Search results for: regeneration systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9389

Search results for: regeneration systems

9209 Fabrication of Hybrid Scaffolds Consisting of Cell-laden Electrospun Micro/Nanofibers and PCL Micro-structures for Tissue Regeneration

Authors: MyungGu Yeo, JongHan Ha, Gi-Hoon Yang, JaeYoon Lee, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

Tissue engineering is a rapidly growing interdisciplinary research area that may provide options for treating damaged tissues and organs. As a promising technique for regenerating various tissues, this technology requires biomedical scaffolds, which serve as an artificial extracellular matrix (ECM) to support neotissue growth. Electrospun micro/nanofibers have been used widely in tissue engineering because of their high surface-area-to-volume ratio and structural similarity to extracellular matrix. However, low mechanical sustainability, low 3D shape-ability, and low cell infiltration have been major limitations to their use. In this work, we propose new hybrid scaffolds interlayered with cell-laden electrospun micro/nano fibers and poly(caprolactone) microstructures. Also, we applied various concentrations of alginate and electric field strengths to determine optimal conditions for the cell-electrospinning process. The combination of cell-laden bioink (2 ⅹ 10^5 osteoblast-like MG63 cells/mL, 2 wt% alginate, 2 wt% poly(ethylene oxide), and 0.7 wt% lecithin) and a 0.16 kV/mm electric field showed the highest cell viability and fiber formation in this process. Using these conditions and PCL microstructures, we achieved mechanically stable hybrid scaffolds. In addition, the cells embedded in the fibrous structure were viable and proliferated. We suggest that the cell-embedded hybrid scaffolds fabricated using the cell-electrospinning process may be useful for various soft- and hard-tissue regeneration applications.

Keywords: bioink, cell-laden scaffold, micro/nanofibers, poly(caprolactone)

Procedia PDF Downloads 349
9208 A Survey on Linear Time Invariant Multivariable Positive Real Systems

Authors: Mojtaba Hakimi-Moghaddam

Abstract:

Positive realness as the most important property of driving point impedance of passive electrical networks appears in the control systems stability theory in 1960’s. There are three important subsets of positive real (PR) systems are introduced by researchers, that is, loos-less positive real (LLPR) systems, weakly strictly positive real (WSPR) systems and strictly positive real (SPR) systems. In this paper, definitions, properties, lemmas, and theorems related to family of positive real systems are summarized. Properties in both frequency domain and state space representation of system are explained. Also, several illustrative examples are presented.

Keywords: real rational matrix transfer functions, positive realness property, strictly positive realness property, Hermitian form asymptotic property, pole-zero properties

Procedia PDF Downloads 245
9207 Hepatic Regenerative Capacity after Acetaminophen-Induced Liver Injury in Mouse Model

Authors: N. F. Hamid, A. Kipar, J. Stewart, D. J. Antoine, B. K. Park, D. P. Williams

Abstract:

Acetaminophen (APAP) is a widely used analgesic that is safe at therapeutic doses. The mouse model of APAP has been extensively used for studies on pathogenesis and intervention of drug induced liver injury based on the CytP450 mediated formation of N-acetyl-p-benzo-quinoneimine and, more recently, as model for mechanism based biomarkers. Delay of the fasted CD1 mice to rebound to the basal level of hepatic GSH compare to fed mice is reported in this study. Histologically, 15 hours fasted mice prior to APAP treatment leading to overall more intense cell loss with no evidence of apoptosis as compared to non-fasted mice, where the apoptotic cells were clearly seen on cleaved caspase-3 immunostaining. After 15 hours post APAP administration, hepatocytes underwent stage of recovery with evidence of mitotic figures in fed mice and return to completely no histological difference to control at 24 hours. On the contrary, the evidence of ongoing cells damage and inflammatory cells infiltration are still present on fasted mice until the end of the study. To further measure the regenerative capacity of the hepatocytes, the inflammatory mediators of cytokines that involved in the progression or regression of the toxicity like TNF-α and IL-6 in liver and spleen using RT-qPCR were also included. Yet, quantification of proliferating cell nuclear antigen (PCNA) has demonstrated the time for hepatic regenerative in fasted is longer than that to fed mice. Together, these data would probably confirm that fasting prior to APAP treatment does not only modulate liver injury, but could have further effects to delay subsequent regeneration of the hepatocytes.

Keywords: acetaminophen, liver, proliferating cell nuclear antigen, regeneration, apoptosis

Procedia PDF Downloads 400
9206 Synthesis of Chitosan/Silver Nanocomposites: Antibacterial Properties and Tissue Regeneration for Thermal Burn Injury

Authors: B.L. España-Sánchez, E. Luna-Hernández, R.A. Mauricio-Sánchez, M.E. Cruz-Soto, F. Padilla-Vaca, R. Muñoz, L. Granados-López, L.R. Ovalle-Flores, J.L. Menchaca-Arredondo, G. Luna-Bárcenas

Abstract:

Treatment of burn injured has been considered an important clinical problem due to the fluid control and the presence of microorganisms during the healing process. Conventional treatment includes antiseptic techniques, topical medication and surgical removal of damaged skin, to avoid bacterial growth. In order to accelerate this process, different alternatives for tissue regeneration have been explored, including artificial skin, polymers, hydrogels and hybrid materials. Some requirements consider a nonreactive organic polymer with high biocompatibility and skin adherence, avoiding bacterial infections. Chitin-derivative biopolymer such as chitosan (CS) has been used in skin regeneration following third-degree burns. The biological interest of CS is associated with the improvement of tissue cell stimulation, biocompatibility and antibacterial properties. In particular, antimicrobial properties of CS can be significantly increased when is blended with nanostructured materials. Silver-based nanocomposites have gained attention in medicine due to their high antibacterial properties against pathogens, related to their high surface area/volume ratio at nanomolar concentrations. Silver nanocomposites can be blended or synthesized with chitin-derivative biopolymers in order to obtain a biodegradable/antimicrobial hybrid with improved physic-mechanical properties. In this study, nanocomposites based on chitosan/silver nanoparticles (CS/nAg) were synthesized by the in situ chemical reduction method, improving their antibacterial properties against pathogenic bacteria and enhancing the healing process in thermal burn injuries produced in an animal model. CS/nAg was prepared in solution by the chemical reduction method, using AgNO₃ as precursor. CS was dissolved in acetic acid and mixed with different molar concentrations of AgNO₃: 0.01, 0.025, 0.05 and 0.1 M. Solutions were stirred at 95°C during 20 hours, in order to promote the nAg formation. CS/nAg solutions were placed in Petri dishes and dried, to obtain films. Structural analyses confirm the synthesis of silver nanoparticles (nAg) by means of UV-Vis and TEM, with an average size of 7.5 nm and spherical morphology. FTIR analyses showed the complex formation by the interaction of hydroxyl and amine groups with metallic nanoparticles, and surface chemical analysis (XPS) shows low concentration of Ag⁰/Ag⁺ species. Topography surface analyses by means of AFM shown that hydrated CS form a mesh with an average diameter of 10 µm. Antibacterial activity against S. aureus and P. aeruginosa was improved in all evaluated conditions, such as nAg loading and interaction time. CS/nAg nanocomposites films did not show Ag⁰/Ag⁺ release in saline buffer and rat serum after exposition during 7 days. Healing process was significantly enhanced by the presence of CS/nAg nanocomposites, inducing the production of myofibloblasts, collagen remodelation, blood vessels neoformation and epidermis regeneration after 7 days of injury treatment, by means of histological and immunohistochemistry assays. The present work suggests that hydrated CS/nAg nanocomposites can be formed a mesh, improving the bacterial penetration and the contact with embedded nAg, producing complete growth inhibition after 1.5 hours. Furthermore, CS/nAg nanocomposites improve the cell tissue regeneration in thermal burn injuries induced in rats. Synthesis of antibacterial, non-toxic, and biocompatible nanocomposites can be an important issue in tissue engineering and health care applications.

Keywords: antibacterial, chitosan, healing process, nanocomposites, silver

Procedia PDF Downloads 259
9205 Comparison of Adsorbents for Ammonia Removal from Mining Wastewater

Authors: F. Al-Sheikh, C. Moralejo, M. Pritzker, W. A. Anderson, A. Elkamel

Abstract:

Ammonia in mining wastewater is a significant problem, and treatment can be especially difficult in cold climates where biological treatment is not feasible. An adsorption process is one of the alternative processes that can be used to reduce ammonia concentrations to acceptable limits, and therefore a LEWATIT resin strongly acidic H+ form ion exchange resin and a Bowie Chabazite Na form AZLB-Na zeolite were tested to assess their effectiveness. For these adsorption tests, two packed bed columns (a mini-column constructed from a 32-cm long x 1-cm diameter piece of glass tubing, and a 60-cm long x 2.5-cm diameter Ace Glass chromatography column) were used containing varying quantities of the adsorbents. A mining wastewater with ammonia concentrations of 22.7 mg/L was fed through the columns at controlled flowrates. In the experimental work, maximum capacities of the LEWATIT ion exchange resin were 0.438, 0.448, and 1.472 mg/g for 3, 6, and 9 g respectively in a mini column and 1.739 mg/g for 141.5 g in a larger Ace column while the capacities for the AZLB-Na zeolite were 0.424, and 0.784 mg/g for 3, and 6 g respectively in the mini column and 1.1636 mg/g for 38.5 g in the Ace column. In the theoretical work, Thomas, Adams-Bohart, and Yoon-Nelson models were constructed to describe a breakthrough curve of the adsorption process and find the constants of the above-mentioned models. In the regeneration tests, 5% hydrochloric acid, HCl (v/v) and 10% sodium hydroxide, NaOH (w/v) were used to regenerate the LEWATIT resin and AZLB-Na zeolite with 44 and 63.8% recovery, respectively. In conclusion, continuous flow adsorption using a LEWATIT ion exchange resin and an AZLB-Na zeolite is efficient when using a co-flow technique for removal of the ammonia from wastewater. Thomas, Adams-Bohart, and Yoon-Nelson models satisfactorily fit the data with R2 closer to 1 in all cases.

Keywords: AZLB-Na zeolite, continuous adsorption, Lewatit resin, models, regeneration

Procedia PDF Downloads 345
9204 Smart Coating for Enhanced Corneal Healing via Delivering Progranulin

Authors: Dan Yan, Yunuo Zhang, Yuhan Huang, Weijie Ouyang

Abstract:

The cornea serves as a vital protective barrier for the eye; however, it is prone to injury and damage that can disrupt corneal epithelium and nerves, triggering inflammation. Therefore, understanding the biological effects and molecular mechanisms involved in corneal wound healing and identifying drugs targeting these pathways is crucial for researchers in this field. This study aimed to investigate the therapeutic potential of progranulin (PGRN) in treating corneal injuries. Our findings demonstrated that PGRN significantly enhanced corneal wound repair by accelerating corneal re-epithelialization and re-innervation. In vitro experiments with cultured epithelial cells and trigeminal ganglion cells further revealed that PGRN stimulated corneal epithelial cell proliferation and promoted axon growth in trigeminal ganglion cells. Through RNA-sequencing (RNA-seq) analysis and other experimental techniques, we discovered that PGRN exerted its healing effects by modulating the Wnt signaling pathway, which played a critical role in repairing epithelial cells and promoting axon regeneration in trigeminal neurons. Importantly, our study highlighted the anti-inflammatory properties of PGRN by inhibiting the NF-κB signaling pathway, leading to decreased infiltration of macrophages. In conclusion, our findings underscored the potential of PGRN in facilitating corneal wound healing by promoting corneal epithelial cell proliferation, trigeminal ganglion cell axon regeneration, and suppressing ocular inflammation. These results suggest that PGRN could potentially expedite the healing process and improve visual outcomes in patients with corneal injuries.

Keywords: cornea, wound healing, progranulin, corneal epithelial cells, trigeminal ganglion cells

Procedia PDF Downloads 17
9203 Hydroxyapatite Based Porous Scaffold for Tooth Tissue Engineering

Authors: Pakize Neslihan Taslı, Alev Cumbul, Gul Merve Yalcın, Fikrettin Sahin

Abstract:

A key experimental trial in the regeneration of large oral and craniofacial defects is the neogenesis of osseous and ligamentous interfacial structures. Currently, oral regenerative medicine strategies are unpredictable for repair of tooth supporting tissues destroyed as a consequence of trauma, chronic infection or surgical resection. A different approach combining the gel-casting method with Hydroxy Apatite HA-based scaffold and different cell lineages as a hybrid system leads to successively mimic the early stage of tooth development, in vitro. HA is widely accepted as a bioactive material for guided bone and tooth regeneration. In this study, it was reported that, HA porous scaffold preparation, characterization and evaluation of structural and chemical properties. HA is the main factor that exists in tooth and it is in harmony with structural, biological, and mechanical characteristics. Here, this study shows mimicking immature tooth at the late bell stage design and construction of HA scaffolds for cell transplantation of human Adipose Stem Cells (hASCs), human Bone Marrow Stem Cells (hBMSCs) and Gingival Epitelial cells for the formation of human tooth dentin-pulp-enamel complexes in vitro. Scaffold characterization was demonstrated by SEM, FTIR and pore size and density measurements. The biological contraction of dental tissues against each other was demonstrated by mRNA gene expressions, histopatologic observations and protein release profile by ELISA tecnique. The tooth shaped constructs with a pore size ranging from 150 to 300 µm arranged by gathering right amounts of materials provide interconnected macro-porous structure. The newly formed tissue like structures that grow and integrate within the HA designed constructs forming tooth cementum like tissue, pulp and bone structures. These findings are important as they emphasize the potential biological effect of the hybrid scaffold system. In conclusion, this in vitro study clearly demonstrates that designed 3D scaffolds shaped as a immature tooth at the late bell stage were essential to form enamel-dentin-pulp interfaces with an appropriate cell and biodegradable material combination. The biomimetic architecture achieved here is providing a promising platform for dental tissue engineering.

Keywords: tooth regeneration, tissue engineering, adipose stem cells, hydroxyapatite tooth engineering, porous scaffold

Procedia PDF Downloads 206
9202 Fabrication of 3D Scaffold Consisting of Spiral-Like Micro-Sized PCL Struts and Selectively Deposited Nanofibers as a Tissue Regenerative Material

Authors: Gi-Hoon Yang, JongHan Ha, MyungGu Yeo, JaeYoon Lee, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

Tissue engineering scaffolds must be biocompatible and biodegradable, provide adequate mechanical strength and cell attachment site for proliferation and differentiation. Furthermore, the scaffold morphology (such as pore size, porosity and pore interconnectivity) plays an important role. The electrospinning process has been widely used to fabricate micro/nano-sized fibres. Electrospinning allows for the fabrication of non-woven meshes containing micro- to nano-sized fibers providing high surface-to-volume area for cell attachment. Due to its advantageous characteristics, electrospinning is a useful method for skin, cartilage, bone, and nerve regeneration. In this study, we fabricated PCL scaffolds (SP) consisting of spiral-like struts using 3D melt-plotting system and micro/nanofibers using direct electrospinning writing. By altering the conditions of the conventional melt-plotting method, spiral-like struts were generated. Then, micro/nanofibers were deposited selectively. The control scaffold composed of perpendicular PCL struts was fabricated using the conventional melt-plotting method to compare the cellular activities. The effect on the attached cells (osteoblast-like cells (MG63)) was evaluated depending on the bending instability of the struts. The SP scaffolds showed enhanced biological properties such as initial cell attachment, proliferation and osteogenic differentiation. These results suggest that the SP scaffolds has potential as a bioengineered substitute for soft and hard tissue regeneration.

Keywords: cell attachment, electrospinning, mechanical strength, melt-plotting

Procedia PDF Downloads 288
9201 Hybrid Manufacturing System to Produce 3D Structures for Osteochondral Tissue Regeneration

Authors: Pedro G. Morouço

Abstract:

One utmost challenge in Tissue Engineering is the production of 3D constructs capable of mimicking the functional hierarchy of native tissues. This is well stated for osteochondral tissue due to the complex mechanical functional unit based on the junction of articular cartilage and bone. Thus, the aim of the present study was to develop a new additive manufacturing system coupling micro-extrusion with hydrogels printing. An integrated system was developed with 2 main features: (i) the printing of up to three distinct hydrogels; (ii) in coordination with the printing of a thermoplastic structural support. The hydrogel printing module was projected with a ‘revolver-like’ system, where the hydrogel selection was made by a rotating mechanism. The hydrogel deposition was then controlled by pressured air input. The use of specific components approved for medical use was incorporated in the material dispensing system (Nordson EDF Optimum® fluid dispensing system). The thermoplastic extrusion modulus enabled the control of required extrusion temperature through electric resistances in the polymer reservoir and the extrusion system. After testing and upgrades, a hydrogel modulus with 3 syringes (3cm3 capacity each), with a pressure range of 0-2.5bar, a rotational speed of 0-5rpm, and working with needles from 200-800µm was obtained. This modulus was successfully coupled to the extrusion system that presented a temperature up to 300˚C, a pressure range of 0-12bar, and working with nozzles from 200-500µm. The applied motor could provide a velocity range 0-2000mm/min. Although, there are distinct printing requirements for hydrogels and polymers, the novel system could develop hybrid scaffolds, combining the 2 moduli. The morphological analysis showed high reliability (n=5) between the theoretical and obtained filament and pore size (350µm and 300µm vs. 342±4µm and 302±3µm, p>0.05, respectively) of the polymer; and multi-material 3D constructs were successfully obtained. Human tissues present very distinct and complex structures regarding their mechanical properties, organization, composition and dimensions. For osteochondral regenerative medicine, a multiphasic scaffold is required as subchondral bone and overlying cartilage must regenerate at the same time. Thus, a scaffold with 3 layers (bone, intermediate and cartilage parts) can be a promising approach. The developed system may give a suitable solution to construct those hybrid scaffolds with enhanced properties. The present novel system is a step-forward regarding osteochondral tissue engineering due to its ability to generate layered mechanically stable implants through the double-printing of hydrogels with thermoplastics.

Keywords: 3D bioprinting, bone regeneration, cartilage regeneration, regenerative medicine, tissue engineering

Procedia PDF Downloads 135
9200 Simulated Mechanical Analysis on Hydroxyapatite Coated Porous Polylactic Acid Scaffold for Bone Grafting

Authors: Ala Abobakr Abdulhafidh Al-Dubai

Abstract:

Bone loss has risen due to fractures, surgeries, and traumatic injuries. Scientists and engineers have worked over the years to find solutions to heal and accelerate bone regeneration. The bone grafting technique has been utilized, which projects significant improvement in the bone regeneration area. An extensive study is essential on the relation between the mechanical properties of bone scaffolds and the pore size of the scaffolds, as well as the relation between the mechanical properties of bone scaffolds with the development of bioactive coating on the scaffolds. In reducing the cost and time, a mechanical simulation analysis is beneficial to simulate both relations. Therefore, this study highlights the simulated mechanical analyses on three-dimensional (3D) polylactic acid (PLA) scaffolds at two different pore sizes (P: 400 and 600 μm) and two different internals distances of (D: 600 and 900 μm), with and without the presence of hydroxyapatite (HA) coating. The 3D scaffold models were designed using SOLIDWORKS software. The respective material properties were assigned with the fixation of boundary conditions on the meshed 3D models. Two different loads were applied on the PLA scaffolds, including side loads of 200 N and vertical loads of 2 kN. While only vertical loads of 2 kN were applied on the HA coated PLA scaffolds. The PLA scaffold P600D900, which has the largest pore size and maximum internal distance, generated the minimum stress under the applied vertical load. However, that same scaffold became weaker under the applied side load due to the high construction gap between the pores. The development of HA coating on top of the PLA scaffolds induced greater stress generation compared to the non-coated scaffolds which is tailorable for bone implantation. This study concludes that the pore size and the construction of HA coating on bone scaffolds affect the mechanical strength of the bone scaffolds.

Keywords: hydroxyapatite coating, bone scaffold, mechanical simulation, three-dimensional (3D), polylactic acid (PLA).

Procedia PDF Downloads 26
9199 eTransformation Framework for the Cognitive Systems

Authors: Ana Hol

Abstract:

Digital systems are in the cognitive wave of the eTransformations and are now extensively aimed at meeting the individuals’ demands, both those of customers requiring services and those of service providers. It is also apparent that successful future systems will not just simply open doors to the traditional owners/users to offer and receive services such as Uber for example does today, but will in the future require more customized and cognitively enabled infrastructures that will be responsive to the system user’s needs. To be able to identify what is required for such systems, this research reviews the historical and the current effects of the eTransformation process by studying: 1. eTransitions of company websites and mobile applications, 2. Emergence of new sheared economy business models as Uber and, 3. New requirements for demand driven, cognitive systems capable of learning and just in time decision making. Based on the analysis, this study proposes a Cognitive eTransformation Framework capable of guiding implementations of new responsive and user aware systems.

Keywords: system implementations, AI supported systems, cognitive systems, eTransformation

Procedia PDF Downloads 212
9198 Innovation of a New Plant Tissue Culture Medium for Large Scale Plantlet Production in Potato (Solanum tuberosum L.)

Authors: Ekramul Hoque, Zinat Ara Eakut Zarin, Ershad Ali

Abstract:

The growth and development of explants is governed by the effect of nutrient medium. Ammonium nitrate (NH4NO3) as a major salt of stock solution-1 for the preparation of tissue culture medium. But, it has several demerits on human civilization. It is use for the preparation of bomb and other destructive activities. Hence, it is totally ban in our country. A new chemical was identified as a substitute of ammonium nitrate. The concentrations of the other ingredients of major and minor salt were modified from the MS medium. The formulation of new medium is totally different from the MS nutrient composition. The most widely use MS medium composition was used as first check treatment and MS powder (Duchefa Biocheme, The Netherland) was used as second check treatment. The experiments were carried out at the Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh. Two potato varieties viz. Diamant and Asterix were used as experimental materials. The regeneration potentiality of potato onto new medium was best as compare with the two check treatments. The traits -node number, leaf number, shoot length, root lengths were highest in new medium. The plantlets were healthy, robust and strong as compare to plantlets regenerated from check treatments. Three subsequent sub-cultures were made in the new medium to observe the growth pattern of plantlet. It was also showed the best performance in all the parameter under studied. The regenerated plantlet produced good quality minituber under field condition. Hence, it is concluded that, a new plant tissue culture medium as discovered from the Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh under the leadership of Professor Dr. Md. Ekramul Hoque.

Keywords: new medium, potato, regeneration, ammonium nitrate

Procedia PDF Downloads 55
9197 Socio-Technical Systems: Transforming Theory into Practice

Authors: L. Ngowi, N. H. Mvungi

Abstract:

This paper critically examines the evolution of socio-technical systems theory, its practices, and challenges in system design and development. It examines concepts put forward by researchers focusing on the application of the theory in software engineering. There are various methods developed that use socio-technical concepts based on systems engineering without remarkable success. The main constraint is the large amount of data and inefficient techniques used in the application of the concepts in system engineering for developing time-bound systems and within a limited/controlled budget. This paper critically examines each of the methods, highlight bottlenecks and suggest the way forward. Since socio-technical systems theory only explains what to do, but not how doing it, hence engineers are not using the concept to save time, costs and reduce risks associated with new frameworks. Hence, a new framework, which can be considered as a practical approach is proposed that borrows concepts from soft systems method, agile systems development and object-oriented analysis and design to bridge the gap between theory and practice. The approach will enable the development of systems using socio-technical systems theory to attract/enable the system engineers/software developers to use socio-technical systems theory in building worthwhile information systems to avoid fragilities and hostilities in the work environment.

Keywords: socio-technical systems, human centered design, software engineering, cognitive engineering, soft systems, systems engineering

Procedia PDF Downloads 259
9196 Attractiveness of Cafeteria Systems as Viewed by Generation Z

Authors: Joanna Nieżurawska, Hanna Karaszewska, Anna Dziadkiewicz

Abstract:

Contemporary conditions force companies to constantly implement changes and improvements, which is connected with plasticization of their activity in all spheres. Cafeteria systems are a good example of flexible remuneration systems. Cafeteria systems are well-known and often used in the United States, Great Britain and in Western Europe. In Poland, they are hardly ever used and greater flexibility in remuneration packages refers mainly to senior managers and executives. The main aim of this article is to research the attractiveness of the cafeteria system as viewed by generation Z. The additional aim of the article is to prioritize using the importance index of particular types of cafeteria systems from the generation Z’s perspective, as well as to identify the factors which determine the development of cafeteria systems in Poland. The research was conducted in June 2015 among 185 young employees (generation Z). The paper presents some of the results.

Keywords: cafeteria, generation X, generation Y, generation Z, flexible remuneration systems, plasticization of remuneration

Procedia PDF Downloads 375
9195 Fresh Amnion Membrane Grafting for the Regeneration of Skin in Full Thickness Burn in Newborn - Case Report

Authors: Priyanka Yadav, Umesh Bnasal, Yashvinder Kumar

Abstract:

The placenta is an important structure that provides oxygen and nutrients to the growing fetus in utero. It is usually thrown away after birth, but it has a therapeutic role in the regeneration of tissue. It is covered by the amniotic membrane, which can be easily separated into the amnion layer and the chorion layer—the amnion layer act as a biofilm for the healing of burn wound and non-healing ulcers. The freshly collected membrane has stem cells, cytokines, growth factors, and anti-inflammatory properties, which act as a biofilm for the healing of wounds. It functions as a barrier and prevents heat and water loss and also protects from bacterial contamination, thus supporting the healing process. The application of Amnion membranes has been successfully used for wound and reconstructive purposes for decades. It is a very cheap and easy process and has shown superior results to allograft and xenograft. However, there are very few case reports of amnion membrane grafting in newborns; we intend to highlight its therapeutic importance in burn injuries in newborns. We present a case of 9 days old male neonate who presented to the neonatal unit of Maulana Azad Medical College with a complaint of fluid-filled blisters and burns wound on the body for six days. He was born outside the hospital at 38 weeks of gestation to a 24-year-old primigravida mother by vaginal delivery. The presentation was cephalic and the amniotic fluid was clear. His birth weight was 2800 gm and APGAR scores were 7 and 8 at 1 and 5 minutes, respectively. His anthropometry was appropriate for gestational age. He developed respiratory distress after birth requiring oxygen support by nasal prongs for three days. On the day of life three, he developed blisters on his body, starting from than face then over the back and perineal region. At a presentation on the day of life nine, he had blisters and necrotic wound on the right side of the face, back, right shoulder and genitalia, affecting 60% of body surface area with full-thickness loss of skin. He was started on intravenous antibiotics and fluid therapy. Pus culture grew Pseudomonas aeuroginosa, for which culture-specific antibiotics were started. Plastic surgery reference was taken and regular wound dressing was done with antiseptics. He had a storming course during the hospital stay. On the day of life 35 when the baby was hemodynamically stable, amnion membrane grafting was done on the wound site; for the grafting, fresh amnion membrane was removed under sterile conditions from the placenta obtained by caesarean section. It was then transported to the plastic surgery unit in half an hour in a sterile fluid where the graft was applied over the infant’s wound. The amnion membrane grafting was done twice in two weeks for covering the whole wound area. After successful uptake of amnion membrane, skin from the thigh region was autografted over the whole wound area by Meek technique in a single setting. The uptake of autograft was excellent and most of the areas were healed. In some areas, there was patchy regeneration of skin so dressing was continued. The infant was discharged after three months of hospital stay and was later followed up in the plastic surgery unit of the hospital.

Keywords: amnion membrane grafting, autograft, meek technique, newborn, regeneration of skin

Procedia PDF Downloads 141
9194 Second-Order Complex Systems: Case Studies of Autonomy and Free Will

Authors: Eric Sanchis

Abstract:

Although there does not exist a definitive consensus on a precise definition of a complex system, it is generally considered that a system is complex by nature. The presented work illustrates a different point of view: a system becomes complex only with regard to the question posed to it, i.e., with regard to the problem which has to be solved. A complex system is a couple (question, object). Because the number of questions posed to a given object can be potentially substantial, complexity does not present a uniform face. Two types of complex systems are clearly identified: first-order complex systems and second-order complex systems. First-order complex systems physically exist. They are well-known because they have been studied by the scientific community for a long time. In second-order complex systems, complexity results from the system composition and its articulation that are partially unknown. For some of these systems, there is no evidence of their existence. Vagueness is the keyword characterizing this kind of systems. Autonomy and free will, two mental productions of the human cognitive system, can be identified as second-order complex systems. A classification based on the properties structure makes it possible to discriminate complex properties from the others and to model this kind of second order complex systems. The final outcome is an implementable synthetic property that distinguishes the solid aspects of the actual property from those that are uncertain.

Keywords: autonomy, free will, synthetic property, vaporous complex systems

Procedia PDF Downloads 178
9193 Human Tracking across Heterogeneous Systems Based on Mobile Agent Technologies

Authors: Tappei Yotsumoto, Atsushi Nomura, Kozo Tanigawa, Kenichi Takahashi, Takao Kawamura, Kazunori Sugahara

Abstract:

In a human tracking system, expanding a monitoring range of one system is complicating the management of devices and increasing its cost. Therefore, we propose a method to realize a wide-range human tracking by connecting small systems. In this paper, we examined an agent deploy method and information contents across the heterogeneous human tracking systems. By implementing the proposed method, we can construct a human tracking system across heterogeneous systems, and the system can track a target continuously between systems.

Keywords: human tracking system, mobile agent, monitoring, heterogeneous systems

Procedia PDF Downloads 498
9192 3D-Printed Collagen/Chitosan Scaffolds Loaded with Exosomes Derived from Neural Stem Cells Pretreated with Insulin Growth Factor-1 for Neural Regeneration after Traumatic Brain Injury

Authors: Xiao-Yin Liu, Liang-Xue Zhou

Abstract:

Traumatic brain injury (TBI), as a kind of nerve trauma caused by an external force, affects people all over the world and is a global public health problem. Although there are various clinical treatments for brain injury, including surgery, drug therapy, and rehabilitation therapy, the therapeutic effect is very limited. To improve the therapeutic effect of TBI, scaffolds combined with exosomes are a promising but challenging method for TBI repair. In this study, we examined whether a novel 3D-printed collagen/chitosan scaffold/exosomes derived from neural stem cells (NSCs) pretreated with insulin growth factor-1 (IGF-I) scaffolds (3D-CC-INExos) could be used to improve TBI repair and functional recovery after TBI. Our results showed that composite scaffolds of collagen-, chitosan- and exosomes derived from NSCs pretreated with IGF-I (INExos) could continuously release the exosomes for two weeks. In the rat TBI model, 3D-CC-INExos scaffold transplantation significantly improved motor and cognitive function after TBI, as assessed by the Morris water maze test and modified neurological severity scores. In addition, immunofluorescence staining and transmission electron microscopy showed that the recovery of damaged nerve tissue in the injured area was significantly improved by 3D-CC-INExos implantation. In conclusion, our data suggest that 3D-CC-INExos might provide a potential strategy for the treatment of TBI and lay a solid foundation for clinical translation.

Keywords: traumatic brain injury, exosomes, insulin growth factor-1, neural stem cells, collagen, chitosan, 3D printing, neural regeneration, angiogenesis, functional recovery

Procedia PDF Downloads 42
9191 Intelligent Drug Delivery Systems

Authors: Shideh Mohseni Movahed, Mansoureh Safari

Abstract:

Intelligent drug delivery systems (IDDS) are innovative technological innovations and clinical way to advance current treatments. These systems differ in technique of therapeutic administration, intricacy, materials and patient compliance to address numerous clinical conditions that require different pharmacological therapies. IDDS capable of releasing an active molecule at the proper site and at a amount that adjusts in response to the progression of the disease or to certain functions/biorhythms of the organism is particularly appealing. In this paper, we describe the most recent advances in the development of intelligent drug delivery systems.

Keywords: drug delivery systems, IDDS, medicine, health

Procedia PDF Downloads 198
9190 Regeneration Study on the Athens City Center: Transformation of the Historical Triangle to “Low Pollution and Restricted Vehicle Traffic Zone”

Authors: Chondrogianni Dimitra, Yorgos J. Stephanedes

Abstract:

The impact of the economic crisis, coupled with the aging of the city's old core, is reflected in central Athens. Public and private users, residents, employees, visitors desire the quality upgrading of abandoned buildings and public spaces through environmental upgrading and sustainable mobility, and promotion of the international metropolitan character of the city. In the study, a strategy for reshaping the character and function of the historic Athenian triangle is proposed, aiming at its economic, environmental, and social sustainable development through feasible, meaningful, and non-landscaping solutions of low cost and high positive impact. Sustainable mobility is the main principle in re-planning the study area and transforming it into a “Low Pollution and Limited Vehicle Traffic Zone” is the main strategy. Τhe proposed measures include the development of pedestrian mobility networks by expanding the pedestrian roads and limited-traffic routes, of bicycle networks based on the approved Metropolitan Bicycle Route of Athens, of public transportation networks with new lines of electric mini-buses, and of new regulations for vehicle mobility in the historic triangle. In addition, complementary actions are proposed regarding the provision of Wi-Fi on fixed track media, development of applications that facilitate combined travel and provide real-time data, integration of micromobility (roller skates, Segway, Hoverboard), and its enhancement as a flexible means of personal mobility, and development of car-sharing, ride-sharing and dynamic carpooling initiatives.

Keywords: regeneration plans, sustainable mobility, environmental upgrading, athens historical triangle

Procedia PDF Downloads 128
9189 A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides

Authors: R. B. Ogunrinde, C. C. Jibunoh

Abstract:

In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t.

Keywords: spectral decomposition, linear RHS, homogeneous linear systems, eigenvalues of the Jacobian

Procedia PDF Downloads 305
9188 Commutativity of Fractional Order Linear Time-Varying System

Authors: Salisu Ibrahim

Abstract:

The paper studies the commutativity associated with fractional order linear time-varying systems (LTVSs), which is an important area of study in control systems engineering. In this paper, we explore the properties of these systems and their ability to commute. We proposed the necessary and sufficient condition for commutativity for fractional order LTVSs. Through a simulation and mathematical analysis, we demonstrate that these systems exhibit commutativity under certain conditions. Our findings have implications for the design and control of fractional order systems in practical applications, science, and engineering. An example is given to show the effectiveness of the proposed method which is been computed by Mathematica and validated by the use of Matlab (Simulink).

Keywords: fractional differential equation, physical systems, equivalent circuit, and analog control

Procedia PDF Downloads 42
9187 The Effects of Periostin in a Rat Model of Isoproterenol-Mediated Cardiotoxicity

Authors: Mahmut Sozmen, Alparslan Kadir Devrim, Yonca Betil Kabak, Tuba Devrim

Abstract:

Acute myocardial infarction is the leading cause of deaths in the worldwide. Mature cardiomyocytes do not have the ability to regenerate instead fibrous tissue proliferate and granulation tissue to fill out. Periostin is an extracellular matrix protein from fasciclin family and it plays an important role in the cell adhesion, migration, and growth of the organism. Periostin prevents apoptosis while stimulating cardiomyocytes. The main objective of this project is to investigate the effects of the recombinant murine periostin peptide administration for the cardiomyocyte regeneration in a rat model of acute myocardial infarction. The experiment was performed on 84 male rats (6 months old) in 4 group each contains 21 rats. Saline applied subcutaneously (1 ml/kg) two times with 24 hours intervals to the rats in control group (Group 1). Recombinant periostin peptide (1 μg/kg) dissolved in saline applied intraperitoneally in group 2 on 1, 3, 7, 14 and 21. days on same dates in group 4. Isoproterenol dissolved in saline applied intraperitoneally (85mg/kg/day) two times with 24 hours intervals to the groups 3 and 4. Rats in group 4 further received recombinant periostin peptide (1 μg/kg) dissolved in saline intraperitoneally starting one day after the final isoproterenol administration on days 1, 3, 7, 14 and 21. Following the final application of periostin rats continued to feed routinely with pelleted chow and water ad libitum for further seven days. At the end of 7th day rats sacrificed, blood and heart tissue samples collected for the immunohistochemical and biochemical analysis. Angiogenesis in response to tissue damage, is a highly dynamic process regulated by signals from the surrounding extracellular matrix and blood serum. In this project, VEGF, ANGPT, bFGF, TGFβ are the key factors that contribute to cardiomyocyte regeneration were investigated. Additionally, the relationship between mitosis and apoptosis (Bcl-2, Bax, PCNA, Ki-67, Phopho-Histone H3), cell cycle activators and inhibitors (Cyclin D1, D2, A2, Cdc2), the origin of regenerating cells (cKit and CD45) were examined. Present results revealed that periostin stimulated cardiomyocye cell-cycle re-entry in both normal and MCA damaged cardiomyocytes and increased angiogenesis. Thus, periostin contributes to cardiomyocyte regeneration during the healing period following myocardial infarction which provides a better understanding of its role of this mechanism, improving recovery rates and it is expected to contribute the lack of literature on this subject. Acknowledgement: This project was financially supported by Turkish Scientific Research Council- Agriculture, Forestry and Veterinary Research Support Group (TUBİTAK-TOVAG; Project No: 114O734), Ankara, TURKEY.

Keywords: cardiotoxicity, immunohistochemistry, isoproterenol, periostin

Procedia PDF Downloads 207
9186 In vitro Regeneration of Neural Cells Using Human Umbilical Cord Derived Mesenchymal Stem Cells

Authors: Urvi Panwar, Kanchan Mishra, Kanjaksha Ghosh, ShankerLal Kothari

Abstract:

Background: Day-by-day the increasing prevalence of neurodegenerative diseases have become a global issue to manage them by medical sciences. The adult neural stem cells are rare and require an invasive and painful procedure to obtain it from central nervous system. Mesenchymal stem cell (MSCs) therapies have shown remarkable application in treatment of various cell injuries and cell loss. MSCs can be derived from various sources like adult tissues, human bone marrow, umbilical cord blood and cord tissue. MSCs have similar proliferation and differentiation capability, but the human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are proved to be more beneficial with respect to cell procurement, differentiation to other cells, preservation, and transplantation. Material and method: Human umbilical cord is easily obtainable and non-controversial comparative to bone marrow and other adult tissues. The umbilical cord can be collected after delivery of baby, and its tissue can be cultured using explant culture method. Cell culture medium such as DMEMF12+10% FBS and DMEMF12+Neural growth factors (bFGF, human noggin, B27) with antibiotics (Streptomycin/Gentamycin) were used to culture and differentiate mesenchymal stem cells into neural cells, respectively. The characterisations of MSCs were done with Flow Cytometer for surface markers CD90, CD73 and CD105 and colony forming unit assay. The differentiated various neural cells will be characterised by fluorescence markers for neurons, astrocytes, and oligodendrocytes; quantitative PCR for genes Nestin and NeuroD1 and Western blotting technique for gap43 protein. Result and discussion: The high quality and number of MSCs were isolated from human umbilical cord via explant culture method. The obtained MSCs were differentiated into neural cells like neurons, astrocytes and oligodendrocytes. The differentiated neural cells can be used to treat neural injuries and neural cell loss by delivering cells by non-invasive administration via cerebrospinal fluid (CSF) or blood. Moreover, the MSCs can also be directly delivered to different injured sites where they differentiate into neural cells. Therefore, human umbilical cord is demonstrated to be an inexpensive and easily available source for MSCs. Moreover, the hUCMSCs can be a potential source for neural cell therapies and neural cell regeneration for neural cell injuries and neural cell loss. This new way of research will be helpful to treat and manage neural cell damages and neurodegenerative diseases like Alzheimer and Parkinson. Still the study has a long way to go but it is a promising approach for many neural disorders for which at present no satisfactory management is available.

Keywords: bone marrow, cell therapy, explant culture method, flow cytometer, human umbilical cord, mesenchymal stem cells, neurodegenerative diseases, neuroprotective, regeneration

Procedia PDF Downloads 176
9185 Applying Systems Thinking and a System of Systems Approach to Facilitate Sustainable Grid Integration of Variable Renewable Energy

Authors: Edward B. Ssekulima, Amir Etemadi

Abstract:

This paper presents a Systems Thinking and System of Systems (SoS) viewpoint for managing requirements complexity in the grid integration of Variable Renewable Energy (VRE). To achieve a SoS approach, it is often necessary to inculcate a Systems Thinking (ST) perspective in the planning and design of the attendant system. We show how this approach can support the enhanced integration of VRE (wind, solar small hydro) for which intermittency is a key inhibiting factor to their sustainable grid integration. The results indicate that a ST and SoS approach are a critical tool for decision makers in the planning, design and deployment of VRE Sources for their sustainable grid-integration in accordance with relevant techno-economic, social and environmental requirements.

Keywords: sustainable grid-integration, system of systems, systems thinking, variable energy resources

Procedia PDF Downloads 86
9184 Removal of Problematic Organic Compounds from Water and Wastewater Using the Arvia™ Process

Authors: Akmez Nabeerasool, Michaelis Massaros, Nigel Brown, David Sanderson, David Parocki, Charlotte Thompson, Mike Lodge, Mikael Khan

Abstract:

The provision of clean and safe drinking water is of paramount importance and is a basic human need. Water scarcity coupled with tightening of regulations and the inability of current treatment technologies to deal with emerging contaminants and Pharmaceuticals and personal care products means that alternative treatment technologies that are viable and cost effective are required in order to meet demand and regulations for clean water supplies. Logistically, the application of water treatment in rural areas presents unique challenges due to the decentralisation of abstraction points arising from low population density and the resultant lack of infrastructure as well as the need to treat water at the site of use. This makes it costly to centralise treatment facilities and hence provide potable water direct to the consumer. Furthermore, across the UK there are segments of the population that rely on a private water supply which means that the owner or user(s) of these supplies, which can serve one household to hundreds, are responsible for the maintenance. The treatment of these private water supply falls on the private owners, and it is imperative that a chemical free technological solution that can operate unattended and does not produce any waste is employed. Arvia’s patented advanced oxidation technology combines the advantages of adsorption and electrochemical regeneration within a single unit; the Organics Destruction Cell (ODC). The ODC uniquely uses a combination of adsorption and electrochemical regeneration to destroy organics. Key to this innovative process is an alternative approach to adsorption. The conventional approach is to use high capacity adsorbents (e.g. activated carbons with high porosities and surface areas) that are excellent adsorbents, but require complex and costly regeneration. Arvia’s technology uses a patent protected adsorbent, Nyex™, which is a non-porous, highly conductive, graphite based adsorbent material that enables it to act as both the adsorbent and as a 3D electrode. Adsorbed organics are oxidised and the surface of the Nyex™ is regenerated in-situ for further adsorption without interruption or replacement. Treated water flows from the bottom of the cell where it can either be re-used or safely discharged. Arvia™ Technology Ltd. has trialled the application of its tertiary water treatment technology in treating reservoir water abstracted near Glasgow, Scotland, with promising results. Several other pilot plants have also been successfully deployed at various locations in the UK showing the suitability and effectiveness of the technology in removing recalcitrant organics (including pharmaceuticals, steroids and hormones), COD and colour.

Keywords: Arvia™ process, adsorption, water treatment, electrochemical oxidation

Procedia PDF Downloads 238
9183 Biocompatibility assessment of different origin Barrier Membranes for Guided Bone Regeneration

Authors: Antonio Munar-Frau, Sascha Klismoch, Manfred Schmolz, Federico Hernandez-Alfaro, Jordi Caballe-Serrano

Abstract:

Introduction: Biocompatibility of biomaterials has been proposed as one of the main criteria for treatment success. For guided bone regeneration (GBR), barrier membranes present a conflict given the number of origins and modifications of these materials. The biologic response to biomaterials is orchestrated by a series of events leading to the integration or rejection of the biomaterial, posing questions such as if a longer occlusive property may trigger an inflammatory reaction. Whole blood cultures are a solution to study the immune response to drugs or biomaterials during the first 24-48 hours. The aim of this study is to determine the early immune response of different origins and chemical modifications of barrier membranes. Materials & Methods: 5 different widely used barrier membranes were included in this study: Acellular dermal matrix (AlloDerm, LifeCell®), Porcine Peritoneum (BioGide, Geistlich Pharma®), Porcine Pericardium (Jason, Botiss Biomaterials GmbH®), Porcine Cross-linked collagen (Ossix Plus, Datum Dental®) and d-PTFE (Cytoplast TXT, Osteogenics Biomedical®). Blood samples were extracted from 3 different healthy donors and incubated with the different samples of barrier membranes for 24 hours. After the incubation time, serum samples were obtained and analyzed by means of biocompatibility assays taking into account 42 markers. Results: In an early stage of the inflammatory response, the Acellular dermal matrix, porcine peritoneum and porcine cross-linked collagen expressed similar patterns of cytokine expression with a great manifestation of ENA 78. Porcine pericardium and d-PTFE presented similar cytokine activation, especially for MMP-3 and MMP-9, although other cytokines were highlighted with lower expression. For the later immune response, Porcine peritoneum and acellular dermal matrix MCP-1 and IL-15 were evident. Porcine pericardium, porcine cross-linked collagen and d-PTFE presented a high expression of IL-16 and lower manifestation of other cytokines. Different behaviors depending on an earlier or later stage of the inflammation process were observed. Barrier membrane inflammatory expression does not only differ depending on the origin, variables such as treatment of the collagen and polymers may also have a great impact on the cytokine expression of the studied barrier membranes during inflammation. Conclusions: Surface treatment and modifications might affect the biocompatibility of the membranes, as different cytokine expressions were evidently depending on the origin of the biomaterial. This study is only a brushstroke regarding the biocompatibility of materials, as it is one of the pioneer studies for ex vivo barrier membranes assays. Studies regarding surface modification are needed in order to clarify mystifications of barrier membrane science.

Keywords: biomaterials, bone regeneration, biocompatibility, inflammation

Procedia PDF Downloads 132
9182 Cytotoxicity thiamethoxam Study on the Hepatopancreas and Its Reversibility under the Effect of Ginger in Helix aspersa

Authors: Samira Bensoltane, Smina Ait Hamlet, Samti Meriem, Semmasel Asma

Abstract:

Living organisms in the soil are subject to regular fluctuations of abiotic parameters, as well as a chemical contamination of the environment due to human activities. They are subject to multiple stressors they face. The aim of our work was to study the effects of insecticide: thiamethoxam (neonicotinoid), and the potential reversibility of the effects by an antioxidant: ginger on a bioindicator species in ecotoxicology, the land snail Helix aspersa. The effects were studied by a targeted cell approach of evaluating the effect of these molecules on tissue and cellular aspect of hepatopancreas through histological study. Treatment with thiamethoxam concentrations 10, 20, and 40 mg/l shows signs of inflammation even at low concentrations and from the 5th day of treatment. Histological examination of the hepatopancreas of snails treated with thiamethoxam showed significant changes from the lowest concentrations tested , note intertubular connective tissue enlargement, necrosis deferent types of cells (cells with calcium , digestive, excretory) , also damage acini, alteration of the apical membrane and lysis of the basement membrane in a dose- dependent manner. After 10 days of treatment and with 40 mg/l, the same changes were observed with a very advanced degeneration of the wall of the member that could be confused with the cell debris. For cons, the histological study of the hepatopancreas in Helix aspersa treated with ginger for a period of 15 days after stopping treatment with thiamethoxam has shown a partial regeneration of hepatopancreatic tissue snails treated with all concentrations of thiamethoxam and especially in the intertubular connective tissue of the wall and hepatopancreatic digestive tubules. Finally, we can conclude that monitoring the effect of the insecticide thiamethoxam showed significant alterations, however, treatment with ginger shows regeneration of damaged cells themselves much sharper at low concentration (10 mg/L).

Keywords: Helix aspersa, insecticides, thiamethoxam, ginger, hepatopancreas

Procedia PDF Downloads 191
9181 A Review of Information Systems Development in Developing Countries

Authors: B. N. Asare, O. A. Ajigini

Abstract:

Information systems (IS) are highly important in the operation of private and public organisations in developing and developed countries. Developing countries are saddled with many project failures during the implementation of information systems. However, successful information systems are greatly needed in developing countries in order to enhance their economies. This paper is highly important in view of the high failure rate of information systems in developing countries which needs to be reduced to minimum acceptable levels by means of recommended interventions. This paper centres on a review of IS development in developing countries. The paper presents evidences of the IS successes and failures in developing countries and posits a model to address the IS failures. The proposed model can then be utilised by developing countries to reduce their IS project implementation failure rate. A comparison is drawn between IS development in developing countries and developed countries. The paper provides valuable information to assist in reducing IS failure, and developing IS models and theories on IS development for developing countries.

Keywords: developing countries, information systems, IS development, information systems failure, information systems success, information systems success model

Procedia PDF Downloads 337
9180 An Ontology for Semantic Enrichment of RFID Systems

Authors: Haitham S. Hamza, Mohamed Maher, Shourok Alaa, Aya Khattab, Hadeal Ismail, Kamilia Hosny

Abstract:

Radio Frequency Identification (RFID) has become a key technology in the margining concept of Internet of Things (IoT). Naturally, business applications would require the deployment of various RFID systems that are developed by different vendors and use various data formats. This heterogeneity poses a real challenge in developing large-scale IoT systems with RFID as integration is becoming very complex and challenging. Semantic integration is a key approach to deal with this challenge. To do so, ontology for RFID systems need to be developed in order to annotated semantically RFID systems, and hence, facilitate their integration. Accordingly, in this paper, we propose ontology for RFID systems. The proposed ontology can be used to semantically enrich RFID systems, and hence, improve their usage and reasoning. The usage of the proposed ontology is explained through a simple scenario in the health care domain.

Keywords: RFID, semantic technology, ontology, sparql query language, heterogeneity

Procedia PDF Downloads 439