Search results for: smart greenhouse
2095 Design of a Simple Smart Greenhouse for Optimized Pak choi Cultivation in Rural Tropical Areas
Authors: Dedie Tooy, Rio Kolibu, Rio Putra, Herry Frits Pinatik, Daniel P. M. Ludong
Abstract:
This study presents the design and development of a smart greenhouse prototype tailored to optimize Pak choi (Brassica chinensis L.) cultivation in tropical rural climates. Pak choi, a high-demand leafy vegetable in Indonesia, often experiences suboptimal growth due to elevated temperatures and humidity. The objective of this research is to design and develop an intelligent greenhouse to optimize pak choi cultivation in tropical rural climates. The design of a smart greenhouse provides a controlled environment to stabilize these conditions, but managing fluctuating temperature, humidity, and light in tropical regions remains challenging. This system regulates critical environmental factors, including temperature, humidity, irrigation system, and light, creating optimal conditions for Pak Choi. The prototype's effectiveness was evaluated by monitoring growth indicators such as leaf weight, freshness, and moisture content, alongside the consistency of the internal climate compared to external conditions. Results indicate that the smart greenhouse supports superior crop growth, enhances yield quality, and reduces environmental resource consumption. The irrigation control system test was carried out for 40 days. Researchers observed the results of the automatic system working according to the sensor value readings. The results of the temperature control system test work: when the air temperature in the greenhouse is more than 33 degrees, the condensation pump will turn on, and when the temperature is below 32 degrees, the pump will automatically turn itself off. The cycle repeats continuously. The results achieved pak coy can live up to 40 days. As part of our ongoing research, we are actively considering integrating double-layered roofs to improve insulation and reduce external temperature fluctuations, which could further enhance the effectiveness of the smart greenhouse.Keywords: smart greenhouse, horticulture, rural tropical climate, sustainable agriculture
Procedia PDF Downloads 62094 Geospatial Information for Smart City Development
Authors: Simangele Dlamini
Abstract:
Smart city development is seen as a way of facing the challenges brought about by the growing urban population the world over. Research indicates that cities have a role to play in combating urban challenges like crime, waste disposal, greenhouse gas emissions, and resource efficiency. These solutions should be such that they do not make city management less sustainable but should be solutions-driven, cost and resource-efficient, and smart. This study explores opportunities on how the City of Johannesburg, South Africa, can use Geographic Information Systems, Big Data and the Internet of Things (IoT) in identifying opportune areas to initiate smart city initiatives such as smart safety, smart utilities, smart mobility, and smart infrastructure in an integrated manner. The study will combine Big Data, using real-time data sources to identify hotspot areas that will benefit from ICT interventions. The GIS intervention will assist the city in avoiding a silo approach in its smart city development initiatives, an approach that has led to the failure of smart city development in other countries.Keywords: smart cities, internet of things, geographic information systems, johannesburg
Procedia PDF Downloads 1492093 A Performance Study of a Solar Heating System on the Microclimate of an Agricultural Greenhouse
Authors: Nora Arbaoui, Rachid Tadili
Abstract:
This study focuses on a solar system designed to heat an agricultural greenhouse. This solar system is based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil integrated into the roof of the greenhouse. The thermal energy stored during the day will be released during the night to improve the microclimate of the greenhouse. This system was tested in a small agricultural greenhouse in order to ameliorate the different operational parameters. The climatic and agronomic results obtained with this system are significant in comparison with a greenhouse with no heating system.Keywords: solar system, agricultural greenhouse, heating, storage, drying
Procedia PDF Downloads 882092 A Solar Heating System Performance on the Microclimate of an Agricultural Greenhouse
Authors: Nora Arbaoui, Rachid Tadili
Abstract:
The experiment adopted a natural technique of heating and cooling an agricultural greenhouse to reduce the fuel consumption and CO2 emissions based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil positioned at the roof of the greenhouse. This experimental study is devoted to the performance evaluation of a solar heating system to improve the microclimate of a greenhouse during the cold period, especially in the Mediterranean climate. This integrated solar system for heating has a positive impact on the quality and quantity of the products under the study greenhouse.Keywords: solar system, agricultural greenhouse, heating, storage
Procedia PDF Downloads 772091 Optimization of the Energy Management for a Solar System of an Agricultural Greenhouse
Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume
Abstract:
To improve the climatic conditions and increase production in the greenhouse during the winter season under the Mediterranean climate, this thesis project proposes a design of an integrated and autonomous solar system for heating, cooling, and conservation of production in an agricultural greenhouse. To study the effectiveness of this system, experiments are conducted in two similar agricultural greenhouses oriented north-south. The first greenhouse is equipped with an active solar system integrated into the double glazing of the greenhouse’s roof, while the second greenhouse has no system, it serves as a controlled greenhouse for comparing thermal and agronomic performance The solar system allowed for an average increase in the indoor temperature of the experimental greenhouse of 6°C compared to the outdoor environment and 4°C compared to the control greenhouse. This improvement in temperature has a favorable effect on the plants' climate and subsequently positively affects their development, quality, and production.Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying
Procedia PDF Downloads 1002090 A Case Study on Smart Energy City of the UK: Based on Business Model Innovation
Authors: Minzheong Song
Abstract:
The purpose of this paper is to see a case of smart energy evolution of the UK along with government projects and smart city project like 'Smart London Plan (SLP)' in 2013 with the logic of business model innovation (BMI). For this, it discusses the theoretical logic and formulates a research framework of evolving smart energy from silo to integrated system. The starting point is the silo system with no connection and in second stage, the private investment in smart meters, smart grids implementation, energy and water nexus, adaptive smart grid systems, and building marketplaces with platform leadership. As results, the UK’s smart energy sector has evolved from smart meter device installation through smart grid to new business models such as water-energy nexus and microgrid service within the smart energy city system.Keywords: smart city, smart energy, business model, business model innovation (BMI)
Procedia PDF Downloads 1622089 Performance of a Solar Heating System on the Microclimate of an Agricultural Greenhouse
Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume
Abstract:
Climate change and its effects on low external temperatures in winter require great consumption of energy to improve the greenhouse microclimate and increase agricultural production. To reduce the amount of energy consumed, a solar system has been developed to heat an agricultural greenhouse. This system is based on a transfer fluid that will circulate inside the greenhouse through a solar copper coil positioned on the roof of the greenhouse. This thermal energy accumulated during the day will be stored to be released during the night to improve the greenhouse’s microclimate. The use of this solar heating system has resulted in an average increase in the greenhouse’s indoor temperature of 8.3°C compared to the outdoor environment. This improved temperature has created a more favorable climate for crops and has subsequently had a positive effect on their development, quality, and production.Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying
Procedia PDF Downloads 892088 A Security Study for Smart Metering Systems
Authors: Musaab Hasan, Farkhund Iqbal, Patrick C. K. Hung, Benjamin C. M. Fung, Laura Rafferty
Abstract:
In modern societies, the smart cities concept raised simultaneously with the projection towards adopting smart devices. A smart grid is an essential part of any smart city as both consumers and power utility companies benefit from the features provided by the power grid. In addition to advanced features presented by smart grids, there may also be a risk when the grids are exposed to malicious acts such as security attacks performed by terrorists. Considering advanced security measures in the design of smart meters could reduce these risks. This paper presents a security study for smart metering systems with a prototype implementation of the user interfaces for future works.Keywords: security design, smart city, smart meter, smart grid, smart metering system
Procedia PDF Downloads 3362087 Copper Coil Heat Exchanger Performance for Greenhouse Heating: An Experimental and Theoretical Study
Authors: Maha Bakkari, R.Tadili
Abstract:
The present work is a study of the performance of a solar copper coil heating system in a greenhouse microclimate. Our system is based on the circulation of a Heat transfer fluid, which is water in our case, in a closed loop under the greenhouse's roof in order to store heat all day, and then this heat will supply the greenhouse during the night. In order to evaluate our greenhouse, we made an experimental study in two identical greenhouses, where the first one is equipped with a heating system and the second (without heating) is used for control. The heating system allows the establishment of the thermal balance and determines the mass of water necessary for the process in order to ensure its functioning during the night. The results obtained showed that this solar heating system and the climatic parameters inside the experimental greenhouse were improved, and it presents a significant gain compared to a controlled greenhouse without a heating system. This research is one of the solutions that help to reduce the greenhouse effect of the planet Earth, a problem that worries the world.Keywords: solar energy, energy storage, greenhouse, environment
Procedia PDF Downloads 782086 A Study of Key Technologies for the Realization of Smart Grid and Its Research Situation in Pakistan and Abroad
Authors: Arjmand Khaliq, Pemra Sohaib
Abstract:
In this paper smart grid technologies which converts conventional grid into smart grid has been discussed. Integration of advanced technologies including two way communication, advanced control system, sensors, smart metering system and other provide opportunity to make conventional grid a intelligent and automatic system which is named as smart grid. This paper gives the concept of smart grid and functional characteristics of smart grid technology, summed up the research progress in Pakistan and abroad and the significance of developing smart grid. Based on the analysis of the smart grid, smart grid technologies will result a reliable and energy efficient power system in the future. On the other hand smart grid technologies have been reviewed in this paper highlighting the key technologies of smart grid, and points out the problems and challenges in the realization of smart grid.Keywords: energy, power system reliability, power system monitoring and control, sensor, smart grid, two-way communication
Procedia PDF Downloads 3962085 Performance of Copper Coil Heat Exchangers for Heating Greenhouses: An Experimental and Theoretical Investigation
Authors: Ilham ihoume, Rachid Tadili, Nora Arbaoui
Abstract:
This study examines the manner in which a solar copper coil heating system performs in a North-South-oriented greenhouse environment. In order to retain heat during the day and release it back into the greenhouse environment at night, this system relies on the circulation of water in a closed loop under the roof of the greenhouse. Experimental research was conducted to compare the results in two identical greenhouses. The first one has a heating system, whilst the second one has not and is regarded as a control. We determined the mass of the heat transfer fluid, which makes up the storage system, needed to heat the greenhouse during the night to be equivalent to 689 Kg using the heat balance of the greenhouse equipped with a heating system. The findings demonstrated that when compared to a controlled greenhouse without a heating system, the climatic conditions within the experimental greenhouse were greatly enhanced by the solar heating system. Keywords: renewable energy, storage, enviromental impact, heating, agricultural greenhouse
Procedia PDF Downloads 782084 Overview of Smart Grid Applications in Turkey
Authors: Onur Elma, Giray E. Kıral, Ugur S. Selamoğuları, Mehmet Uzunoğlu, Bulent Vural
Abstract:
Electrical energy has become indispensable for people's lives and with rapidly developing technology and continuously changing living standards the need for the electrical energy has been on the rise. Therefore, both energy generation and efficient use of energy are very important topics. Smart grid concept has been introduced to provide monitoring, energy efficiency, reliability and energy quality. Under smart grid concept, smart homes, which can be considered as key component in smart grid operation, have appeared as another research area. In this study, first, smart grid research in the world will be reviewed. Then, overview of smart grid applications in Turkey will be given.Keywords: energy efficiency, smart grids, smart home, applications
Procedia PDF Downloads 4982083 The Development and Testing of Greenhouse Comprehensive Environment Control System
Authors: Mohammed Alrefaie, Yaser Miaji
Abstract:
Greenhouses provide a convenient means to grow plants in the best environment. They achieve this by trapping heat from the sunlight and using artificial means to enhance the environment of the greenhouse. This includes controlling factors such as air flow, light intensity and amount of water among others that can have a big impact on plant growth. The aim of the greenhouse is to give maximum yield from plants possible. This report details the development and testing of greenhouse environment control system that can regulate light intensity, airflow and power supply inside the greenhouse. The details of the module development to control these three factors along with results of testing are presented.Keywords: greenhouse, control system, light intensity, comprehensive environment
Procedia PDF Downloads 4822082 Assessment of the Thermal Performance of a Solar Heating System on an Agricultural Greenhouse Microclimate
Authors: Nora Arbaoui, Rachid Tadili
Abstract:
The substantial increase of areas cultivated under glasshouses compels the use of other natural heating and cooling procedures to make a profit as well as avoid both exorbitant fuel consumption and CO₂ emissions. This experimental study is designed to examine the functioning of a solar heating system that will increase positive consequences in terms of both quantity and quality while successfully enhancing greenhouse microclimate during wintertime. Those configurations have been tested in a miniaturized greenhouse simply after having optimized the operating parameters. These were noteworthy results when compared to an unheated witness greenhouse.Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying
Procedia PDF Downloads 252081 Hybrid Wavelet-Adaptive Neuro-Fuzzy Inference System Model for a Greenhouse Energy Demand Prediction
Authors: Azzedine Hamza, Chouaib Chakour, Messaoud Ramdani
Abstract:
Energy demand prediction plays a crucial role in achieving next-generation power systems for agricultural greenhouses. As a result, high prediction quality is required for efficient smart grid management and therefore low-cost energy consumption. The aim of this paper is to investigate the effectiveness of a hybrid data-driven model in day-ahead energy demand prediction. The proposed model consists of Discrete Wavelet Transform (DWT), and Adaptive Neuro-Fuzzy Inference System (ANFIS). The DWT is employed to decompose the original signal in a set of subseries and then an ANFIS is used to generate the forecast for each subseries. The proposed hybrid method (DWT-ANFIS) was evaluated using a greenhouse energy demand data for a week and compared with ANFIS. The performances of the different models were evaluated by comparing the corresponding values of Mean Absolute Percentage Error (MAPE). It was demonstrated that discret wavelet transform can improve agricultural greenhouse energy demand modeling.Keywords: wavelet transform, ANFIS, energy consumption prediction, greenhouse
Procedia PDF Downloads 882080 Impact of innovative Solar Heating Systems on Greenhouse Microclimates: A Case Study with Zucchini (Cucurbita pepo)
Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui
Abstract:
Recent innovations in economical heating systems have significantly boosted agricultural production by effectively managing temperature drops in greenhouse microclimates. These advancements enhance product profitability in terms of quality, quantity, and growth duration. This study experimentally investigates the impact of a solar heating system on the microclimate of an agricultural greenhouse, focusing on zucchini (Cucurbita pepo). The System comprises a copper tube placed between double roof glazing and a sensible heat storage system, converting solar energy during the day and storing it for night-time release. A second control greenhouse without heating allows for comparative analysis at various growth stages. During the cold season, the experimental greenhouse showed a temperature increase of 3°C compared to the control greenhouse and 5°C above external ambient air. The relative humidity in the experimental greenhouse ranged from 69% to 70%, whereas the control greenhouse recorded 68% to 86%, and ambient air was between 94% to 99%. The heating systems achieved an efficiency of 73%, and zucchini plants in the experimental greenhouse developed fruit 13 days earlier than those in the control greenhouse.Keywords: solar energy, storage, energy managment, heating system
Procedia PDF Downloads 442079 Closed Greenhouse Production Systems for Smart Plant Production in Urban Areas
Authors: U. Schmidt, D. Dannehl, I. Schuch, J. Suhl, T. Rocksch, R. Salazar-Moreno, E. Fitz-Rodrigues, A. Rojano Aquilar, I. Lopez Cruz, G. Navas Gomez, R. A. Abraham, L. C. Irineo, N. G. Gilberto
Abstract:
The integration of agricultural production systems into urban areas is a challenge for the coming decades. Because of increasing greenhouse gas emission and rising resource consumption as well as costs in animal husbandry, the dietary habits of people in the 21st century have to focus on herbal foods. Intensive plant cultivation systems in large cities and megacities require a smart coupling of information, material and energy flow with the urban infrastructure in terms of Horticulture 4.0. In recent years, many puzzle pieces have been developed for these closed processes at the Humboldt University. To compile these for an urban plant production, it has to be optimized and networked with urban infrastructure systems. In the field of heat energy production, it was shown that with closed greenhouse technology and patented heat exchange and storage technology energy can be provided for heating and domestic hot water supply in the city. Closed water circuits can be drastically reducing the water requirements of plant production in urban areas. Ion sensitive sensors and new disinfection methods can help keep circulating nutrient solutions in the system for a longer time in urban plant production greenhouses.Keywords: semi closed, greenhouses, urban farming, solar heat collector, closed water cycles, aquaponics
Procedia PDF Downloads 3322078 A Survey on the Blockchain Smart Contract System: Security Strengths and Weaknesses
Authors: Malaw Ndiaye, Karim Konate
Abstract:
Smart contracts are computer protocols that facilitate, verify, and execute the negotiation or execution of a contract, or that render a contractual term unnecessary. Blockchain and smart contracts can be used to facilitate almost any financial transaction. Thanks to these smart contracts, the settlement of dividends and coupons could be automated. Smart contracts have become lucrative and profitable targets for attackers because they can hold a great amount of money. Smart contracts, although widely used in blockchain technology, are far from perfect due to security concerns. Since there are recent studies on smart contract security, none of them systematically study the strengths and weaknesses of smart contract security. Some have focused on an analysis of program-related vulnerabilities by providing a taxonomy of vulnerabilities. Other studies are responsible for listing the series of attacks linked to smart contracts. Although a series of attacks are listed, there is a lack of discussions and proposals on improving security. This survey takes stock of smart contract security from a more comprehensive perspective by correlating the level of vulnerability and systematic review of security levels in smart contracts.Keywords: blockchain, Bitcoin, smart contract, criminal smart contract, security
Procedia PDF Downloads 1682077 Determinants of Intensity of Greenhouse Gas Emission in Lithuanian Agriculture
Authors: D. Makuteniene
Abstract:
Agriculture, as one of the human activities, emits a significant amount of greenhouse gas emission and undoubtedly has an impact on climate change. The main gaseous products of agricultural greenhouse gases are carbon dioxide, methane, and nitroxadoxide. The sources and emission of these gases depend on land use, soil, crops, manure, livestock, and energy consumption. One of the indicators showing the agricultural impact on climate change is an intensity of GHG emission and its dynamics. This study analyzed the determinants of an intensity of greenhouse gas emission in Lithuanian agriculture using data decomposition. The research revealed that, although greenhouse gas emission increased during the research period, however, agricultural net value added grew more rapidly, which contributed to a reduction of intensity of greenhouse gas emission in Lithuania between 2000 and 2015. It was identified that during the research period intensity of greenhouse gas emission was mostly increased by the change of the use of nitrogen in agriculture, as compared to the change of the area of agricultural land, and by the change of the number of full-time employees, as compared to the change of net value added. Conversely, the change of energy consumption in agriculture, as compared to the change of the use of nitrogen in agriculture, had a bigger impact in decreasing intensity of greenhouse gas emission.Keywords: agriculture, determinants of intensity, greenhouse gas emission, intensity
Procedia PDF Downloads 1832076 Formal Verification for Ethereum Smart Contract Using Coq
Authors: Xia Yang, Zheng Yang, Haiyong Sun, Yan Fang, Jingyu Liu, Jia Song
Abstract:
The smart contract in Ethereum is a unique program deployed on the Ethereum Virtual Machine (EVM) to help manage cryptocurrency. The security of this smart contract is critical to Ethereum’s operation and highly sensitive. In this paper, we present a formal model for smart contract, using the separated term-obligation (STO) strategy to formalize and verify the smart contract. We use the IBM smart sponsor contract (SSC) as an example to elaborate the detail of the formalizing process. We also propose a formal smart sponsor contract model (FSSCM) and verify SSC’s security properties with an interactive theorem prover Coq. We found the 'Unchecked-Send' vulnerability in the SSC, using our formal model and verification method. Finally, we demonstrate how we can formalize and verify other smart contracts with this approach, and our work indicates that this formal verification can effectively verify the correctness and security of smart contracts.Keywords: smart contract, formal verification, Ethereum, Coq
Procedia PDF Downloads 6912075 Analysis on Greenhouse Gas Emissions Potential by Deploying the Green Cars in Korean Road Transport Sector
Authors: Sungjun Hong, Yanghon Chung, Nyunbae Park, Sangyong Park
Abstract:
South Korea, as the 7th largest greenhouse gas emitting country in 2011, announced that the national reduction target of greenhouse gas emissions was 30% based on BAU (Business As Usual) by 2020. And the reduction rate of the transport sector is 34.3% which is the highest figure among all sectors. This paper attempts to analyze the environmental effect on deploying the green cars in Korean road transport sector. In order to calculate the greenhouse gas emissions, the LEAP model is applied in this study.Keywords: green car, greenhouse gas, LEAP model, road transport sector
Procedia PDF Downloads 6152074 Citizen Participation in Smart Cities: Singapore and Tokyo
Authors: Thomas Benson
Abstract:
Smart cities have been heralded as multi-faceted entities which utilise information and communication technologies to enhance citizen participation. The purpose of this paper is to outline authoritative definitions of smart cities and citizen participation and investigate smart city citizen-centrism rhetoric by examining urban governance and citizen participation processes. Drawing on extant literature and official city government documents and websites, Singapore (Singapore) and Tokyo (Japan) are chosen as comparable smart city case studies. For the smart city to be truly realised, this paper concludes that smart cities must do more to incorporate genuine citizen participation mechanisms.Keywords: citizen participation, smart cities, urban governance, Singapore, Tokyo
Procedia PDF Downloads 1532073 A Study on Thermal and Flow Characteristics by Solar Radiation for Single-Span Greenhouse by Computational Fluid Dynamics Simulation
Authors: Jonghyuk Yoon, Hyoungwoon Song
Abstract:
Recently, there are lots of increasing interest in a smart farming that represents application of modern Information and Communication Technologies (ICT) into agriculture since it provides a methodology to optimize production efficiencies by managing growing conditions of crops automatically. In order to obtain high performance and stability for smart greenhouse, it is important to identify the effect of various working parameters such as capacity of ventilation fan, vent opening area and etc. In the present study, a 3-dimensional CFD (Computational Fluid Dynamics) simulation for single-span greenhouse was conducted using the commercial program, Ansys CFX 18.0. The numerical simulation for single-span greenhouse was implemented to figure out the internal thermal and flow characteristics. In order to numerically model solar radiation that spread over a wide range of wavelengths, the multiband model that discretizes the spectrum into finite bands of wavelength based on Wien’s law is applied to the simulation. In addition, absorption coefficient of vinyl varied with the wavelength bands is also applied based on Beer-Lambert Law. To validate the numerical method applied herein, the numerical results of the temperature at specific monitoring points were compared with the experimental data. The average error rates (12.2~14.2%) between them was shown and numerical results of temperature distribution are in good agreement with the experimental data. The results of the present study can be useful information for the design of various greenhouses. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Advanced Production Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(315093-03).Keywords: single-span greenhouse, CFD (computational fluid dynamics), solar radiation, multiband model, absorption coefficient
Procedia PDF Downloads 1362072 Reinventing Urban Governance: Sustainable Transport Solutions for Mitigating Climate Risks in Smart Cities
Authors: Jaqueline Nichi, Leila Da Costa Ferreira, Fabiana Barbi Seleguim, Gabriela Marques Di Giulio, Mariana Barbieri
Abstract:
The transport sector is responsible for approximately 55% of global greenhouse gas (GHG) emissions, in addition to pollution and other negative externalities, such as road accidents and congestion, that impact the routine of those who live in large cities. The objective of this article is to discuss the application and use of distinct mobility technologies such as climate adaptation and mitigation measures in the context of smart cities in the Global South. The documentary analysis is associated with 22 semi structured interviews with managers who work with mobility technologies in the public and private sectors and in civil society organizations to explore solutions in multilevel governance for smart and low-carbon mobility based on the case study from the city of São Paulo, Brazil. The hypothesis that innovation and technology to mitigate and adapt to climate impacts are not yet sufficient to make mobility more sustainable has been confirmed. The results indicate four relevant aspects for advancing a climate agenda in smart cities: integrated planning, coproduction of knowledge, experiments in governance, and new means of financing to guarantee the sustainable sociotechnical transition of the sector.Keywords: urban mobility, climate change, smart cities, multilevel governance
Procedia PDF Downloads 552071 Critical Success Factors for Sustainable Smart City Project in India
Authors: Debasis Sarkar
Abstract:
Development of a Smart City would depend upon the development of its infrastructure in a smart way. Primarily based on the ideology of the fourth industrial revolution a Smart City project should have Smart governance, smart health care, smart building, smart transportation, smart mobility, smart energy, smart technology and smart citizen. Considering the Indian scenario of current state of cities in India, it has become very essential to decide the specific parameters which would govern the development of a Smart City project. It has been observed that there are significant parameters beyond Information and Communication Technology (ICT), which govern the development of a Smart City project. This paper is an attempt to identify the Critical Success Factors (CSF) which are significantly responsible for the development of a Smart City project in Western India. Responses to questionnaire survey were analyzed on basis of Likert scale. They were further critically evaluated with help of Factor Comparison Method (FCM) and Analytical Hierarchy Process (AHP). The project authorities need to incorporate Building Information Modeling (BIM) to make the smart city project more collaborative. To make the project more sustainable, use of flyash in the concrete used, reduced usage of cement and steel, use of alternate fuels like biodiesel is recommended.Keywords: analytical hierarchical process, building information modeling, critical success factors, factor comparison method
Procedia PDF Downloads 2532070 Thermal Analysis of Photovoltaic Integrated Greenhouse Solar Dryer
Authors: Sumit Tiwari, Rohit Tripathi, G. N. Tiwari
Abstract:
Present study focused on the utilization of solar energy by the help of photovoltaic greenhouse solar dryer under forced mode. A single slope photovoltaic greenhouse solar dryer has been proposed and thermal modelling has been developed. Various parameters have been calculated by thermal modelling such as greenhouse room temperature, cell temperature, crop temperature and air temperature at exit of greenhouse. Further cell efficiency, thermal efficiency, and overall thermal efficiency have been calculated for a typical day of May and November. It was found that system can generate equivalent thermal energy up to 7.65 kW and 6.66 kW per day for clear day of May and November respectively.Keywords: characteristics curve, photovoltaic, thermal modelling, thermal efficiency
Procedia PDF Downloads 4562069 Different Goals and Strategies of Smart Cities: Comparative Study between European and Asian Countries
Authors: Yountaik Leem, Sang Ho Lee
Abstract:
In this paper, different goals and the ways to reach smart cities shown in many countries during planning and implementation processes will be discussed. Each country dealt with technologies which have been embedded into space as development of ICTs (information and communication technologies) for their own purposes and by their own ways. For example, European countries tried to adapt technologies to reduce greenhouse gas emission to overcome global warming while US-based global companies focused on the way of life using ICTs such as EasyLiving of Microsoft™ and CoolTown of Hewlett-Packard™ during last decade of 20th century. In the North-East Asian countries, urban space with ICTs were developed in large scale on the viewpoint of capitalism. Ubiquitous city, first introduced in Korea which named after Marc Weiser’s concept of ubiquitous computing pursued new urban development with advanced technologies and high-tech infrastructure including wired and wireless network. Japan has developed smart cities as comprehensive and technology intensive cities which will lead other industries of the nation in the future. Not only the goals and strategies but also new directions to which smart cities are oriented also suggested at the end of the paper. Like a Finnish smart community whose slogan is ‘one more hour a day for citizens,’ recent trend is forwarding everyday lives and cultures of human beings, not capital gains nor physical urban spaces.Keywords: smart cities, urban strategy, future direction, comparative study
Procedia PDF Downloads 2622068 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building
Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser
Abstract:
This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.Keywords: building's energy, control system, energy management, energy storage, genetic optimization algorithm, greenhouse gases, modelling, renewable energy
Procedia PDF Downloads 2572067 What Smart Can Learn about Art
Authors: Faten Hatem
Abstract:
This paper explores the associated understanding of the role and meaning of art and whether it is perceived to be separate from smart city construction. The paper emphasises the significance of fulfilling the inherent need for discovery and interaction, driving people to explore new places and think of works of art. This is done by exploring the ways of thinking and types of art in Milton Keynes by illustrating a general pattern of misunderstanding that relies on the separation between smart, art, and architecture, promoting a better and deeper understanding of the interconnections between neuroscience, art, and architecture. A reflective approach is used to clarify the potential and impact of using art-based research, methodology, and ways of knowing when approaching global phenomena and knowledge production while examining the process of making and developing smart cities, in particular, asserting that factors can severely impact it in the process of conducting the study itself. It follows a case study as a research strategy. The qualitative methods included data collection and analysis that involved interviews and observations that depended on visuals.Keywords: smart cities, art and smart, smart cities design, smart cities making, sustainability, city brain and smart cities metrics, smart cities standards, smart cities applications, governance, planning and policy
Procedia PDF Downloads 1192066 Smart Product-Service System Innovation with User Experience: A Case Study of Chunmi
Authors: Ying Yu, Wen-Chi Kuo, Tung-Jung Sung
Abstract:
The Product-Service System (PSS) has received widespread attention due to the increasing global competition in manufacturing and service markets. Today’s smart products and services are driven by Internet of things (IoT) technologies which will promote the transformation from traditional PSS to smart PSS. Although the smart PSS has some of technological achievements in businesses, it often ignores the real demands of target users when using products and services. Therefore, designers should know and learn the User Experience (UX) of smart products, services and systems. However, both of academia and industry still lack relevant development experience of smart PSS since it is an emerging field. In doing so, this is a case study of Xiaomi’s Chunmi, the largest IoT platform in the world, and addresses the two major issues: (1) why Chunmi should develop smart PSS strategies with UX; and (2) how Chunmi could successfully implement the strategic objectives of smart PSS through the design. The case study results indicated that: (1) the smart PSS can distinguish competitors by their unique UX which is difficult to duplicate; (2) early user engagement is crucial for the success of smart PSS; and (3) interaction, expectation, and enjoyment can be treated as a three-dimensional evaluation of UX design for smart PSS innovation. In conclusion, the smart PSS can gain competitive advantages through good UX design in the market.Keywords: design, smart PSS, user experience, user engagement
Procedia PDF Downloads 136