of additives with potassium carbonate were carried out using the vapor-liquid equilibrium apparatus at a temperature of 313.15 K, CO2 partial pressures ranging from 0 to 50 kPa and at mole fractions 0.2, 0.3, and 0.4. Furthermore, the performance of CO2 absorption in these blend solutions was compared with pure monoethanolamine and with pure potassium carbonate. Finally, a correlation with good accuracy was developed using the nonlinear regression analysis in order to predict CO2 loading capacity.

Keywords: absorption rate, carbon dioxide, CO2 capture, global warming, loading capacity

Procedia PDF Downloads 247
3070 Ultrasound-Assisted Extraction of Carotenoids from Tangerine Peel Using Ostrich Oil as a Green Solvent and Optimization of the Process by Response Surface Methodology

Authors: Fariba Tadayon, Nika Gharahgolooyan, Ateke Tadayon, Mostafa Jafarian

Abstract:

Carotenoid pigments are a various group of lipophilic compounds that generate the yellow to red colors of many plants, foods and flowers. A well-known type of carotenoids which is pro-vitamin A is β-carotene. Due to the color of citrus fruit’s peel, the peel can be a good source of different carotenoids. Ostrich oil is one of the most valuable foundations in many branches of industry, medicine, cosmetics and nutrition. The animal-based ostrich oil could be considered as an alternative and green solvent. Following this study, wastes of citrus peel will recycle by a simple method and extracted carotenoids can increase properties of ostrich oil. In this work, a simple and efficient method for extraction of carotenoids from tangerine peel was designed. Ultrasound-assisted extraction (UAE) showed significant effect on the extraction rate by increasing the mass transfer rate. Ostrich oil can be used as a green solvent in many studies to eliminate petroleum-based solvents. Since tangerine peel is a complex source of different carotenoids separation and determination was performed by high-performance liquid chromatography (HPLC). In addition, the ability of ostrich oil and sunflower oil in carotenoid extraction from tangerine peel and carrot was compared. The highest yield of β-carotene extracted from tangerine peel using sunflower oil and ostrich oil were 75.741 and 88.110 (mg/L), respectively. Optimization of the process was achieved by response surface methodology (RSM) and the optimal extraction conditions were tangerine peel powder particle size of 0.180 mm, ultrasonic intensity of 19 W/cm2 and sonication time of 30 minutes.

Keywords: β-carotene, carotenoids, citrus peel, ostrich oil, response surface methodology, ultrasound-assisted extraction

Procedia PDF Downloads 294
3069 Chemical Functionalization of Graphene Oxide for Improving Mechanical and Thermal Properties of Polyurethane Composites

Authors: Qifei Jing, Vadim V. Silberschmidt, Lin Li, ZhiLi Dong

Abstract:

Graphene oxide (GO) was chemically functionalized to prepare polyurethane (PU) composites with improved mechanical and thermal properties. In order to achieve a well exfoliated and stable GO suspension in an organic solvent (dimethylformamide, DMF), 4, 4′- methylenebis(phenyl isocyanate) and polycaprolactone diol, which were the two monomers for synthesizing PU, were selectively used to functionalize GO. The obtained functionalized GO (FGO) could form homogeneous dispersions in DMF solvent and the PU matrix, as well as provide a good compatibility with the PU matrix. The most efficient improvement of mechanical properties was achieved when 0.4 wt% FGO was added into the PU matrix, showing increases in the tensile stress, elongation at break and toughness by 34.2%, 27.6% and 64.5%, respectively, compared with those of PU. Regarding the thermal stability, PU filled with 1 wt% FGO showed the largest extent of improvement with T2% and T50% (the temperatures at which 2% and 50% weight-loss happened) 16 °C and 21 °C higher than those of PU, respectively. The significant improvement in both mechanical properties and thermal stability of FGO/PU composites should be attributed to the homogeneous dispersion of FGO in the PU matrix and strong interfacial interaction between them.

Keywords: composite, dispersion, graphene oxide, polyurethane

Procedia PDF Downloads 227
3068 Entropically Favoured Through Space Charge Transfer ‘Lighted’ Photosensitizing Assemblies for ‘Metal Free’ Regulated Photooxidation of Alcohols and Aldehydes

Authors: Gurpreet Kaur, Manoj Kumar, Vandana Bhalla

Abstract:

Strong acceptor-weak acceptor system FN-TPy has been designed and synthesized which undergoes solvent dependent self-assembly in mixed aqueous media to generate through space intermolecular charge transfer assemblies. The as prepared entropically favoured assemblies of FN-TPy exhibit excellent photostability and photosensitizing properties in the assembled state to activate aerial oxygen for efficient generation of reactive oxygen species (ROS) through Type-I and Type-II pathways. The FN-TPy assemblies exhibit excellent potential for regulated oxidation of alcohols and aldehydes under mild reaction conditions (visible light irradiation, aqueous media, room temperature) using aerial oxygen as the ‘oxidant’. The present study demonstrates the potential of FN-TPy assemblies to catalyze controlled oxidation of benzyl alcohol to benzaldehyde and to corresponding benzoic acid.

Keywords: oxidations, photosensitizer, reactive oxygen species, supramolecular assemblies, through space charge transfer.

Procedia PDF Downloads 82
3067 Investigation of the Mechanism, Régio and Sterioselectivity Using the 1,3-Dipolar Cycloaddition Reaction of Fused 1h-Pyrrole-2,3-Diones with Nitrones: Molecular Electron Density Theory Study

Authors: Ameur Soukaina, Zeroual Abdellah, Mazoir Noureddine

Abstract:

Molecular Electron Density Theory (MEDT) elucidates the regioselectivity of the [4+2] cycloaddition reaction between 3-aroylpyrrolo[1,2-α]quinoxaline-1,2,4(5H)-trione and butyl vinyl ether Regioselectivity and stereoselectivity. The regioselectivity mechanisms of these reactions were investigated by evaluating potential energy surfaces calculated for cycloaddition processes and DFT density-based reactivity indices. These methods have been successfully applied to predict preferred regioisomers for different method alternatives. Reactions were monitored by performing transition state optimizations, calculations of intrinsic reaction coordinates, and activation energies. The observed regioselectivity was rationalized using DFT-based reactivity descriptors such as the Parr function. Solvent effects were also investigated in 1,4-dioxane solvent using a field model for self-consistent reactions. The results were compared with experimental data to find good agreement.

Keywords: cycloaddition, DFT, ELF, MEDT, parr, stereoselectivité

Procedia PDF Downloads 73
3066 Effect of Thermal Radiation and Chemical Reaction on MHD Flow of Blood in Stretching Permeable Vessel

Authors: Binyam Teferi

Abstract:

In this paper, a theoretical analysis of blood flow in the presence of thermal radiation and chemical reaction under the influence of time dependent magnetic field intensity has been studied. The unsteady non linear partial differential equations of blood flow considers time dependent stretching velocity, the energy equation also accounts time dependent temperature of vessel wall, and concentration equation includes time dependent blood concentration. The governing non linear partial differential equations of motion, energy, and concentration are converted into ordinary differential equations using similarity transformations solved numerically by applying ode45. MATLAB code is used to analyze theoretical facts. The effect of physical parameters viz., permeability parameter, unsteadiness parameter, Prandtl number, Hartmann number, thermal radiation parameter, chemical reaction parameter, and Schmidt number on flow variables viz., velocity of blood flow in the vessel, temperature and concentration of blood has been analyzed and discussed graphically. From the simulation study, the following important results are obtained: velocity of blood flow increases with both increment of permeability and unsteadiness parameter. Temperature of the blood increases in vessel wall as Prandtl number and Hartmann number increases. Concentration of the blood decreases as time dependent chemical reaction parameter and Schmidt number increases.

Keywords: stretching velocity, similarity transformations, time dependent magnetic field intensity, thermal radiation, chemical reaction

Procedia PDF Downloads 50
3065 Thermal Effect on Wave Interaction in Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry

Abstract:

There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.

Keywords: finite element, temperature dependency, wave dispersion characteristics, wave finite element, wave scattering properties

Procedia PDF Downloads 282
3064 Absorption Kinetic and Tensile Mechanical Properties of Swollen Elastomer/Carbon Black Nanocomposites using Typical Solvents

Authors: F. Elhaouzi, H. Lahlali, M. Zaghrioui, I. El Aboudi A. BelfKira, A. Mdarhri

Abstract:

The effect of physico chemical properties of solvents on the transport process and mechanical properties in elastomeric nano composite materials is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate polymer filled with hard spherical carbon black (CB) nano particles. The swelling behavior was studied by immersion the dried samples in selected solvents at room temperature during 2 days. For this purpose, two chemical compounds methyl derivatives of aromatic hydrocarbons of benzene, i.e. toluene and xylene, are used to search for the mass and molar volume dependence on the absorption kinetics. Mass gain relative to the mass of dry material at specific times was recorded to probe the absorption kinetics. The transport of solvent molecules in these filled elastomeric composites is following a Fickian diffusion mechanism. Additionally, the swelling ratio and diffusivity coefficient deduced from the Fickian law are found to decrease with the CB concentration. These results indicate that the CB nano particles increase the effective path length for diffusion and consequently limit the absorption of the solvent by occupation free volumes in the material. According to physico chemical properties of the two used solvents, it is found that the diffusion is more important for the toluene molecules solvent due to their low values of the molecular weight and volume molar compared to those for the xylene. Differential Scanning Calorimetry (DSC) and X-ray photo electron (XPS) were also used to probe the eventual change in the chemical composition for the swollen samples. Mechanically speaking, the stress-strain curves of uniaxial tensile tests pre- and post- swelling highlight a remarkably decrease of the strength and elongation at break of the swollen samples. This behavior can be attributed to the decrease of the load transfer density between the matrix and the CB in the presence of the solvent. We believe that the results reported in this experimental investigation can be useful for some demanding applications e.g. tires, sealing rubber.

Keywords: nanocomposite, absorption kinetics, mechanical behavior, diffusion, modelling, XPS, DSC

Procedia PDF Downloads 322
3063 Investigation of the Grain-Boundary Segregation Transition in the Binary Fe-C Alloy

Authors: Végh Ádám, Mekler Csaba, Dezső András, Szabó Dávid, Stomp Dávid, Kaptay György

Abstract:

Grain boundary segregation transition (GBST) has been calculated by a thermodynamic model in binary alloys. The method is used on cementite (Fe3C) segregation in base-centered cubic (ferrite) iron (Fe) in the Fe-C binary system. The GBST line is shown in the Fe3C lacking part of the phase diagram with high solvent (Fe) concentration. At a lower solute content (C) or at higher temperature the grain boundary is composed mostly of the solvent atoms (Fe). On higher concentration compared to the GBST line or at lower temperature a phase transformation occurs at the grain boundary, the latter mostly composed of the associates (Fe3C). These low-segregation and high-segregation states are first order interfacial phase transitions of the grain boundary and can be transformed into each other reversibly. These occur when the GBST line is crossed by changing the bulk composition or temperature.

Keywords: GBST, cementite, segregation, Fe-C alloy

Procedia PDF Downloads 556
3062 Prevalence of Malocclusion and Assessment of Orthodontic Treatment Needs in Malay Transfusion-Dependent Thalassemia Patients

Authors: Mohamed H. Kosba, Heba A. Ibrahim, H. Rozita

Abstract:

Statement of the Problem: The life expectancy for transfusion-dependent thalassemia patients has increased dramatically with iron-chelation therapy and other modern management modalities. In these patients, the most dominant maxillofacial manifestations are protrusion of zygomatic bones and premaxilla due to the hyperplasia of bone marrow. The purpose of this study is to determine the prevalence of malocclusion and orthodontic treatment needs according to the Dental Aesthetic Index (DAI) among Malay transfusion-dependent thalassemia patients. Orientation: This is a cross-sectional study consist of 43 Malay transfusion-dependent thalassemia patients, 22 males, and 19 females with the mean age of 15.9 years old (SD 3.58). The subjects were selected randomly from patients attending Paediatrics and Internal Medicine Clinic at Hospital USM and Hospital Sultana Bahiyah. The subjects were assessed for malocclusion according to Angle’s classification, and orthodontic treatment needs using DAI. The results show that 22 of the subjects (51.1%) have class II malocclusion, 12 subjects (28%) have class І, while 9 subjects (20.9%) have class Ⅲ. The assessment of orthodontic treatment needs to reveal 22 cases (51.1%) fall in the normal/minor needs category, 12 subjects (28%) fall in the severe and very severe category, while 9 subjects (20.9%) fall in the definite category. Conclusion & Significance: Half of Malay transfusion-dependent thalassemia patients have Class Ⅱmalocclusion. About 28% had malocclusion and required orthodontic treatment. This research shows that Malay transfusion-dependent thalassemia may require orthodontic management; earlier intervention to reduce the complexity of the treatment later, suggesting functional appliance as a suitable treatment option for them, a twin block appliance together with headgear to restrict maxillary growth suggested for management. The current protocol implemented by the Malaysian Ministry of Health for the management of these patients seems to be sufficient since the result shows that about 28% require orthodontic treatment need, according to DAI.

Keywords: prevalence, DAI, thalassaemia, angle classification

Procedia PDF Downloads 112
3061 Development of a Framework for Assessment of Market Penetration of Oil Sands Energy Technologies in Mining Sector

Authors: Saeidreza Radpour, Md. Ahiduzzaman, Amit Kumar

Abstract:

Alberta’s mining sector consumed 871.3 PJ in 2012, which is 67.1% of the energy consumed in the industry sector and about 40% of all the energy consumed in the province of Alberta. Natural gas, petroleum products, and electricity supplied 55.9%, 20.8%, and 7.7%, respectively, of the total energy use in this sector. Oil sands mining and upgrading to crude oil make up most of the mining energy sector activities in Alberta. Crude oil is produced from the oil sands either by in situ methods or by the mining and extraction of bitumen from oil sands ore. In this research, the factors affecting oil sands production have been assessed and a framework has been developed for market penetration of new efficient technologies in this sector. Oil sands production amount is a complex function of many different factors, broadly categorized into technical, economic, political, and global clusters. The results of developed and implemented statistical analysis in this research show that the importance of key factors affecting on oil sands production in Alberta is ranked as: Global energy consumption (94% consistency), Global crude oil price (86% consistency), and Crude oil export (80% consistency). A framework for modeling oil sands energy technologies’ market penetration (OSETMP) has been developed to cover related technical, economic and environmental factors in this sector. It has been assumed that the impact of political and social constraints is reflected in the model by changes of global oil price or crude oil price in Canada. The market share of novel in situ mining technologies with low energy and water use are assessed and calculated in the market penetration framework include: 1) Partial upgrading, 2) Liquid addition to steam to enhance recovery (LASER), 3) Solvent-assisted process (SAP), also called solvent-cyclic steam-assisted gravity drainage (SC-SAGD), 4) Cyclic solvent, 5) Heated solvent, 6) Wedge well, 7) Enhanced modified steam and Gas push (emsagp), 8) Electro-thermal dynamic stripping process (ET-DSP), 9) Harris electro-magnetic heating applications (EMHA), 10) Paraffin froth separation. The results of the study will show the penetration profile of these technologies over a long term planning horizon.

Keywords: appliances efficiency improvement, diffusion models, market penetration, residential sector

Procedia PDF Downloads 295
3060 Analysis of Pollution Caused by the Animal Feed Industry and the Fertilizer Industry Using Rock Magnetic Method

Authors: Kharina Budiman, Adinda Syifa Azhari, Eleonora Agustine

Abstract:

Industrial activities get increase in this globalization era, one of the major impacts of industrial activities is a problem to the environment. This can happen because at the industrial production term will bring out pollutant in the shape of solid, liquid or gas. Normally this pollutant came from some dangerous materials for environment. However not every industry produces the same amount of pollutant, every industry produces different kind of pollution. To compare the pollution impact of industrial activities, soil sample has been taken around the animal feed industry and the fertilizer industry. This study applied the rock magnetic method and used Bartington MS2B to measured magnetic susceptibility (χ) as the physical parameter. This study tested soil samples using the value of susceptibility low frequency (χ lf) and Frequency Dependent (χ FD). Samples only taken in the soil surface with 0-5 cm depth and sampling interval was 20 cm. The animal feed factory has susceptibility low frequency (χ lf) = 111,9 – 325,7 and Frequency Dependent (χ FD) = 0,8 – 3,57 %. And the fertilizer factory has susceptibility low frequency (χ lf) = 187,1 – 494,8 and Frequency Dependent (χ FD) = 1,37 – 2,46 %. Based on the results, the highest value of susceptibility low frequency (χ lf) is the fertilizer factory, but the highest value of Frequency Dependent (FD) is the animal feed factory.

Keywords: industrial, pollution, magnetic susceptibility, χlf, χfd, animal feed industry and fertilizer industry

Procedia PDF Downloads 368
3059 Anticorrosive Polyurethane Clear Coat with Self-Cleaning Character

Authors: Nihit Madireddi, P. A. Mahanwar

Abstract:

We have aimed to produce a self-cleaning transparent polymer coating with polyurethane (PU) matrix as the latter is highly solvent, chemical and weather resistant having good mechanical properties. Nano-silica modified by 1H, 1H, 2H, 2H-perflurooctyltriethoxysilane was incorporated into the PU matrix for attaining self-cleaning ability through hydrophobicity. The modification was confirmed by particle size analysis and scanning electron microscopy (SEM). Thermo-gravimetric (TGA) studies were carried to ascertain the grafting of silane onto the silica. Several coating formulations were prepared by varying the silica loading content and compared to a commercial equivalent. The effect of dispersion and the morphology of the coated films were assessed by SEM analysis. All coating standardized tests like solvent resistance, adhesion, flexibility, acid, alkali, gloss etc. have been performed as per ASTM standards. Water contact angle studies were conducted to analyze the hydrophobic character of the coating. In addition, the coatings were also subjected to salt spray and accelerated weather testing to analyze the durability of the coating.

Keywords: FAS, nano-silica, PU clear coat, self-cleaning

Procedia PDF Downloads 280
3058 Synthesis of DHA Rich Glycerides with Immobilized Lipases from Mucor miehei and Rhizopus oryzae

Authors: Satyendra P. Chaurasia, Aditi Sharma, Ajay K. Dalai

Abstract:

The esterification of Docosahexaenoic acid (DHA) with glycerol using immobilized Mucor mie-hei lipase (MML) and Rhizopus oryzae lipase (ROL) have been studied in the present paper to synthesize triglycerides (TG) rich in DHA. Both immobilized lipases (MML and ROL), and their support materials (immobead-150 and ion-exchange resin) were characterized and compared for surface properties with BET, for chemical functional groups with FT-IR, and for particle size distribution with particle size analyzer. The most suitable reaction conditions for synthesis of DHA rich TG in biphasic solvent system were found as 1:3 (wt/wt) glycerol to DHA ratio, 1:1 (wt/wt) buffer to DHA ratio, 1:1 (wt/wt) solvent to DHA ratio at 50 ºC temperature, and 600 rpm speed of agitation with 100 mg of immobilized lipases. Maximum 95.9 % esterification was obtained with immobilized MML in 14 days reaction with formation of 65.7 wt% DHA rich TG. Whereas, immobilized ROL has shown formation of only 23.8 wt% DHA rich TG with total 78.9 % esterification in 15 days. Additionally, repeated use of both immobilized lipases was con-ducted up to five cycles, indicated 50.4% and 41.2 % activity retention after fifth repeated use of immobilized MML and ROL, respectively.

Keywords: DHA, immobilized Mucor miehei lipase, Rhizopus oryzae lipase, esterification

Procedia PDF Downloads 321
3057 Comparative Analysis of Petroleum Ether and Aqueous Extraction Solvents on Different Stages of Anopheles Gambiae Using Neem Leaf and Neem Stem

Authors: Tochukwu Ezechi Ebe, Fechi Njoku-Tony, Ifeyinwa Mgbenena

Abstract:

Comparative analysis of petroleum ether and aqueous extraction solvents on different stages of Anopheles gambiae was carried out using neem leaf and neem stem. Soxhlet apparatus was used to extract each pulverized plant part. Each plant part extract from both solvents were separately used to test their effects on the developmental stages of Anopheles gambiae. The result showed that the mean mortality of extracts from petroleum ether extraction solvent was higher than that of aqueous extract. It was also observed that mean mortality decreases with increase in developmental stage. Furthermore, extracts from neem leaf was found to be more susceptible than extracts from neem stem using same extraction solvent.

Keywords: petroleum ether, aqueous, developmental, stages, extraction, Anopheles gambiae

Procedia PDF Downloads 482
3056 Study of Age-Dependent Changes of Peripheral Blood Leukocytes Apoptotic Properties

Authors: Anahit Hakobjanyan, Zdenka Navratilova, Gabriela Strakova, Martin Petrek

Abstract:

Aging has a suppressive influence on human immune cells. Apoptosis may play important role in age-dependent immunosuppression and lymphopenia. Prevention of apoptosis may be promoted by BCL2-dependent and BCL2-independent manner. BCL2 is an antiapoptotic factor that has an antioxidative role by locating the glutathione at mitochondria and repressing oxidative stress. STAT3 may suppress apoptosis in BCL2-independent manner and promote cell survival blocking cytochrome-c release and reducing ROS production. The aim of our study was to estimate the influence of aging on BCL2-dependent and BCL2-independent prevention of apoptosis via measurement of BCL2 and STAT3 mRNAs expressions. The study was done on Armenian population (2 groups: 37 healthy young (mean age±SE; min/max age, male/female: 37.6±1.1; 20/54, 15/22), 28 healthy aged (66.7±1.5; 57/85, 12/16)). mRNA expression in peripheral blood leukocytes (PBL) was determined by RT-PCR using PSMB2 as the reference gene. Statistical analysis was done with Graph-Pad Prism 5; P < 0.05 considered as significant. The expression of BCL2 mRNA was lower in aged group (0.199) compared with young ones (0.643)(p < 0.01). Decrease expression was also recorded for female and male subgroups (p < 0.01). The expression level of STAT3 mRNA was increased (young, 0.228; aged, 0.428) (p < 0.05) during aging (in the whole age group and male/female subgroups). Decreased level of BCL2 mRNA may indicate about the suppression of BCL2-dependent prevention of apoptosis during aging in peripheral blood leukocytes. At the same time increased the level of STAT3 may suggest about activation of BCL2-independent prevention of apoptosis during aging.

Keywords: BCL2, STAT3, aging, apoptosis

Procedia PDF Downloads 296
3055 Modeling of Strong Motion Generation Areas of the 2011 Tohoku, Japan Earthquake Using Modified Semi-Empirical Technique Incorporating Frequency Dependent Radiation Pattern Model

Authors: Sandeep, A. Joshi, Kamal, Piu Dhibar, Parveen Kumar

Abstract:

In the present work strong ground motion has been simulated using a modified semi-empirical technique (MSET), with frequency dependent radiation pattern model. Joshi et al. (2014) have modified the semi-empirical technique to incorporate the modeling of strong motion generation areas (SMGAs). A frequency dependent radiation pattern model is applied to simulate high frequency ground motion more precisely. Identified SMGAs (Kurahashi and Irikura 2012) of the 2011 Tohoku earthquake (Mw 9.0) were modeled using this modified technique. Records are simulated for both frequency dependent and constant radiation pattern function. Simulated records for both cases are compared with observed records in terms of peak ground acceleration and pseudo acceleration response spectra at different stations. Comparison of simulated and observed records in terms of root mean square error suggests that the method is capable of simulating record which matches in a wide frequency range for this earthquake and bears realistic appearance in terms of shape and strong motion parameters. The results confirm the efficacy and suitability of rupture model defined by five SMGAs for the developed modified technique.

Keywords: strong ground motion, semi-empirical, strong motion generation area, frequency dependent radiation pattern, 2011 Tohoku Earthquake

Procedia PDF Downloads 505
3054 Studies of Carbohydrate, Antioxidant, Nutrient and Genomic DNA Characterization of Fresh Olive Treated with Alkaline and Acidic Solvent: An Innovation

Authors: A. B. M. S. Hossain, A. Abdelgadir, N. A. Ibrahim

Abstract:

Fresh ripen olive cannot be consumed immediately after harvest due to the excessive bitterness having polyphenol as antioxidant. Industrial processing needs to be edible the fruit. The laboratory processing technique has been used to make it edible by using acid (vinegar, 5% acetic acid) and alkaline solvent (NaOH). Based on the treatment and consequence, innovative data have been found in this regard. The experiment was conducted to investigate biochemical content, nutritional and DNA characterization of olive fruit treated with alkaline (Sodium chloride anhydrous) and acidic solvent (5% acetic acid, vinegar). The treatments were used as control (no water), water control, 10% sodium chloride anhydrous (NaOH), vinegar (5% acetic acid), vinegar + NaOH and vinegar + NaOH + hot water treatment. Our results showed that inverted sugar and glucose content were higher in the vinegar and NaOH treated olive than in other treatments. Fructose content was the highest in vinegar + NaOH treated fruit. Nutrient contents NO3 K, Ca and Na were found higher in the treated fruit than the control fruit. Moreover, maximum K content was observed in the case of all treatments compared to the other nutrient content. The highest acidic (lower pH) condition (sour) was found in treated fruit. DNA yield was found higher in water control than acid and alkaline treated olives. DNA band was wider in the olive treated water control compared to the NaOH, vinegar, vinegar + NaOH and vinegar + NaOH + Hot water treatment. Finally, results suggest that vinegar + NaOH treated olive fruit was the best for fresh olive homemade processing after harvesting for edible purpose.

Keywords: olive, vinegar, sugars, DNA band, bioprocess biotechnology

Procedia PDF Downloads 160
3053 Literature Review: Microalgae as Functional Foods with Solvent Free Extraction

Authors: Angela Justina Kumalaputri

Abstract:

Indonesia, as a maritime country, has abundant marine living resources yet has not been optimally utilized. So far, we only focusing on fisheries. In the other hand, Indonesia, as the country with the fourth longest coastline, is a very good cultivation place for microalgae. Microalgae can be diversified to many important products, such as food, fuel, pharmaceutical products, functional food, and cosmetics.This research is focusing on the literature study about types of microalgae as sources for functional foods (such as antioxidants), including the contents and the separation methods. The research methods which we use are: (1) Literature study about various microalgaes (2) Literature study about extractions using supercritical fluid of CO₂, which are free from toxic organic solvents, environmentally friendly, and safe for food products. Supercritical fluid extraction using CO₂ (low critical points: temperature at 31.1 oC and pressure at 72.9 bars) could be done at a low temperature which are suitable for temperature labile compounds, low energy, and faster extraction time compared with conventional method of extraction.

Keywords: antioxidants, supercritical fluid extraction, solvent-free extraction, microalgae

Procedia PDF Downloads 45