Search results for: soil pollution.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4407

Search results for: soil pollution.

897 Study of Synergetic Effect by Combining Dielectric Barrier Discharge (DBD) Plasma and Photocatalysis for Abatement of Pollutants in Air Mixture System: Influence of Some Operating Conditions and Identification of Byproducts

Authors: Wala Abou Saoud, Aymen Amine Assadi, Monia Guiza, Abdelkrim Bouzaza, Wael Aboussaoud, Abdelmottaleb Ouederni, Dominique Wolbert

Abstract:

Volatile organic compounds (VOCs) constitute one of the most important families of chemicals involved in atmospheric pollution, causing damage to the environment and human health, and need, consequently, to be eliminated. Among the promising technologies, dielectric barrier discharge (DBD) plasma - photocatalysis coupling reveals very interesting prospects in terms of process synergy of compounds mineralization’s, with low energy consumption. In this study, the removal of organic compounds such butyraldehyde (BUTY) and dimethyl disulfide (DMDS) (exhaust gasses from animal quartering centers.) in air mixture using DBD plasma coupled with photocatalysis was tested, in order to determine whether or not synergy effect was present. The removal efficiency of these pollutants, a selectivity of CO₂ and CO, and byproducts formation such as ozone formation were investigated in order to evaluate the performance of the combined process. For this purpose, a series of experiments were carried out in a continuous reactor. Many operating parameters were also investigated such as the specific energy of discharge, the inlet concentration of pollutant and the flowrate. It appears from this study that, the performance of the process has enhanced and a synergetic effect is observed. In fact, we note an enhancement of 10 % on removal efficiency. It is interesting to note that the combined system leads to better CO₂ selectivity than for plasma. Consequently, intermediates by-products have been reduced due to various other species (O•, N, OH•, O₂•-, O₃, NO₂, NOx, etc.). Additionally, the behavior of combining DBD plasma and photocatalysis has shown that the ozone can be easily also decomposed in presence of photocatalyst.

Keywords: combined process, DBD plasma, photocatalysis, pilot scale, synergetic effect, VOCs

Procedia PDF Downloads 304
896 Combined Application of Rice-Straw Biochar and Poultry Manure Promotes Nutrient Uptake and Yield of Capsicum Frutescens

Authors: Fawibe O. O., Mustafa A. A., Oyelakin A. S., Dada O. A., Ojo E. S.

Abstract:

Field experiment was carried out during the cropping season of 2021 to examine the influence of the sole or combined application of rice-straw biochar and poultry manure on yield, nutrient uptake, and physiological attributes of Capsicum frutescens. The experiment was a randomized complete block design with five replicates. Treatments were 10 t/ha biochar (BC), 5 t/ha biochar + 5 t/ha poultry manure (BC+PM), 10 t/ha poultry manure (PM), and no amendment as the control (NA ). Parameters determined were fruit yield, aboveground biomass, macro and micro nutrients in leaves, antinutrients content, and pigments (chlorophyll a, chlorophyll b, and carotenoids) concentration. Data were analysed with one-way analysis of variance, while means were separated using Duncan’s Multiple Range Test at p<0.05. Soil amended with PM increased the nitrogen content of C. frutescens leaves by 40.9%, while polyphenol and phytic acid were reduced by 20.5% and 29.2%, respectively, compared with NA. Moreover, PM increased chlorophyll a and chlorophyll b by 91.9% and 16.4%, whereas proline was reduced by 31.3% compared with NA. However, PM and BC+PM had comparable influence on pigments, nutrients and antinutrients contents of C. frutescens. BC+PM significantly increased yield and aboveground biomass of C. frutescens by 52.9% and 99.2%, respectively, compared with NA. BC had no significant influence on the yield and nutrient uptake of C. frutescens compared with NA. In conclusion, sole application of poultry manure or combined with rice-straw biochar increased yield and nutrients availability in the leaves of C. frutescens.

Keywords: capsicum frutescens, biochar, nutrient uptake, poultry manure, organic amendment

Procedia PDF Downloads 60
895 Experimental Investigations on Setting Behavior and Compreesive Strength of Flyash Based Geopolymer

Authors: Ishan Tank, Ashmita Rupal, Sanjay Kumar Sharma

Abstract:

Concrete, a widely used building material, has cement as its main constituent. An excessive amount of emissions are released into the atmosphere during the manufacture of cement, which is detrimental to the environment. To minimize this problem, innovative materials like geopolymer mortar (GPM) seem to be a better alternative. By using fly ash-based geopolymer instead of standard cement mortar as a binding ingredient, this concept has been successfully applied to the building sector. The advancement of this technology significantly reduces greenhouse gas emissions and helps in source reduction, thereby minimizing pollution of the environment. In order to produce mortar and use this geopolymer mortar in the development of building materials, the current investigation is properly introducing this geopolymeric material, namely fly ash, as a binder in place of standard cement. In the domain of the building material industry, fly ash based geopolymer is a new and optimistic replacement for traditional binding materials because it is both environmentally sustainable and has good durability. The setting behaviour and strength characteristics of fly ash, when mixed with alkaline activator solution with varied concentration of sodium hydroxide solution, alkaline liquids mix ratio, and curing temperature, must be investigated, though, in order to determine its suitability and application in comparison with the traditional binding material, by activating the raw materials, which include various elements of silica and alumina, finer material known as geopolymer mortar is created. The concentration of the activator solution has an impact on the compressive strength of the geopolymer concrete formed. An experimental examination of compressive strength after 7, 14, and 28 days of fly ash-based geopolymer concrete is presented in this paper. Furthermore, the process of geopolymerization largely relies on the curing temperature. So, the setting time of Geopolymer mortar due to different curing temperatures has been studied and discussed in this paper.

Keywords: geopolymer mortar, setting time, flyash, compressive strength, binder material

Procedia PDF Downloads 35
894 Energetics of Photosynthesis with Respect to the Environment and Recently Reported New Balanced Chemical Equation

Authors: Suprit Pradhan, Sushil Pradhan

Abstract:

Photosynthesis is a physiological process where green plants prepare their food from carbon dioxide from the atmosphere and water being absorbed from the soil in presence of sun light and chlorophyll. From this definition it is clear that four reactants (Carbon Dioxide, Water, Light and Chlorophyll) are essential for the process to proceed and the product is a sugar or carbohydrate ultimately stored as starch. The entire process has “Light Reaction” (Photochemical) and “Dark Reaction” (Biochemical). Biochemical reactions are very much complicated being catalysed by various enzymes and the path of carbon is known as “Calvin Cycle” according to the name of its discover. The overall reaction which is now universally accepted can be explained like this. Six molecules of carbon dioxide react with twelve molecules of water in presence of chlorophyll and sun light to give only one molecule of sugar (Carbohydrate) six molecules of water and six molecules of oxygen is being evolved in gaseous form. This is the accepted equation and also chemically balanced. However while teaching the subject the author came across a new balanced equation from among the students who happened to be the daughter of the author. In the new balanced equation in place of twelve water molecules in the reactant side seven molecules can be expressed and accordingly in place of six molecules of water in the product side only one molecule of water is produced. The energetics of the photosynthesis as related to the environment and the newly reported balanced chemical equation has been discussed in detail in the present research paper presentation in this international conference on energy, environmental and chemical engineering.

Keywords: biochemistry, enzyme , isotope, photosynthesis

Procedia PDF Downloads 477
893 Phytoremediation of Textile Wastewater Laden with 1,4-Dioxane Using Eichhornia crassipes: A Sustainable Development Approach

Authors: Hadeer Ibrahiem, Mahmoud Nasr, Masarrat M. M. Migahid, Mohamed A. Ghazy

Abstract:

The release of textile wastewater loaded with 1,4 dioxane into aquatic ecosystems has been associated with various human health risks and adverse environmental impacts. In parallel, phytoremediation has been recently employed to treat highly polluted wastewater because various plant species tend to produce certain enzymes as a defense mechanism against a toxic environment. To our best knowledge, this study is the first to investigate the ability of phytoremediation using Eichhornia crassipes for the removal of various pollutants, including 1,4 dioxane, from textile wastewater. A phytoremediation system composed of Eichhornia crassipes was acclimatized for 10 d, and then operated in four lab-scale hydroponic systems, viz., negative control, positive control, and two different 1,4 dioxane concentration (400 and 500 mg/L). After 11 d of operation, the phytoremediation system achieved removal efficiencies of 67.5±3.4%, 89.4±4.4%, 83.6±3.8% for 1,4 dioxane (at initial concentration 400 mg/L), chemical oxygen demand (COD) (at initial concentration 679 mg/L), and cumulative heavy metals, respectively. The removal of these pollutants was mainly supported by the phyto-sorption and phytodegradation mechanisms. The economic feasibility of this phytoremediation system was validated by estimating the capital and operating costs, requiring 4.6 USD for the treatment of 1 m3 textile wastewater. The study concluded that the phytoremediation process could be used as a practical and economical approach to treat textile wastewater laden with various organic and inorganic pollutants. Due to the observed pollution reduction and human health protection, the study objectives would fulfill the targets of SDG 3 “Good Health and Well-being” and SDG 6 “Clean Water and Sanitation”. Further studies are required to (i) investigate the ability of plant species to withstand higher concentrations of 1,4 dioxane for an extended operation time and (ii) understand the biochemical pathways for the degradation of 1,4 dioxane via the action of plant enzymes and the associated microbial community.

Keywords: 1, 4 dioxane concentrations, hydrophytes, Eichhornia crassipes, phytoremediation effectiveness, SDGs, textile industrial effluent

Procedia PDF Downloads 69
892 The Reasons for Food Losses and Waste and the Trends of Their Management in Basic Vegetal Production in Poland

Authors: Krystian Szczepanski, Sylwia Łaba

Abstract:

Production of fruit and vegetables, food cereals or oilseeds affects the natural environment via intake of nutrients being contained in the soil, use of the resources of water, fertilizers and food protection products, and energy. The limitation of the mentioned effects requires the introduction of techniques and methods for cultivation being friendly to the environment and counteracting losses and waste of agricultural raw materials as well as the appropriate management of food waste in every stage of the agri-food supply chain. The link to basic production includes obtaining a vegetal raw material and its storage in agricultural farm and transport to a collecting point. When the plants are ready to be harvested is the initial point; the stage before harvesting is not considered in the system of measuring and monitoring the food losses. The moment at which the raw material enters the stage of processing, i.e., its receipt at the gate of the processing plant, is considered as a final point of basic production. According to the Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002, Art. 2, “food” means any substance or product, intended to be, or reasonably expected to be consumed by humans. For the needs of the studies and their analysis, it was determined when raw material is considered as food – the plants (fruit, vegetables, cereals, oilseeds), after being harvested, arrive at storehouses. The aim of the studies was to determine the reasons for loss generation and to analyze the directions of their management in basic vegetal production in Poland in the years 2017 and 2018. The studies on food losses and waste in basic vegetal production were carried out in three sectors – fruit and vegetables, cereals and oilseeds. The studies of the basic production were conducted during the period of March-May 2019 at the territory of the whole country on a representative trail of 250 farms in each sector. The surveys were carried out using the questionnaires by the PAP method; the pollsters conducted the direct questionnaire interviews. From the conducted studies, it is followed that in 19% of the examined farms, any losses were not recorded during preparation, loading, and transport of the raw material to the manufacturing plant. In the farms, where the losses were indicated, the main reason in production of fruit and vegetables was rotting and it constituted more than 20% of the reported reasons, while in the case of cereals and oilseeds’ production, the respondents identified damages, moisture and pests as the most frequent reason. The losses and waste, generated in vegetal production as well as in processing and trade of fruit and vegetables, or cereal products should be appropriately managed or recovered. The respondents indicated composting (more than 60%) as the main direction of waste management in all categories. Animal feed and landfill sites were the other indicated directions of management. Prevention and minimization of loss generation are important in every stage of production as well as in basic production. When possessing the knowledge on the reasons for loss generation, we may introduce the preventive measures, mainly connected with the appropriate conditions and methods of the storage. Production of fruit and vegetables, food cereals or oilseeds affects the natural environment via intake of nutrients being contained in the soil, use of the resources of water, fertilizers and food protection products, and energy. The limitation of the mentioned effects requires the introduction of techniques and methods for cultivation being friendly to the environment and counteracting losses and waste of agricultural raw materials as well as the appropriate management of food waste in every stage of the agri-food supply chain. The link to basic production includes obtaining a vegetal raw material and its storage in agricultural farm and transport to a collecting point. The starting point is when the plants are ready to be harvested; the stage before harvesting is not considered in the system of measuring and monitoring the food losses. The successive stage is the transport of the collected crops to the collecting point or its storage and transport. The moment, at which the raw material enters the stage of processing, i.e. its receipt at the gate of the processing plant, is considered as a final point of basic production. Processing is understood as the change of the raw material into food products. According to the Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002, Art. 2, “food” means any substance or product, intended to be, or reasonably expected to be consumed by humans. It was determined (for the needs of the present studies) when raw material is considered as a food; it is the moment when the plants (fruit, vegetables, cereals, oilseeds), after being harvested, arrive at storehouses. The aim of the studies was to determine the reasons for loss generation and to analyze the directions of their management in basic vegetal production in Poland in the years 2017 and 2018. The studies on food losses and waste in basic vegetal production were carried out in three sectors – fruit and vegetables, cereals and oilseeds. The studies of the basic production were conducted during the period of March-May 2019 at the territory of the whole country on a representative trail of 250 farms in each sector. The surveys were carried out using the questionnaires by the PAPI (Paper & Pen Personal Interview) method; the pollsters conducted the direct questionnaire interviews. From the conducted studies, it is followed that in 19% of the examined farms, any losses were not recorded during preparation, loading, and transport of the raw material to the manufacturing plant. In the farms, where the losses were indicated, the main reason in production of fruit and vegetables was rotting and it constituted more than 20% of the reported reasons, while in the case of cereals and oilseeds’ production, the respondents identified damages, moisture, and pests as the most frequent reason. The losses and waste, generated in vegetal production as well as in processing and trade of fruit and vegetables, or cereal products should be appropriately managed or recovered. The respondents indicated composting (more than 60%) as the main direction of waste management in all categories. Animal feed and landfill sites were the other indicated directions of management. Prevention and minimization of loss generation are important in every stage of production as well as in basic production. When possessing the knowledge on the reasons for loss generation, we may introduce the preventive measures, mainly connected with the appropriate conditions and methods of the storage. ACKNOWLEDGEMENT The article was prepared within the project: "Development of a waste food monitoring system and an effective program to rationalize losses and reduce food waste", acronym PROM implemented under the STRATEGIC SCIENTIFIC AND LEARNING PROGRAM - GOSPOSTRATEG financed by the National Center for Research and Development in accordance with the provisions of Gospostrateg1 / 385753/1/2018

Keywords: food losses, food waste, PAP method, vegetal production

Procedia PDF Downloads 87
891 A Constructed Wetland as a Reliable Method for Grey Wastewater Treatment in Rwanda

Authors: Hussein Bizimana, Osman Sönmez

Abstract:

Constructed wetlands are current the most widely recognized waste water treatment option, especially in developing countries where they have the potential for improving water quality and creating valuable wildlife habitat in ecosystem with treatment requirement relatively simple for operation and maintenance cost. Lack of grey waste water treatment facilities in Kigali İnstitute of Science and Technology in Rwanda, causes pollution in the surrounding localities of Rugunga sector, where already a problem of poor sanitation is found. In order to treat grey water produced at Kigali İnstitute of Science and Technology, with high BOD concentration, high nutrients concentration and high alkalinity; a Horizontal Sub-surface Flow pilot-scale constructed wetland was designed and can operate in Kigali İnstitute of Science and Technology. The study was carried out in a sedimentation tank of 5.5 m x 1.42 m x 1.2 m deep and a Horizontal Sub-surface constructed wetland of 4.5 m x 2.5 m x 1.42 m deep. The grey waste water flow rate of 2.5 m3/d flew through vegetated wetland and sandy pilot plant. The filter media consisted of 0.6 to 2 mm of coarse sand, 0.00003472 m/s of hydraulic conductivity and cattails (Typha latifolia spp) were used as plants species. The effluent flow rate of the plant is designed to be 1.5 m3/ day and the retention time will be 24 hrs. 72% to 79% of BOD, COD, and TSS removals are estimated to be achieved, while the nutrients (Nitrogen and Phosphate) removal is estimated to be in the range of 34% to 53%. Every effluent characteristic will meet exactly the Rwanda Utility Regulatory Agency guidelines primarily because the retention time allowed is enough to make the reduction of contaminants within effluent raw waste water. Treated water reuse system was developed where water will be used in the campus irrigation system again.

Keywords: constructed wetlands, hydraulic conductivity, grey waste water, cattails

Procedia PDF Downloads 574
890 Societal Acceptability Conditions of Genome Editing for Upland Rice in Madagascar

Authors: Anny Lucrece Nlend Nkott, Ludovic Temple

Abstract:

The appearance in 2012 of the CRISPR-CaS9 genome editing technique marks a turning point in the field of genetics. This technique would make it possible to create new varieties quickly and cheaply. Although some consider CRISPR-CaS9 to be revolutionary, others consider it a potential societal threat. To document the controversy, we explain the socioeconomic conditions under which this technique could be accepted for the creation of a rainfed rice variety in Madagascar. The methodological framework is based on 38 individual and semistructured interviews, a multistakeholder forum with 27 participants, and a survey of 148 rice producers. Results reveal that the acceptability of genome editing requires (i) strengthening the seed system through the operationalization of regulatory structures and the upgrading of stakeholders' knowledge of genetically modified organisms, (ii) assessing the effects of the edited variety on biodiversity and soil nitrogen dynamics, and (iii) strengthening the technical and human capacities of the biosafety body. Structural mechanisms for regulating the seed system are necessary to ensure safe experimentation of genome editing techniques. Organizational innovation also appears to be necessary. The study documents how collective learning between communities of scientists and nonscientists is a component of systemic processes of varietal innovation. This study was carried out with the financial support of the GENERICE project (Generation and Deployment of Genome-Edited, Nitrogen-use-Efficient Rice Varieties), funded by the Agropolis Foundation.

Keywords: CRISPR-CaS9, varietal innovation, seed system, innovation system

Procedia PDF Downloads 117
889 Effects of pH, Load Capacity and Contact Time in the Sulphate Sorption onto a Functionalized Mesoporous Structure

Authors: Jaime Pizarro, Ximena Castillo

Abstract:

The intensive use of water in agriculture, industry, human consumption and increasing pollution are factors that reduce the availability of water for future generations; the challenge is to advance in sustainable and low-cost solutions to reuse water and to facilitate the availability of the resource in quality and quantity. The use of new low-cost materials with sorbent capacity for pollutants is a solution that contributes to the improvement and expansion of water treatment and reuse systems. Fly ash, a residue from the combustion of coal in power plants that is produced in large quantities in newly industrialized countries, contains a high amount of silicon oxides and aluminum oxides, whose properties can be used for the synthesis of mesoporous materials. Properly functionalized, this material allows obtaining matrixes with high sorption capacity. The mesoporous materials have a large surface area, thermal and mechanical stability, uniform porous structure, and high sorption and functionalization capacities. The goal of this study was to develop hexagonal mesoporous siliceous material (HMS) for the adsorption of sulphate from industrial and mining waters. The silica was extracted from fly ash after calcination at 850 ° C, followed by the addition of water. The mesoporous structure has a surface area of 282 m2 g-1 and a size of 5.7 nm and was functionalized with ethylene diamine through of a self-assembly method. The material was characterized by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The capacity of sulphate sorption was evaluated according to pH, maximum load capacity and contact time. The sulphate maximum adsorption capacity was 146.1 mg g-1, which is three times higher than commercial sorbents. The kinetic data were fitted according to a pseudo-second order model with a high coefficient of linear regression at different initial concentrations. The adsorption isotherm that best fitted the experimental data was the Freundlich model.

Keywords: fly ash, mesoporous siliceous, sorption, sulphate

Procedia PDF Downloads 133
888 Cationic Copolymer-Functionalized Nanodiamonds Stabilizes Silver Nanoparticles with Dual Antibacterial Activity and Lower Cytotoxicity

Authors: Weiwei Cao, Xiaodong Xing

Abstract:

In order to effectively resolve the microbial pollution and contamination, synthetic nano-antibacterial materials are widely used in daily life. Among them, nanodiamonds (NDs) have recently been demonstrated to hold promise as useful materials in biomedical applications due to their high specific surface area and biocompatibility. In this work, the copolymer, poly(4-vinylpyridine-co-2-hydroxyethyl methacrylate) was applied for the surface functionalization of NDs to produce the quaternized poly(4-vinylpyridine-co-2-hydroxyethyl methacrylate)-functionalized NDs (QNDs). Then, QNDs were used as a substrate for silver nanoparticles (AgNPs) to produce a QND@Ag hybrid. The composition and morphology of the resultant nanostructures were confirmed by Fourier transform infrared spectra (FT-IR), transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The mass fraction of AgNPs in the nanocomposites was about 35.7%. The antibacterial performances of the prepared nanocomposites were evaluated with Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus by minimum inhibitory concentration (MIC), inhibition zone testing and time-kill study. As a result, due to the synergistic antibacterial activity of QND and AgNPs, this hybrid showed substantially higher antibacterial activity than QND and polyvinyl pyrrolidone (PVP)-stabilized AgNPs, and the AgNPs on QND@Ag were more stable than the Ag NPs on PVP, resulting in long-term antibacterial effects. More importantly, this hybrid showed excellent water solubility and low cytotoxicity, suggesting the great potential application in biomedical applications. The present work provided a simple strategy that successfully turned NDs into nanosized antibiotics with simultaneous superior stability and biocompatibility, which would broaden the applications of NDs and advance the development of novel antibacterial agents.

Keywords: cationic copolymer, nanodiamonds, silver nanoparticles, dual antibacterial activity, lower cytotoxicity

Procedia PDF Downloads 108
887 Monitoring of Endocrine Disruptors in Surface Waters and Sediment from the River Nile (Egypt) by Yeast Assays

Authors: Alaa G. M. Osman, Khaled Y. AbouelFadl, Angela Krüger, Werner Kloas

Abstract:

In Egypt, no previous records are available regarding possible multiple hormonal activities in the aquatic systems and especially the river Nile. In this paper, the in vitro yeast estrogen screen (YES) and yeast androgen screen (YAS) were used to assess the multiple hormonal activities in surface waters and sediment from the Egyptian river Nile for the first time. This study sought to determine if river Nile water caused changes in gonadal histology of Nile tilapia (Oreochromis niloticus niloticus). All water samples exhibited extremely low levels of estrogenicity. Estrogenicity was not detected nearly in any of the sediment samples. Unlike the estrogenicity, significant androgenic activities were recorded in the water and sediment samples along the Nile course. The present study reports for the first time quantified anti-estrogenic and anti-androgenic activities with high levels in both water and sediment of the river Nile. The greatest anti-estrogenic and anti-androgenic activities were observed in sample from downstream river Nile. These results indicated that the anti-estrogenic and anti-androgenic activities along the Nile course were great and the pollution of the sites at the downstream was more serious than the upstream sites due to industrial activities at theses sites. Good correlations were observed among some hormonal activities, suggesting coexistence of these contaminants in the environmental matrices. There were no signs of sexual disruption in any of the gonads analysed from either male or female Nile tilapia, demonstrating that any hormonal activity present along the Nile course was not sufficient to induce adverse effects on reproductive development. Further investiga¬tion is necessary to identify the chemicals responsible for the hormonal activities in the river Nile and to examine the effect of very low levels of hormonally active chemicals on gonadal histology, as well as in the development of more sensitive biomarkers.

Keywords: multiple hormonal activities, YES, YAS, river Nile, Nile tilapia, gonadal histology

Procedia PDF Downloads 454
886 Application of RS and GIS Technique for Identifying Groundwater Potential Zone in Gomukhi Nadhi Sub Basin, South India

Authors: Punitha Periyasamy, Mahalingam Sudalaimuthu, Sachikanta Nanda, Arasu Sundaram

Abstract:

India holds 17.5% of the world’s population but has only 2% of the total geographical area of the world where 27.35% of the area is categorized as wasteland due to lack of or less groundwater. So there is a demand for excessive groundwater for agricultural and non agricultural activities to balance its growth rate. With this in mind, an attempt is made to find the groundwater potential zone in Gomukhi river sub basin of Vellar River basin, TamilNadu, India covering an area of 1146.6 Sq.Km consists of 9 blocks from Peddanaickanpalayam to Villupuram fall in the sub basin. The thematic maps such as Geology, Geomorphology, Lineament, Landuse, and Landcover and Drainage are prepared for the study area using IRS P6 data. The collateral data includes rainfall, water level, soil map are collected for analysis and inference. The digital elevation model (DEM) is generated using Shuttle Radar Topographic Mission (SRTM) and the slope of the study area is obtained. ArcGIS 10.1 acts as a powerful spatial analysis tool to find out the ground water potential zones in the study area by means of weighted overlay analysis. Each individual parameter of the thematic maps are ranked and weighted in accordance with their influence to increase the water level in the ground. The potential zones in the study area are classified viz., Very Good, Good, Moderate, Poor with its aerial extent of 15.67, 381.06, 575.38, 174.49 Sq.Km respectively.

Keywords: ArcGIS, DEM, groundwater, recharge, weighted overlay

Procedia PDF Downloads 415
885 Prediction of Excess Pore Pressure Variation of Reinforced Silty Sand by Stone Columns During Liquefaction

Authors: Zeineb Ben Salem, Wissem Frikha, Mounir Bouassida

Abstract:

Liquefaction has been responsible for tremendous amounts of damage in historical earthquakes around the world. The installation of stone columns is widely adopted to prevent liquefaction. Stone columns provide a drainage path, and due to their high permeability, allow for the quick dissipation of earthquake generated excess pore water pressure. Several excess pore pressure generation models in silty sand have been developed and calibrated based on the results of shaking table and centrifuge tests focusing on the effect of silt content on liquefaction resistance. In this paper, the generation and dissipation of excess pore pressure variation of reinforced silty sand by stone columns during liquefaction are analyzedwith different silt content based on test results. In addition, the installation effect of stone columns is investigated. This effect is described by a decrease in horizontal permeability within a disturbed zone around the column. Obtained results show that reduced soil permeability and a larger disturbed zone around the stone column increases the generation of excess pore pressure during the cyclic loading and decreases the dissipation rate after cyclic loading. On the other hand, beneficial effects of silt content were observed in the form of a decrease in excess pore water pressure.

Keywords: stone column, liquefaction, excess pore pressure, silt content, disturbed zone, reduced permeability

Procedia PDF Downloads 122
884 Chemical Speciation and Bioavailability of Some Essential Metal Ions In Different Fish Organs at Lake Chamo, Ethiopia

Authors: Adane Gebresilassie Hailemariam, Belete Yilma Hirpaye

Abstract:

The enhanced concentrations of heavy metals, especially in sediments, may indicate human-induced perturbations rather than natural enrichment through geological weathering. Heavy metals are non-biodegradable, persist in the environment, and are concentrated up to the food chain, leading to enhanced levels in the liver and muscle tissues of fishes, aquatic bryophytes, and aquatic biota. Marine organisms, in general fish in particular, accumulate metals to concentrations many times higher than present in water or sediment as they can take up metals in their organs and concentrate at different levels. Thus, metals acquired through the food chain due to pollution are potential chemical hazards, threatening consumers. The Nile tilapia (oreochromic niloticus), catfish (clarius garpinus), and water samples were collected from five sampling sites, namely, inlet-1, inlet-2, center, outlet-1 and outlet-2 of Lake Chamo. The concentration of major and trace metals Na, K, Mg, Ca, Cr, Co, Ni, Mn and Cu in the two fish muscles, gill and liver, was determined using an atomic absorption spectrometer (AAS) and flame photometer (FP). Metal concentrations in the water have also been evaluated within the two consecutive seasons, winter (dry) and spring (wet). The results revealed that the concentration of those metals in Tilapia’s (O. niloticus) muscle, gill, and liver were Na 44.5, 35.1, 28, Mg 2.8, 8.41, 4.61, K 43, 32, 30, Ca 1.5, 6.0, 5.5, Cr 0.91, 1.2, 3.5, Co 3.0, 2.89, 2.62, Ni 0.94, 1.99, 2.2, Mn 1.23, 1.51, 1.6 and Cu 1.1, 1.99, 3.5 mg kg-1 respectively and in catfish’s muscle, gill and liver Na 25, 39, 41.5, Mg 4.8, 2.87, 6, K 29, 38, 40, Ca 2.5, 8.10, 3.0, Cr 0.65, 3.5, 5.0, Co 2.62, 1.86, 1.73, Ni 1.10, 2.3, 3.1, Mn 1.54, 1.57, 1.59 and Cu 1.01, 1.10, 3.70 mg kg-1 respectively. The highest accumulation of Na and K were observed for tilapia muscle and catfish gill, Mg and Ca got higher in tilapia gill and catfish liver, while Co is higher in muscle of the two fish. The Cr, Ni, Mn and Cu levels were higher in the livers of the two fish species. In conculusion, metal toxicity through food chain is the current dangerous issue for human and othe animals. This needs deep focus to promot the health of living animals. The Details of the work are going to be discussed at the conference.

Keywords: bioaccumulation, catfish, essential metals, nile tilapia

Procedia PDF Downloads 45
883 Near Ambient Pressure Photoelectron Spectroscopy Studies of CO Oxidation on Spinel Co3O4 Surfaces: Electronic Structure and Mechanistic Aspects of Wet and Dry CO Oxidation

Authors: Ruchi Jain, Chinnakonda S. Gopinath

Abstract:

The CO oxidation is a primary reaction in heterogeneous catalysis due to its potential to overcome the air pollution caused by various reasons. Indeed, in the study of sustainable catalysis, the role played by water is very important. The present work is focused on studying the effect of moisture on the sustainability of Co3O4 NR catalyst for CO oxidation reaction at ambient temperature. The catalytic activity, electronic structure and the mechanistic aspects of spinel Co3O4 nanorod surfaces have been explored in dry and wet atmosphere by near-ambient pressure photoelectron spectroscopic techniques (NAP-PES) with conventional x-ray (Al kα) and ultraviolet sources (He-I).Comparative NAPPES studies have been employed to understand the elucidation of the catalytic reaction pathway and the evolution of various surface species. The presence of water with CO+O2 plummet the catalytic activity due to the change in electronic nature from predominantly oxidic (without water in the feed) to few intermediates covered Co3O4 surface. However, ≥ 375 K Co3O4 surface recovers and regain oxidation activity, at least partially, even in the presence of water. Above mentioned observations are fully supported by the changes observed in the work function of Co3O4 in the presence of wet (H2O+CO+O2) compared to dry (CO+O2) conditions. Various type of surface species, such as CO(ads), carbonate, formate, are found to be on the catalyst surface depending on the reaction conditions. Under dry condition, CO couples with labile O atoms to form CO2, however under wet conditions it also interacts with surface OH groups results in the formation carbonate and formate intermediate. The carbonate acts at reaction inhibitor at room temperature, however proves as active intermediate at temperature 375 K or above. On the other hand, formate has proved to be reaction spectator due to its high stability. The intrinsic role of these species to suppress the oxidation has been demonstrated through a possible reaction mechanism under different reaction conditions.

Keywords: heterogeneous catalysis, surface chemistry, photoelectron spectroscopy, ambient oxidation

Procedia PDF Downloads 227
882 Assessing Water Bottle Consumption on College Campus in Abu Dhabi: Towards a Sustainable Future

Authors: Ludmilla Wikkeling-Scott, Amira Karim

Abstract:

Background: In a rapidly developing environment, concerns for pollution and depletion of natural resources are challenges facing global communities. A major source of waste on university campuses is the use of plastic bottles, while cost of production and processing is high. Consumer demand stimulates popularity of plastic bottle production, but researchers agree this is not a sustainable solution. This pilot study assesses plastic water bottle used and attitude towards alternatives among Emirati college students. Methods: This study was conducted in December 2016, using an anonymous self-administered survey of 17 questions. The survey included personal characteristics, plastic water bottle used, attitude towards alternative replacement and sustainability. For statistical analysis, STATA 14C was used to determine significance of association. Results: A total of 500 Emirati students (94.6% female) completed the survey. Of the students, 82.6% preferred bottled water over tap water, and 44.6% reported disposable bottled water use in their household, 42.6% purchased disposable bottled water more than twice a week, and 44.2% purchased bottled water at least once, while on campus. Students were willing to consider switching to alternative water bottle use if it was more convenient (22.54%), cost less (55.13%) or improved the taste (22.54%), while only 7.85% students would not consider any alternatives. There was a significant difference in attitude towards alternatives to water bottle use by area of study (p < 0.005). Conclusion: The UAE strives to be at the forefront of sustainable development and protecting biodiversity. However, a major challenge is the increasing amount of waste, exacerbated by the increasing consumer demand for convenience as seen in this billion-dollar industry. Plastic bottles, for all purposes, pose a serious threat to the environment and sustainable campus initiatives can help reduce the ecological footprint, improve awareness of safe alternatives and benefits to the environment.

Keywords: ecological foot print, emirati students, plastic bottle consumption, sustainable campus

Procedia PDF Downloads 138
881 Fatigue Life Estimation of Spiral Welded Waterworks Pipelines

Authors: Suk Woo Hong, Chang Sung Seok, Jae Mean Koo

Abstract:

Recently, the welding is widely used in modern industry for joining the structures. However, the waterworks pipes are exposed to the fatigue load by cars, earthquake and etc because of being buried underground. Moreover, the residual stress exists in weld zone by welding process and it is well known that the fatigue life of welded structures is degraded by residual stress. Due to such reasons, the crack can occur in the weld zone of pipeline. In this case, The ground subsidence or sinkhole can occur, if the soil and sand are washed down by fluid leaked from the crack of water pipe. These problems can lead to property damage and endangering lives. For these reasons, the estimation of fatigue characteristics for water pipeline weld zone is needed. Therefore, in this study, for fatigue characteristics estimation of spiral welded waterworks pipe, ASTM standard specimens and Curved Plate specimens were collected from the spiral welded waterworks pipe and the fatigue tests were performed. The S-N curves of each specimen were estimated, and then the fatigue life of weldment Curved Plate specimen was predicted by theoretical and analytical methods. After that, the weldment Curved Plate specimens were collected from the pipe and verification fatigue tests were performed. Finally, it was verified that the predicted S-N curve of weldment Curved Plate specimen was good agreement with fatigue test data.

Keywords: spiral welded pipe, prediction fatigue life, endurance limit modifying factors, residual stress

Procedia PDF Downloads 268
880 Landscape Classification in North of Jordan by Integrated Approach of Remote Sensing and Geographic Information Systems

Authors: Taleb Odeh, Nizar Abu-Jaber, Nour Khries

Abstract:

The southern part of Wadi Al Yarmouk catchment area covers north of Jordan. It locates within latitudes 32° 20’ to 32° 45’N and longitudes 35° 42’ to 36° 23’ E and has an area of about 1426 km2. However, it has high relief topography where the elevation varies between 50 to 1100 meter above sea level. The variations in the topography causes different units of landforms, climatic zones, land covers and plant species. As a results of these different landscapes units exists in that region. Spatial planning is a major challenge in such a vital area for Jordan which could not be achieved without determining landscape units. However, an integrated approach of remote sensing and geographic information Systems (GIS) is an optimized tool to investigate and map landscape units of such a complicated area. Remote sensing has the capability to collect different land surface data, of large landscape areas, accurately and in different time periods. GIS has the ability of storage these land surface data, analyzing them spatially and present them in form of professional maps. We generated a geo-land surface data that include land cover, rock units, soil units, plant species and digital elevation model using ASTER image and Google Earth while analyzing geo-data spatially were done by ArcGIS 10.2 software. We found that there are twenty two different landscape units in the study area which they have to be considered for any spatial planning in order to avoid and environmental problems.

Keywords: landscape, spatial planning, GIS, spatial analysis, remote sensing

Procedia PDF Downloads 503
879 Comparative Fragility Analysis of Shallow Tunnels Subjected to Seismic and Blast Loads

Authors: Siti Khadijah Che Osmi, Mohammed Ahmad Syed

Abstract:

Underground structures are crucial components which required detailed analysis and design. Tunnels, for instance, are massively constructed as transportation infrastructures and utilities network especially in urban environments. Considering their prime importance to the economy and public safety that cannot be compromised, thus any instability to these tunnels will be highly detrimental to their performance. Recent experience suggests that tunnels become vulnerable during earthquakes and blast scenarios. However, a very limited amount of studies has been carried out to study and understanding the dynamic response and performance of underground tunnels under those unpredictable extreme hazards. In view of the importance of enhancing the resilience of these structures, the overall aims of the study are to evaluate probabilistic future performance of shallow tunnels subjected to seismic and blast loads by developing detailed fragility analysis. Critical non-linear time history numerical analyses using sophisticated finite element software Midas GTS NX have been presented about the current methods of analysis, taking into consideration of structural typology, ground motion and explosive characteristics, effect of soil conditions and other associated uncertainties on the tunnel integrity which may ultimately lead to the catastrophic failure of the structures. The proposed fragility curves for both extreme loadings are discussed and compared which provide significant information the performance of the tunnel under extreme hazards which may beneficial for future risk assessment and loss estimation.

Keywords: fragility analysis, seismic loads, shallow tunnels, blast loads

Procedia PDF Downloads 313
878 Control Strategy for a Solar Vehicle Race

Authors: Francois Defay, Martim Calao, Jean Francois Dassieu, Laurent Salvetat

Abstract:

Electrical vehicles are a solution for reducing the pollution using green energy. The shell Eco-Marathon provides rules in order to minimize the battery use for the race. The use of solar panel combined with efficient motor control and race strategy allow driving a 60kg vehicle with one pilot using only the solar energy in the best case. This paper presents a complete modelization of a solar vehicle used for the shell eco-marathon. This project called Helios is cooperation between non-graduated students, academic institutes, and industrials. The prototype is an ultra-energy-efficient vehicle based on one-meter square solar panel and an own-made brushless controller to optimize the electrical part. The vehicle is equipped with sensors and embedded system to provide all the data in real time in order to evaluate the best strategy for the course. A complete modelization with Matlab/Simulink is used to test the optimal strategy to increase the global endurance. Experimental results are presented to validate the different parts of the model: mechanical, aerodynamics, electrical, solar panel. The major finding of this study is to provide solutions to identify the model parameters (Rolling Resistance Coefficient, drag coefficient, motor torque coefficient, etc.) by means of experimental results combined with identification techniques. One time the coefficients are validated, the strategy to optimize the consumption and the average speed can be tested first in simulation before to be implanted for the race. The paper describes all the simulation and experimental parts and provides results in order to optimize the global efficiency of the vehicle. This works have been started four years ago and evolved many students for the experimental and theoretical parts and allow to increase the knowledge on electrical self-efficient vehicle.

Keywords: electrical vehicle, endurance, optimization, shell eco-marathon

Procedia PDF Downloads 235
877 Geophysical Mapping of the Groundwater Aquifer System in Gode Area, Northeastern Hosanna, Ethiopia

Authors: Esubalew Yehualaw Melaku

Abstract:

In this study, two basic geophysical methods are applied for mapping the groundwater aquifer system in the Gode area along the Guder River, northeast of Hosanna town, near the western margin of the Central Main Ethiopian Rift. The main target of the study is to map the potential aquifer zone and investigate the groundwater potential for current and future development of the resource in the Gode area. The geophysical methods employed in this study include, Vertical Electrical Sounding (VES) and magnetic survey techniques. Electrical sounding was used to examine and map the depth to the potential aquifer zone of the groundwater and its distribution over the area. On the other hand, a magnetic survey was used to delineate contact between lithologic units and geological structures. The 2D magnetic modeling and the geoelectric sections are used for the identification of weak zones, which control the groundwater flow and storage system. The geophysical survey comprises of twelve VES readings collected by using a Schlumberger array along six profile lines and more than four hundred (400) magnetic readings at about 10m station intervals along four profiles and 20m along three random profiles. The study result revealed that the potential aquifer in the area is obtained at a depth range from 45m to 92m. This is the response of the highly weathered/ fractured ignimbrite and pumice layer with sandy soil, which is the main water-bearing horizon. Overall, in the neighborhood of four VES points, VES- 2, VES- 3, VES-10, and VES-11, shows good water-bearing zones in the study area.

Keywords: vertical electrical sounding, magnetic survey, aquifer, groundwater potential

Procedia PDF Downloads 93
876 Validation of SWAT Model for Prediction of Water Yield and Water Balance: Case Study of Upstream Catchment of Jebba Dam in Nigeria

Authors: Adeniyi G. Adeogun, Bolaji F. Sule, Adebayo W. Salami, Michael O. Daramola

Abstract:

Estimation of water yield and water balance in a river catchment is critical to the sustainable management of water resources at watershed level in any country. Therefore, in the present study, Soil and Water Assessment Tool (SWAT) interfaced with Geographical Information System (GIS) was applied as a tool to predict water balance and water yield of a catchment area in Nigeria. The catchment area, which was 12,992km2, is located upstream Jebba hydropower dam in North central part of Nigeria. In this study, data on the observed flow were collected and compared with simulated flow using SWAT. The correlation between the two data sets was evaluated using statistical measures, such as, Nasch-Sucliffe Efficiency (NSE) and coefficient of determination (R2). The model output shows a good agreement between the observed flow and simulated flow as indicated by NSE and R2, which were greater than 0.7 for both calibration and validation period. A total of 42,733 mm of water was predicted by the calibrated model as the water yield potential of the basin for a simulation period 1985 to 2010. This interesting performance obtained with SWAT model suggests that SWAT model could be a promising tool to predict water balance and water yield in sustainable management of water resources. In addition, SWAT could be applied to other water resources in other basins in Nigeria as a decision support tool for sustainable water management in Nigeria.

Keywords: GIS, modeling, sensitivity analysis, SWAT, water yield, watershed level

Procedia PDF Downloads 388
875 Deep Well Grounded Magnetite Anode Chains Retrieval and Installation for Raslanuf Complex Impressed Current Cathodic Protection System Rectification

Authors: Mohamed Ahmed Khali

Abstract:

Numbers of deep well anode ground beds (GBs) have been retrieved due to un operated anode chains. New identical magnetite anode chains(MAC) have been installed at Raslanuf complex impressed current Cathodic protection(ICCP) system, distributed at different plants(Utility, ethylene and polyethylene). All problems associated with retrieving and installation of MACs have been discussed, rectified and presented. All GB associated severely corroded wellhead casings were well maintained and/ or replaced by new fabricated and modified ones. The main cause of wellhead casings internal corrosion was discussed, and the conducted remedy action to overcome future corrosion problem is presented. All GB connected anode junction boxes (AJBs) and shunts were closely inspected, maintained, and necessary replacement/and or modification were carried out on shunts. All damaged GB concrete foundations (CF) have been inspected and completely replaced. All GB associated Transformer-Rectifiers units (TRUs) were subjected to through inspection, and necessary maintenance has been performed on each individual TRU. After completion of all MACs and TRU maintenance activities, each cathodic protection station (CPS) has been re-operated. An alternative current (AC), direct current (DC), voltage and structure to soil potential (S/P) measurements have been conducted, recorded, and all obtained test results are presented. DC current outputs has been adjusted, and DC current outputs of each MAC has been recorded for each GB AJB.

Keywords: magnatite anode, deep well, ground bed, cathodic protection, transformer rectifies, impreced current, junction box

Procedia PDF Downloads 72
874 Improving the Growth, Biochemical Parameters and Content and Composition of Essential Oil of Mentha piperita L. through Soil-Applied N, P, and K

Authors: Bilal Bhat, M. Masroor A. Khan, Moin Uddin, M. Naeem

Abstract:

Aromatic herb, peppermint (Mentha piperita L.), is a natural hybrid (M. aquatica × M. spicata) with immense therapeutic uses, apart from other potential uses. Peppermint oil is one of the most popular and widely used essential oil (EO), because of its main components menthol and menthone. In view of enhancing growth, yield and quality of this medicinally important herb, a pot experiment was conducted in the net-house of the department. The experiment was aimed at studying the effect of graded levels of N, P, and K on growth, biochemical characteristics, and content and composition of EO in Mentha piperita L. Six NPK treatments (viz. N0P0K0, N20P20K20, N40P40K40, N20+20 P20+20 K20+20, N60P60K60, and N30+30 P30+30 K30+30) were tested. The plants were harvested 150 days after transplanting. The crop performance was assessed in terms of growth attributes, physiological activities, herbage yield and content as well as yield of active constituents of Mentha piperita L. Biochemical parameters were analyzed spectrophotometrically. The EO was extracted using Clevenger’s apparatus and the active constituents of the oil were determined using Gas Chromatography. Split-dose application of N, P and K (N30+30 P30+30 K30+30) ameliorated most of the parameters significantly including, fresh and dry weight of plant, NPK content, chlorophyll and carotenoids content, and the activities of carbonic anhydrase and nitrate reductase in the leaves. It also enhanced the EO content (44.0%), EO yield (91.0%), menthol content (14.1%), menthone content (34.0%), menthyl acetate content (16.9%) and 1, 8-cineole content (43.7%) but decreased the pulegone content (36.8%). Conclusively, the fertilization proved useful in enhancing the EO content, yield and other EO components of the plant. Thus, the yield and quality of EO of peppermint may be improved by this agricultural strategy.

Keywords: mentha piperita, menthol, menthone, EO

Procedia PDF Downloads 466
873 Revealing the Urban Heat Island: Investigating its Spatial and Temporal Changes and Relationship with Air Quality

Authors: Aneesh Mathew, Arunab K. S., Atul Kumar Sharma

Abstract:

The uncontrolled rise in population has led to unplanned, swift, and unsustainable urban expansion, causing detrimental environmental impacts on both local and global ecosystems. This research delves into a comprehensive examination of the Urban Heat Island (UHI) phenomenon in Bengaluru and Hyderabad, India. It centers on the spatial and temporal distribution of UHI and its correlation with air pollutants. Conducted across summer and winter seasons from 2001 to 2021 in Bangalore and Hyderabad, this study discovered that UHI intensity varies seasonally, peaking in summer and decreasing in winter. The annual maximum UHI intensities range between 4.65 °C to 6.69 °C in Bengaluru and 5.74 °C to 6.82 °C in Hyderabad. Bengaluru particularly experiences notable fluctuations in average UHI intensity. Introducing the Urban Thermal Field Variance Index (UTFVI), the study indicates a consistent strong UHI effect in both cities, significantly impacting living conditions. Moreover, hotspot analysis demonstrates a rising trend in UHI-affected areas over the years in Bengaluru and Hyderabad. This research underscores the connection between air pollutant concentrations and land surface temperature (LST), highlighting the necessity of comprehending UHI dynamics for urban environmental management and public health. It contributes to a deeper understanding of UHI patterns in swiftly urbanizing areas, providing insights into the intricate relationship between urbanization, climate, and air quality. These findings serve as crucial guidance for policymakers, urban planners, and researchers, facilitating the development of innovative, sustainable strategies to mitigate the adverse impacts of uncontrolled expansion while promoting the well-being of local communities and the global environment.

Keywords: urban heat island effect, land surface temperature, air pollution, urban thermal field variance index

Procedia PDF Downloads 33
872 Study of Biological Denitrification using Heterotrophic Bacteria and Natural Source of Carbon

Authors: Benbelkacem Ouerdia

Abstract:

Heterotrophic denitrification has been proven to be one of the most feasible processes for removing nitrate from wastewater and drinking water. In this process, heterotrophic bacteria use organic carbon for both growth and as an electron source. Underground water pollution by nitrates become alarming in Algeria. A survey carried out revealed that the nitrate concentration is in continual increase. Studies in some region revealed contamination exceeding the recommended permissible dose which is 50 mg/L. Worrying values in the regions of Mascara, Ouled saber, El Eulma, Bouira and Algiers are respectively 72 mg/L, 75 mg/L, 97 mg/L, 102 mg/L, and 158 mg/L. High concentration of nitrate in drinking water is associated with serious health risks. Research on nitrate removal technologies from municipal water supplies is increasing because of nitrate contamination. Biological denitrification enables the transformation of oxidized nitrogen compounds by a wide spectrum of heterotrophic bacteria into harmless nitrogen gas with accompanying carbon removal. Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality The study investigated the valorization of a vegetable residue as a carbon source (dates nodes) in water treatment using the denitrification process. Throughout the study, the effect of inoculums addition, pH, and initial concentration of nitrates was also investigated. In this research, a natural organic substance: dates nodes were investigated as a carbon source in the biological denitrification of drinking water. This material acts as a solid substrate and bio-film carrier. The experiments were carried out in batch processes. Complete denitrification was achieved varied between 80 and 100% according to the type of process used. It was found that the nitrate removal rate based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on the initial concentration of nitrate. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH.

Keywords: biofilm, carbon source, dates nodes, heterotrophic denitrification, nitrate, nitrite

Procedia PDF Downloads 452
871 The Human Right to a Safe, Clean and Healthy Environment in Corporate Social Responsibility's Strategies: An Approach to Understanding Mexico's Mining Sector

Authors: Thalia Viveros-Uehara

Abstract:

The virtues of Corporate Social Responsibility (CSR) are explored widely in the academic literature. However, few studies address its link to human rights, per se; specifically, the right to a safe, clean and healthy environment. Fewer still are the research works in this area that relate to developing countries, where a number of areas are biodiversity hotspots. In Mexico, despite the rise and evolution of CSR schemes, grave episodes of pollution persist, especially those caused by the mining industry. These cases set up the question of the correspondence between the current CSR practices of mining companies in the country and their responsibility to respect the right to a safe, clean and healthy environment. The present study approaches precisely such a bridge, which until now has not been fully tackled in light of Mexico's 2011 constitutional human rights amendment and the United Nation's Guiding Principles on Business and Human Rights (UN Guiding Principles), adopted by the Human Rights Council in 2011. To that aim, it initially presents a contextual framework; it then explores qualitatively the adoption of human rights’ language in the CSR strategies of the three main mining companies in Mexico, and finally, it examines their standing with respect to the UN Guiding Principles. The results reveal that human rights are included in the RSE strategies of the analysed businesses, at least at the rhetoric level; however, they do not embrace the right to a safe, clean and healthy environment as such. Moreover, we conclude that despite the finding that corporations publicly express their commitment to respect human rights, some operational weaknesses that hamper the exercise of such responsibility persist; for example, the systematic lack of human rights impact assessments per mining unit, the denial of actual and publicly-known negative episodes on the environment linked directly to their operations, and the absence of effective mechanisms to remediate adverse impacts.

Keywords: corporate social responsibility, environmental impacts, human rights, right to a safe, clean and healthy environment, mining industry

Procedia PDF Downloads 303
870 Valorization of Dates Nodes as a Carbon Source Using Biological Denitrification

Authors: Ouerdia Benbelkacem Belouanas

Abstract:

Heterotrophic denitrification has been proven to be one of the most feasible processes for removing nitrate from waste water and drinking water. In this process, heterotrophic bacteria use organic carbon for both growth and as an electron source. Underground water pollution by nitrates become alarming in Algeria. A survey carried out revealed that the nitrate concentration is in continual increase. Studies in some region revealed contamination exceeding the recommended permissible dose which is 50 mg/L. Worrying values in the regions of Mascara, Ouled saber, El Eulma, Bouira and Algiers are respectively 72 mg/L, 75 mg/L, 97 mg/L, 102 mg/L, and 158 mg/L. High concentration of nitrate in drinking water is associated with serious health risks. Research on nitrate removal technologies from municipal water supplies is increasing because of nitrate contamination. Biological denitrification enables transformation of oxidized nitrogen compounds by a wide spectrum of heterotrophic bacteria into harmless nitrogen gas with accompanying carbon removal. Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. The study investigated the valorization of a vegetable residue as a carbon source (dates nodes) in water treatment using the denitrification process. Throughout the study, the effect of inoculums addition, pH, and initial concentration of nitrates was also investigated. In this research, a natural organic substance: dates nodes were investigated as a carbon source in the biological denitrification of drinking water. This material acts as a solid substrate and bio-film carrier. The experiments were carried out in batch processes. Complete denitrification was achieved varied between 80 and 100% according to the type of process used. It was found that the nitrate removal rate based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on initial concentration of nitrate. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH.

Keywords: biofilm, carbon source, dates nodes, heterotrophic denitrification, nitrate, nitrite

Procedia PDF Downloads 385
869 Characterization of Bacteriophage for Biocontrol of Pseudomonas syringae, Causative Agent of Canker in Prunus spp.

Authors: Mojgan Rabiey, Shyamali Roy, Billy Quilty, Ryan Creeth, George Sundin, Robert W. Jackson

Abstract:

Bacterial canker is a major disease of Prunus species such as cherry (Prunus avium). It is caused by Pseudomonas syringae species including P. syringae pv. syringae (Pss) and P. syringae pv. morsprunorum race 1 (Psm1) and race 2 (Psm2). Concerns over the environmental impact of, and developing resistance to, copper controls call for alternative approaches to disease management. One method of control could be achieved using naturally occurring bacteriophage (phage) infective to the bacterial pathogens. Phages were isolated from soil, leaf, and bark of cherry trees in five locations in the South East of England. The phages were assessed for their host range against strains of Pss, Psm1, and Psm2. The phages exhibited a differential ability to infect and lyse different Pss and Psm isolates as well as some other P. syringae pathovars. However, the phages were unable to infect beneficial bacteria such as Pseudomonas fluorescens. A subset of 18 of these phages were further characterised genetically (Random Amplification of Polymorphic DNA-PCR fingerprinting and sequencing) and using electron microscopy. The phages are tentatively identified as belonging to the order Caudovirales and the families Myoviridae, Podoviridae, and Siphoviridae, with genetic material being dsDNA. Future research will fully sequence the phage genomes. The efficacy of the phage, both individually and in cocktails, to reduce disease progression in vivo will be investigated to understand the potential for practical use of these phages as biocontrol agents.

Keywords: bacteriophage, pseudomonas, bacterial cancker, biological control

Procedia PDF Downloads 121
868 Risks of Traditional Practices: Chemical and Health Assessment of Bakhour

Authors: Yehya Elsayed, Sarah Dalibalta, Fareedah Alqtaishat, Ioline Gomes, Nagelle Fernandes

Abstract:

Bakhour or Arabian incense is traditionally used to perfume houses, shops and clothing as part of cultural or religious practices in several Middle Eastern countries. Conventionally, Bakhour consists of a mixture of natural ingredients such as chips of agarwood (oud), musk and sandalwoods that are soaked in scented oil. Bakhour is usually burned by charcoal or by using gas or electric burners to produce the scented smoke. It is necessary to evaluate the impact of such practice on human health and environment especially that the burning of Bakhour is usually done on a regular basis and in closed areas without proper ventilation. Although significant amount of research has been reported in scientific literature on the chemical analysis of various types of incense smoke, unfortunately only very few of them focused specifically on the health impacts of Bakhour. Raw Bakhour samples, their smoke emissions and the ash residue were analyzed to assess the existence of toxic ingredients and their possible influence on health and the environment. Three brands of Bakhour samples were analyzed for the presence of harmful heavy metals and organic compounds. Thermal Desorption Gas Chromatography-Mass Spectrometry (TD-GC-MS) was used to identify organic compounds while Inductively Coupled Plasma (ICP) and Scanning Electron Microscope-Energy Dispersive X-Ray Spectrometer (SEM-EDS) were used to analyze the presence of toxic and heavy metals. Organic compounds from the smoke were collected on specific tenax and activated carbon adsorption tubes. More than 850 chemical compounds were identified. The presence of 19 carcinogens, 23 toxins and 173 irritants were confirmed. Additionally, heavy metals were detected in amounts similar to those present in cigarettes. However, it was noticed that many of the detected compounds in the smoke lacked clinical studies on their health effects which shows the need for further clinical studies to be devoted to this area of study.

Keywords: Bakhour, incense smoke, pollution, indoor environment, health risk, chemical analysis

Procedia PDF Downloads 405