Search results for: re-create the lost sub-dermal tissue
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2132

Search results for: re-create the lost sub-dermal tissue

1982 Latest Generation Conducted Electrical Weapon Dart Design: Signature Marking and Removal for the Emergency Medicine Professional

Authors: J. D. Ho, D. M. Dawes, B. Driver

Abstract:

Introduction: TASER Conducted Electrical Weapons (CEWs) are the dominant CEWs in use and have been used in modern police and military operations since the late 1990s as a form of non-lethal weaponry. The 3rd generation of CEWs has been recently introduced and is known as The TASER 7. This new CEW will be replacing current CEW technology and has a new dart design that is important for emergency medical professionals to be familiar with because it requires a different method of removal and will leave a different marking pattern in human tissue than they may have been previously familiar with. features of this new dart design include: higher velocity impact, larger impact surface area, break away dart body segment, dual back-barb retention, newly designed removal process. As the TASER 7 begins to be deployed by the police and military personnel, these new features make it imperative that emergency medical professionals become familiar with the signature markings that this new dart design will make on human tissue and how to remove them. Methods: Multiple observational studies using high speed photography were used to record impact patterns of the new dart design on fresh tissue and also the newly recommended dart removal process. Both animal and human subjects were used to test this dart design prior to production release. Results: Data presented will include dart design overview, flight pattern accuracy, impact analysis, and dart removal example. Tissue photographs will be presented to demonstrate examples of signature TASER 7 dart markings that emergency medical professionals can expect to see. Conclusion: This work will provide the reader with an understanding of this newest generation CEW dart design, its key features, its signature marking pattern that can be expected and a recommendation of how to remove it from human tissue.

Keywords: TASER 7, conducted electrical weapon, dart mark, dart removal

Procedia PDF Downloads 129
1981 Study into the Interactions of Primary Limbal Epithelial Stem Cells and HTCEPI Using Tissue Engineered Cornea

Authors: Masoud Sakhinia, Sajjad Ahmad

Abstract:

Introduction: Though knowledge of the compositional makeup and structure of the limbal niche has progressed exponentially during the past decade, much is yet to be understood. Identifying the precise profile and role of the stromal makeup which spans the ocular surface may inform researchers of the most optimum conditions needed to effectively expand LESCs in vitro, whilst preserving their differentiation status and phenotype. Limbal fibroblasts, as opposed to corneal fibroblasts are thought to form an important component of the microenvironment where LESCs reside. Methods: The corneal stroma was tissue engineered in vitro using both limbal and corneal fibroblasts embedded within a tissue engineered 3D collagen matrix. The effect of these two different fibroblasts on LESCs and hTCEpi corneal epithelial cell line were then subsequently determined using phase contrast microscopy, histolological analysis and PCR for specific stem cell markers. The study aimed to develop an in vitro model which could be used to determine whether limbal, as opposed to corneal fibroblasts, maintained the stem cell phenotype of LESCs and hTCEpi cell line. Results: Tissue culture analysis was inconclusive and required further quantitative analysis for remarks on cell proliferation within the varying stroma. Histological analysis of the tissue-engineered cornea showed a comparable structure to that of the human cornea, though with limited epithelial stratification. PCR results for epithelial cell markers of cells cultured on limbal fibroblasts showed reduced expression of CK3, a negative marker for LESC’s, whilst also exhibiting a relatively low expression level of P63, a marker for undifferentiated LESCs. Conclusion: We have shown the potential for the construction of a tissue engineered human cornea using a 3D collagen matrix and described some preliminary results in the analysis of the effects of varying stroma consisting of limbal and corneal fibroblasts, respectively, on the proliferation of stem cell phenotype of primary LESCs and hTCEpi corneal epithelial cells. Although no definitive marker exists to conclusively illustrate the presence of LESCs, the combination of positive and negative stem cell markers in our study were inconclusive. Though it is less traslational to the human corneal model, the use of conditioned medium from that of limbal and corneal fibroblasts may provide a more simple avenue. Moreover, combinations of extracellular matrices could be used as a surrogate in these culture models.

Keywords: cornea, Limbal Stem Cells, tissue engineering, PCR

Procedia PDF Downloads 254
1980 Preparation and Characterization of Silk/Diopside Composite Nanofibers via Electrospinning for Tissue Engineering Application

Authors: Abbas Teimouri, Leila Ghorbanian, Iren Dabirian

Abstract:

This work focused on preparation and characterizations of silk fibroin (SF)/nanodiopside nanoceramic via electrospinning process. Nanofibrous scaffolds were characterized by combined techniques of scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD). The results confirmed that fabricated SF/diopside scaffolds improved cell attachment and proliferation. The results indicated that the electrospun of SF/nanodiopside nanofibrous scaffolds could be considered as ideal candidates for tissue engineering.

Keywords: electrospinning, nanofibers, silk fibroin, diopside, composite scaffold

Procedia PDF Downloads 244
1979 Use of Amaranthus Roxburghianus Root Extract in the Treatment of Ulcerative Colitis in Mice

Authors: S. A. Nirmal, J. M. Ingale, G. S. Asane, S. C. Pal, Subhash C. Mandal

Abstract:

The present work was undertaken to determine the effects of Amaranthus roxburghianus Nevski. (Amaranthaceae) root alone and in combination with piperine in treating ulcerative colitis (UC) in mice. Swiss albino mice were divided into seven groups (n = 6). Standard group received prednisolone (5 mg/kg, i.p.). Treatment groups received hydroalcoholic extract of roots of A. roxburghianus (50 and 100 mg/kg, p.o.) and a combination of hydroalcoholic extract of roots of A. roxburghianus (50 and 100 mg/kg, p.o.) and piperine (5 mg/kg, p.o.). Ulcer index, colitis severity, myeloperoxidase (MPO), malondialdehyde and glutathione were estimated from blood and tissue. Column chromatography of the extract was done and purified fractions were analyzed by gas chromatography-mass spectroscopy (GC-MS). Treatment with the combination of hydroalcoholic extract of A. roxburghianus and piperine showed minimal ulceration, hemorrhage, necrosis and leucocyte infiltration by histopathological observation. Acetic acid increased MPO levels in blood and colon tissue to 355 U/mL and 385 U/mg, respectively. The combination of hydroalcoholic extract (100 mg/kg) and piperine (5 mg/kg) significantly decreased MPO in blood and tissue to 182 U/mL and 193 U/mg, respectively. Similarly, this combination significantly reduced MPO and increased glutathione levels in blood and tissue. Various phytoconstituents were detected by GC-MS. The combination of hydroalcoholic extract and piperine is effective in the treatment of UC and the effects are comparable with the standard drug prednisolone. 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl, eugenol and benzene, and 1-(1,5-dimethyl-4-hexenyl)-4-methyl are reported having analgesic, anti-inflammatory, and antioxidant properties; they may play a role in the biological activity of A. roxburghianus root.

Keywords: Amaranthus roxburghianus, ulcerative colitis, anti-inflammatory, ulcerative colitis

Procedia PDF Downloads 496
1978 Treatment of Carribean Colonial Historical Experience in Walcott and Brathwaite's Poems: Finding the Long Lost 'Root' in the Route

Authors: Gopashis Biswas G. Son

Abstract:

This paper will attempt to explore the notions that the two Caribbean poets- Derek Walcott and Edward Kamau Brathwaite endorse on Caribbean history in their poems. Though both of these poets hold almost the same notion regarding history but their approach is totally different from one another. Coming from a 'hybrid' race, Walcott is aware of the history and acknowledges it and writes in 'mulatto of style'; whereas Brathwaite is enraged by it and attempts to sublimate it to erect a history of the new world. It is Walcott’s view to rise above the delusion and hatred and engulf the world of literature with creativity. On the other hand, Brathwaite holds the grudge which helps him not to forget and forgive the past experience but to transform that very experience into something positive which may help the Caribbean to transform their frustration into something creative and to help the Caribbean to overcome the present struggle against the legacy of colonization. Following discourse analysis, this paper seeks to identify if it is possible to rewrite and re-‘right’ the Caribbean history which has been lost in the route and analyze Walcott and Brathwaite’s attitude towards that very history which has been implemented through their poetry.

Keywords: Caribbean history, colonialism, mulatto of style, Walcott vis-à-vis Brathwaite

Procedia PDF Downloads 139
1977 Design of Nanoreinforced Polyacrylamide-Based Hybrid Hydrogels for Bone Tissue Engineering

Authors: Anuj Kumar, Kummara M. Rao, Sung S. Han

Abstract:

Bone tissue engineering has emerged as a potentially alternative method for localized bone defects or diseases, congenital deformation, and surgical reconstruction. The designing and the fabrication of the ideal scaffold is a great challenge, in restoring of the damaged bone tissues via cell attachment, proliferation, and differentiation under three-dimensional (3D) biological micro-/nano-environment. In this case, hydrogel system composed of high hydrophilic 3D polymeric-network that is able to mimic some of the functional physical and chemical properties of the extracellular matrix (ECM) and possibly may provide a suitable 3D micro-/nano-environment (i.e., resemblance of native bone tissues). Thus, this proposed hydrogel system is highly permeable and facilitates the transport of the nutrients and metabolites. However, the use of hydrogels in bone tissue engineering is limited because of their low mechanical properties (toughness and stiffness) that continue to posing challenges in designing and fabrication of tough and stiff hydrogels along with improved bioactive properties. For this purpose, in our lab, polyacrylamide-based hybrid hydrogels were synthesized by involving sodium alginate, cellulose nanocrystals and silica-based glass using one-step free-radical polymerization. The results showed good in vitro apatite-forming ability (biomineralization) and improved mechanical properties (under compression in the form of strength and stiffness in both wet and dry conditions), and in vitro osteoblastic (MC3T3-E1 cells) cytocompatibility. For in vitro cytocompatibility assessment, both qualitative (attachment and spreading of cells using FESEM) and quantitative (cell viability and proliferation using MTT assay) analyses were performed. The obtained hybrid hydrogels may potentially be used in bone tissue engineering applications after establishment of in vivo characterization.

Keywords: bone tissue engineering, cellulose nanocrystals, hydrogels, polyacrylamide, sodium alginate

Procedia PDF Downloads 125
1976 Magnetohemodynamic of Blood Flow Having Impact of Radiative Flux Due to Infrared Magnetic Hyperthermia: Spectral Relaxation Approach

Authors: Ebenezer O. Ige, Funmilayo H. Oyelami, Joshua Olutayo-Irheren, Joseph T. Okunlola

Abstract:

Hyperthermia therapy is an adjuvant procedure during which perfused body tissues is subjected to elevated range of temperature in bid to achieve improved drug potency and efficacy of cancer treatment. While a selected class of hyperthermia techniques is shouldered on the thermal radiations derived from single-sourced electro-radiation measures, there are deliberations on conjugating dual radiation field sources in an attempt to improve the delivery of therapy procedure. This paper numerically explores the thermal effectiveness of combined infrared hyperemia having nanoparticle recirculation in the vicinity of imposed magnetic field on subcutaneous strata of a model lesion as ablation scheme. An elaborate Spectral relaxation method (SRM) was formulated to handle equation of coupled momentum and thermal equilibrium in the blood-perfused tissue domain of a spongy fibrous tissue. Thermal diffusion regimes in the presence of external magnetic field imposition were described leveraging on the renowned Roseland diffusion approximation to delineate the impact of radiative flux within the computational domain. The contribution of tissue sponginess was examined using mechanics of pore-scale porosity over a selected of clinical informed scenarios. Our observations showed for a substantial depth of spongy lesion, magnetic field architecture constitute the control regimes of hemodynamics in the blood-tissue interface while facilitating thermal transport across the depth of the model lesion. This parameter-indicator could be utilized to control the dispensing of hyperthermia treatment in intravenous perfused tissue.

Keywords: spectra relaxation scheme, thermal equilibrium, Roseland diffusion approximation, hyperthermia therapy

Procedia PDF Downloads 85
1975 Literature Review of the Management of Parry Romberg Syndrome with Fillers

Authors: Sana Ilyas

Abstract:

Parry-Romberg syndrome is a rare condition clinically defined by slowly progressive atrophy of the skin and soft tissues. This usually effects one side of the face, although a few cases have been documented of bilateral presentation. It is more prevalent in females and usually affects the left side of the face. The syndrome can also be accompanied by neurological abnormalities. It usually occurs in the first two decades of life with a variable rate of progression. The aetiology is unknown, and the disease eventually stabilises. The treatment options usually involve surgical management. The least invasive of these options is the management of facial asymmetry, associated with Parry Romberg syndrome, through the use of tissue fillers. This paper will review the existing literature on the management of Parry Romberg syndrome with tissue filler. Aim: The aim of the study is to explore the current published literature for the management of Parry Romberg syndrome with fillers. It is to assess the development that has been made in this method of management, its benefits and limitations, and its effectiveness for the management of Parry Romberg syndrome. Methodology: There was a thorough assessment of the current literature published on this topic. PubMed database was used for search of the published literature on this method of the management. Papers were analysed and compared with one another to assess the success and limitation of the management of Parry Romberg with dermal fillers Results and Conclusion: Case reports of the use of tissue fillers discuss the varying degrees of success with the treatment. However, this procedure has it’s limitation, which are discussed in the paper in detail. However, it is still the least invasive of all the surgical options for the management of Parry Romberg Syndrome, and therefore, it is important to explore this option with patients, as they may be more comfortable with pursuingtreatment that is less invasive and can still improve their facial asymmetry

Keywords: dermal fillers, facial asymmetry, parry romberg syndrome, tissue fillers

Procedia PDF Downloads 65
1974 The Assessment of the Diabetes Mellitus Complications on Oral Health: A Longitudinal Study

Authors: Mimoza Canga, Irene Malagnino, Gresa Baboci, Edit Xhajanka, Vito Antonio Malagnino

Abstract:

Background: Diabetes mellitus is regarded as a very problematic chronic disease that has an effect on a considerable number of people around the world and it is straightforwardly associated with the oral health condition of the patients. Objective: The objective of this study is to analyze and evaluate the impact of diabetes mellitus on oral health. Materials and methods: In the present research were taken into consideration 300 patients with an age range of 11 to 80 years old. The study sample was composed of 191 males, respectively 63.7% of them and 109 females 36.3% of the participants. We divided them into seven age groups: 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, and 71-80 years.This descriptive and analytical research was designed as a longitudinal study. Statistical analysis was performed using IBM SPSS 23.0 statistics. Results: The majority of patients participating in the study belonged to the age range from 41 to 50 years old, precisely 20.7% of them, while 27% of the patients were from 51 to 60 years old. Based on the present research, it resulted that 24.4% of the participant had high blood sugar values 250-300 mg/dl, whereas 19 % of the patients had very high blood sugar values 300-350 mg/dl. Based on the results of the current study, it was observed that 83.7% of patients were affected by gingivitis. In the current study, the significant finding is that 22% of patients had more than 7 teeth with dental caries and 21% of them had 5-7 teeth with dental caries, whereas 29% of the patients had 4-5 dental caries and the remaining 28% of them had 1-3 dental caries. The present study showed that most of the patients, 27% of them had lost more than 7 teeth and 22% of the participants had lost 5-7 teeth, whereas 31% of the patients had lost 4-5 teeth and only 20 % of them had lost 1-3 teeth. This study proved that high blood sugar values had a direct impact on the manifestation of gingivitis and there it was a strong correlation between them with P-value = .001. A strong correlation was found out between dental caries and high blood sugar values with P-value ˂.001. Males with diabetes mellitus were more affected by dental caries and this was proved by the P-value= .02, in comparison to females P-value=.03. The impact of high blood sugar values affects missing teeth and the correlation between them was statistically significant with P-value ˂ .001. Conclusion: The results of this study suggest that diabetes mellitus is a possible risk factor in oral health for the reason that Albanian patients over 51 years old, respectively 43% of them have over 5 teeth with dental caries as compared with 49% of the patients who had over 5 missing teeth, whereas the majority 83.7% of them suffered from gingivitis. This study asserts that patients who do not have periodical check-ups of diabetes mellitus are at significant risk of oral diseases.

Keywords: dental caries, diabetes mellitus, gingivitis, missing teeth

Procedia PDF Downloads 183
1973 Olive Oil (Olea europea L.) Protects against Mercury (II) Induced Oxidative Tissue Damage in Rats

Authors: Ahlem Bahi, Youcef Necib, Sakina Zerizer, Cherif Abdennour, Mohamed Salah Boulakoud

Abstract:

Mercury (II) is a highly toxic metal which induces oxidative stress in the body. In this study, we aimed to investigate the possible protective effect of olive oil, an antioxidant agent, against experimental mercury toxicity in rat model. Administration of mercuric chloride induced significant increase in serum: ALT, AST, and LPA activities; interleukine1, interleukine6, tumor necrosis factor α (TNFα), creatinine, urea, and uric acid levels. Mercuric chloride also induced oxidative stress, as indicate by decreased tissue of GSH level, GSH-Px, and GST activities along with increase the level of lipid peroxidation. Furthermore, treatment with mercuric chloride caused a marked elevation of kidney and liver weight and decreased body weight. Virgin olive oil treatment markedly reduced elevated serum: AST, ALT, and LPA activities; interleukine1, interleukine6, tumor necrosis factor α (TNFα), creatinine, urea, and uric acid levels and contracted the deterious effects of mercuric chloride on oxidative stress markers changes caused by HgCl2 in tissue as compared to control group. Our results implicate that mercury induced oxidative damage in liver and kidney tissue protected by virgin olive oil, with its antioxidant effects.

Keywords: mercury, antioxidant enzymes, pro-inflammatory cytokine, virgin olive oil, lipid peroxidation

Procedia PDF Downloads 337
1972 Dry Modifications of PCL/Chitosan/PCL Tissue Scaffolds

Authors: Ozan Ozkan, Hilal Turkoglu Sasmazel

Abstract:

Natural polymers are widely used in tissue engineering applications, because of their biocompatibility, biodegradability and solubility in the physiological medium. On the other hand, synthetic polymers are also widely utilized in tissue engineering applications, because they carry no risk of infectious diseases and do not cause immune system reaction. However, the disadvantages of both polymer types block their individual usages as tissue scaffolds efficiently. Therefore, the idea of usage of natural and synthetic polymers together as a single 3D hybrid scaffold which has the advantages of both and the disadvantages of none has been entered to the literature. On the other hand, even though these hybrid structures support the cell adhesion and/or proliferation, various surface modification techniques applied to the surfaces of them to create topographical changes on the surfaces and to obtain reactive functional groups required for the immobilization of biomolecules, especially on the surfaces of synthetic polymers in order to improve cell adhesion and proliferation. In a study presented here, to improve the surface functionality and topography of the layer by layer electrospun 3D poly-epsilon-caprolactone/chitosan/poly-epsilon-caprolactone hybrid tissue scaffolds by using atmospheric pressure plasma method, thus to improve cell adhesion and proliferation of these tissue scaffolds were aimed. The formation/creation of the functional hydroxyl and amine groups and topographical changes on the surfaces of scaffolds were realized by using two different atmospheric pressure plasma systems (nozzle type and dielectric barrier discharge (DBD) type) carried out under different gas medium (air, Ar+O2, Ar+N2). The plasma modification time and distance for the nozzle type plasma system as well as the plasma modification time and the gas flow rate for DBD type plasma system were optimized with monitoring the changes in surface hydrophilicity by using contact angle measurements. The topographical and chemical characterizations of these modified biomaterials’ surfaces were carried out with SEM and ESCA, respectively. The results showed that the atmospheric pressure plasma modifications carried out with both nozzle type plasma and DBD plasma caused topographical and functionality changes on the surfaces of the layer by layer electrospun tissue scaffolds. However, the shelf life studies indicated that the hydrophilicity introduced to the surfaces was mainly because of the functionality changes. Therefore, according to the optimized results, samples treated with nozzle type air plasma modification applied for 9 minutes from a distance of 17 cm and Ar+O2 DBD plasma modification applied for 1 minute under 70 cm3/min O2 flow rate were found to have the highest hydrophilicity compared to pristine samples.

Keywords: biomaterial, chitosan, hybrid, plasma

Procedia PDF Downloads 254
1971 Upconversion Nanomaterials for Applications in Life Sciences and Medicine

Authors: Yong Zhang

Abstract:

Light has proven to be useful in a wide range of biomedical applications such as fluorescence imaging, photoacoustic imaging, optogenetics, photodynamic therapy, photothermal therapy, and light controlled drug/gene delivery. Taking photodynamic therapy (PDT) as an example, PDT has been proven clinically effective in early lung cancer, bladder cancer, head, and neck cancer and is the primary treatment for skin cancer as well. However, clinical use of PDT is severely constrained by the low penetration depth of visible light through thick tissue, limiting its use to target regions only a few millimeters deep. One way to enhance the range is to use invisible near-infrared (NIR) light within the optical window (700–1100nm) for biological tissues, extending the depth up to 1cm with no observable damage to the intervening tissue. We have demonstrated use of NIR-to-visible upconversion fluorescent nanoparticles (UCNPs), emitting visible fluorescence when excited by a NIR light at 980nm, as a nanotransducer for PDT to convert deep tissue-penetrating NIR light to visible light suitable for activating photosensitizers. The unique optical properties of UCNPs enable the upconversion wavelength to be tuned and matched to the activation absorption wavelength of the photosensitizer. At depths beyond 1cm, however, tissue remains inaccessible to light even within the NIR window, and this critical depth limitation renders existing phototherapy ineffective against most deep-seated cancers. We have demonstrated some new treatment modalities for deep-seated cancers based on UCNP hydrogel implants and miniaturized, wirelessly powered optoelectronic devices for light delivery to deep tissues.

Keywords: upconversion, fluorescent, nanoparticle, bioimaging, photodynamic therapy

Procedia PDF Downloads 129
1970 Deciphering Electrochemical and Optical Properties of Folic Acid for the Applications of Tissue Engineering and Biofuel Cell

Authors: Sharda Nara, Bansi Dhar Malhotra

Abstract:

Investigation of the vitamins as an electron transfer mediator could significantly assist in merging the area of tissue engineering and electronics required for the implantable therapeutic devices. The present study report that the molecules of folic acid released by Providencia rettgeri via fermentation route under the anoxic condition of the microbial fuel cell (MFC) exhibit characteristic electrochemical and optical properties, as indicated by absorption spectroscopy, photoluminescence (PL), and cyclic voltammetry studies. The absorption spectroscopy has depicted an absorption peak at 263 nm with a small bulge around 293 nm on day two of bacterial culture, whereas an additional peak was observed at 365 nm on the twentieth day. Furthermore, the PL spectra has indicated that the maximum emission occurred at various wavelengths 420, 425, 440, and 445 nm when excited by 310, 325, 350, and 365 nm. The change of emission spectra with varying excitation wavelength might be indicating the presence of tunable optical bands in the folic acid molecules co-related with the redox activity of the molecules. The results of cyclic voltammetry studies revealed that the oxidation and reduction occurred at 0.25V and 0.12V, respectively, indicating the electrochemical behavior of the folic acid. This could be inferred that the released folic acid molecules in a MFC might undergo inter as well as intra molecular electron transfer forming different intermediate states while transferring electrons to the electrode surface. Synchronization of electrochemical and optical properties of folic acid molecules could be potentially promising for the designing of electroactive scaffold and biocompatible conductive surface for the applications of tissue engineering and biofuel cells, respectively.

Keywords: biofuel cell, electroactivity, folic acid, tissue engineering

Procedia PDF Downloads 103
1969 Induced Bone Tissue Temperature in Drilling Procedures: A Comparative Laboratory Study with and without Lubrication

Authors: L. Roseiro, C. Veiga, V. Maranha, A. Neto, N. Laraqi, A. Baïri, N. Alilat

Abstract:

In orthopedic surgery there are various situations in which the surgeon needs to implement methods of cutting and drilling the bone. With this type of procedure the generated friction leads to a localized increase in temperature, which may lead to the bone necrosis. Recognizing the importance of studying this phenomenon, an experimental evaluation of the temperatures developed during the procedure of drilling bone has been done. Additionally the influence of the use of the procedure with / without additional lubrication during drilling of bone has also been done. The obtained results are presented and discussed and suggests an advantage in using additional lubrication as a way to minimize the appearance of bone tissue necrosis during bone drilling procedures.

Keywords: bone necrosis, bone drilling, thermography, surgery

Procedia PDF Downloads 559
1968 Osteogenesis in Thermo-Sensitive Hydrogel Using Mesenchymal Stem Cell Derived from Human Turbinate

Authors: A. Reum Son, Jin Seon Kwon, Seung Hun Park, Hai Bang Lee, Moon Suk Kim

Abstract:

These days, stem cell therapy is focused on for promising source of treatment in clinical human disease. As a supporter of stem cells, in situ-forming hydrogels with growth factors and cells appear to be a promising approach in tissue engineering. To examine osteogenic differentiation of hTMSCs which is one of mesenchymal stem cells in vivo in an injectable hydrogel, we use a methoxy polyethylene glycol-polycaprolactone blockcopolymer (MPEG-PCL) solution with osteogenic factors. We synthesized MPEG-PCL hydrogel and measured viscosity to check sol-gel transition. In order to demonstrate osteogenic ability of hTMSCs, we conducted in vitro osteogenesis experiment. Then, to confirm the cell cytotoxicity, we performed WST-1 with hTMSCs and MPEG-PCL. As the result of in vitro experiment, we implanted cell and hydrogel mixture into animal model and checked degree of osteogenesis with histological analysis and amount of expression genes. Through these experimental data, MPEG-PCL hydrogel has sol-gel transition in temperature change and is biocompatible with stem cells. In histological analysis and gene expression, hTMSCs are very good source of osteogenesis with hydrogel and will use it to tissue engineering as important treatment method. hTMSCs could be a good adult stem cell source for usability of isolation and high proliferation. When hTMSCs are used as cell therapy method with in situ-formed hydrogel, they may provide various benefits like a noninvasive alternative for bone tissue engineering applications.

Keywords: injectable hydrogel, stem cell, osteogenic differentiation, tissue engineering

Procedia PDF Downloads 422
1967 Development and Utilization of Keratin-Fibrin-Gelatin Composite Films as Potential Material for Skin Tissue Engineering Application

Authors: Sivakumar Singaravelu, Giriprasath Ramanathan, M. D. Raja, Uma Tirichurapalli Sivagnanam

Abstract:

The goal of the present study was to develop and evaluate composite film for tissue engineering application. The keratin was extracted from bovine horn and used for preparation of keratin (HK), physiologically clotted fibrin (PCF) and gelatin (G) blend films in different stoichiometric ratios (1:1:1, 1:1:2 and 1:1:3) by using solvent casting method. The composite films (HK-PCF-G) were characterized physiochemically using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). The mechanical properties of the composite films were analyzed. The results of tensile strength show that ultimate strength and elongation were 10.72 Mpa and 4.83 MPA respectively for 1:1:3 ratio combination. The SEM image showed a slight smooth surface for 1:1:3 ratio combination compared to other films. In order to impart antibacterial activities, the composite films were loaded with Mupirocin (MP) to act against infection. The composite films acted as a suitable carrier to protect and release the drug in a controlled manner. This developed composite film would be a suitable alternative material for tissue engineering application.

Keywords: bovine horn, keratin, fibrin, gelatin, tensile strength

Procedia PDF Downloads 422
1966 Comparison Study of 70% Ethanol Effect on Direct and Retrival Culture of Contaminated Umblical Cord Tissue for Expansion of Mesenchymal Stem Cells

Authors: Ganeshkumar, Ashika, Valavan, Ramesh, Thangam, Chirayu

Abstract:

MSCs are found in much higher concentration in the Wharton’s jelly compared to the umbilical cord blood, which is a rich source of hematopoietic stem cells. Umbilical cord tissue is collected at the time of birth; it is processed and stored in liquid nitrogen for future therapeutical purpose. The source of contamination might be either from vaginal tract of mother or from hospital environment or from personal handling during cord tissue sample collection. If the sample were contaminated, decontamination procedure will be done with 70% ethanol (1 minute) in order to avoid sample rejection. Ethanol is effective against a wide range of bacteria, protozoa and fungi and has low toxicity to humans. Among the 1954 samples taken for the study, 24 samples were found to be contaminated with microorganism. The organisms isolated from the positive samples were found to be E. coli, Stenotrophomonas maltophilia, Pseudomonas aueroginosa, Enterococcus fecalis, Acinetobacter bowmani, Staphylococcus epidermidis, Enterobacter cloacae, and Proteus mirabilis. Among these organisms 70% ethanol successfully eliminated E. coli, Enterococcus fecalis, Acinetobacter bowmani, Staphylococcus epidermidis, and Proteus mirabilis. 70% ethanol was unsuccessful in eliminating Stenotrophomonas maltophilia, Pseudomonas aueroginosa, and Enterobacter cloacae. Stenotrophomonas maltophilia and Pseudomonas aueroginosa have the ability to form biofilm that make them resistant to alcohol. Biofilm act as protective layer for bacteria and which protects them from host defense and antibiotic wash. Finally it was found 70% ethanol wash saved 58.3% cord tissue samples from rejection and it is ineffective against 41% of the samples. The contamination rate can be reduced by maintaining proper aseptic techniques during sample collection and processing.

Keywords: umblical cord tissue, decontamination, 70% ethanol effectiveness, contamination

Procedia PDF Downloads 320
1965 Lung Tissue Damage under Diesel Exhaust Exposure: Modification of Proteins, Cells and Functions in Just 14 Days

Authors: Ieva Bruzauskaite, Jovile Raudoniute, Karina Poliakovaite, Danguole Zabulyte, Daiva Bironaite, Ruta Aldonyte

Abstract:

Introduction: Air pollution is a growing global problem which has been shown to be responsible for various adverse health outcomes. Immunotoxicity, such as dysregulated inflammation, has been proposed as one of the main mechanisms in air pollution-associated diseases. Chronic obstructive pulmonary disease (COPD) is among major morbidity and mortality causes worldwide and is characterized by persistent airflow limitation caused by the small airways disease (obstructive bronchiolitis) and irreversible parenchymal destruction (emphysema). Exact pathways explaining the air pollution induced and mediated disease states are still not clear. However, modern societies understand dangers of polluted air, seek to mitigate such effects and are in need for reliable biomarkers of air pollution. We hypothesise that post-translational modifications of structural proteins, e.g. citrullination, might be a good candidate biomarker. Thus, we have designed this study, where mice were exposed to diesel exhaust and the ongoing protein modifications and inflammation in lungs and other tissues were assessed. Materials And Methods: To assess the effects of diesel exhaust a in vivo study was designed. Mice (n=10) were subjected to everyday 2-hour exposure to diesel exhaust for 14 days. Control mice were treated the same way without diesel exhaust. The effects within lung and other tissues were assessed by immunohistochemistry of formalin-fixed and paraffin-embedded tissues. Levels of inflammation and citrullination related markers were investigated. Levels of parenchymal damage were also measured. Results: In vivo study corroborates our own data from in vitro and reveals diesel exhaust initiated inflammatory shift and modulation of lung peptidyl arginine deiminase 4 (PAD4), citrullination associated enzyme, levels. In addition, high levels of citrulline were observed in exposed lung tissue sections co-localising with increased parenchymal destruction. Conclusions: Subacute exposure to diesel exhaust renders mice lungs inflammatory and modifies certain structural proteins. Such structural changes of proteins may pave a pathways to lost/gain function of affected molecules and also propagate autoimmune processes within the lung and systemically.

Keywords: air pollution, citrullination, in vivo, lungs

Procedia PDF Downloads 118
1964 Hounsfield-Based Automatic Evaluation of Volumetric Breast Density on Radiotherapy CT-Scans

Authors: E. M. D. Akuoko, Eliana Vasquez Osorio, Marcel Van Herk, Marianne Aznar

Abstract:

Radiotherapy is an integral part of treatment for many patients with breast cancer. However, side effects can occur, e.g., fibrosis or erythema. If patients at higher risks of radiation-induced side effects could be identified before treatment, they could be given more individual information about the risks and benefits of radiotherapy. We hypothesize that breast density is correlated with the risk of side effects and present a novel method for automatic evaluation based on radiotherapy planning CT scans. Methods: 799 supine CT scans of breast radiotherapy patients were available from the REQUITE dataset. The methodology was first established in a subset of 114 patients (cohort 1) before being applied to the whole dataset (cohort 2). All patients were scanned in the supine position, with arms up, and the treated breast (ipsilateral) was identified. Manual experts contour available in 96 patients for both the ipsilateral and contralateral breast in cohort 1. Breast tissue was segmented using atlas-based automatic contouring software, ADMIRE® v3.4 (Elekta AB, Sweden). Once validated, the automatic segmentation method was applied to cohort 2. Breast density was then investigated by thresholding voxels within the contours, using Otsu threshold and pixel intensity ranges based on Hounsfield units (-200 to -100 for fatty tissue, and -99 to +100 for fibro-glandular tissue). Volumetric breast density (VBD) was defined as the volume of fibro-glandular tissue / (volume of fibro-glandular tissue + volume of fatty tissue). A sensitivity analysis was performed to verify whether calculated VBD was affected by the choice of breast contour. In addition, we investigated the correlation between volumetric breast density (VBD) and patient age and breast size. VBD values were compared between ipsilateral and contralateral breast contours. Results: Estimated VBD values were 0.40 (range 0.17-0.91) in cohort 1, and 0.43 (0.096-0.99) in cohort 2. We observed ipsilateral breasts to be denser than contralateral breasts. Breast density was negatively associated with breast volume (Spearman: R=-0.5, p-value < 2.2e-16) and age (Spearman: R=-0.24, p-value = 4.6e-10). Conclusion: VBD estimates could be obtained automatically on a large CT dataset. Patients’ age or breast volume may not be the only variables that explain breast density. Future work will focus on assessing the usefulness of VBD as a predictive variable for radiation-induced side effects.

Keywords: breast cancer, automatic image segmentation, radiotherapy, big data, breast density, medical imaging

Procedia PDF Downloads 108
1963 Fabrication of Drug-Loaded Halloysite Nanotubes Containing Sodium Alginate/Gelatin Composite Scaffolds

Authors: Masoumeh Haghbin Nazarpak, Hamidreza Tolabi, Aryan Ekhlasi

Abstract:

Bone defects are mentioned as one of the most challenging clinical conditions, affecting millions of people each year. A fracture, osteoporosis, tumor, or infection usually causes these defects. At present, autologous and allogeneic grafts are used to correct bone defects, but these grafts have some difficulties, such as limited access, infection, disease transmission, and immune rejection. Bone tissue engineering is considered a new strategy for repairing bone defects. However, problems with scaffolds’ design with unique structures limit their clinical applications. In addition, numerous in-vitro studies have been performed on the behavior of bone cells in two-dimensional environments. Still, cells grow in physiological situations in the human body in a three-dimensional environment. As a result, the controlled design of porous structures with high structural complexity and providing the necessary flexibility to meet specific needs in bone tissue repair is beneficial. For this purpose, a three-dimensional composite scaffold based on gelatin and sodium alginate hydrogels is used in this research. In addition, the antibacterial drug-loaded halloysite nanotubes were introduced into the hydrogel scaffold structure to provide a suitable substrate for controlled drug release. The presence of halloysite nanotubes improved hydrogel’s properties, while the drug eliminated infection and disease transmission. Finally, it can be acknowledged that the composite scaffold prepared in this study for bone tissue engineering seems promising.

Keywords: halloysite nanotubes, bone tissue engineering, composite scaffold, controlled drug release

Procedia PDF Downloads 23
1962 Poly(L-Lactic Acid) Scaffolds for Bone Tissue Engineering

Authors: Aleksandra BužArovska, Gordana Bogoeva Gaceva

Abstract:

Biodegradable polymers have received significant scientific attention in tissue engineering (TE) application, in particular their composites consisting of inorganic nanoparticles. In the last 15 years, they are subject of intensive research by many groups, aiming to develop polymer scaffolds with defined biodegradability, porosity and adequate mechanical stability. The most important characteristic making these materials attractive for TE is their biodegradability, a process that could be time controlled and long enough to enable generation of a new tissue as a replacement for the degraded polymer scaffold. In this work poly(L-lactic acid) scaffolds, filled with TiO2 nanoparticles functionalized with oleic acid, have been prepared by thermally induced phase separation method (TIPS). The functionalization of TiO2 nanoparticles with oleic acid was performed in order to improve the nanoparticles dispersibility within the polymer matrix and at the same time to inhibit the cytotoxicity of the nanofiller. The oleic acid was chosen as amphiphilic molecule belonging to the fatty acid family because of its non-toxicity and possibility for mediation between the hydrophilic TiO2 nanoparticles and hydrophobic PLA matrix. The produced scaffolds were characterized with thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and mechanical compression measurements. The bioactivity for bone tissue engineering application was tested in supersaturated simulated body fluid. The degradation process was followed by Fourier transform infrared spectroscopy (FTIR). The results showed anisotropic morphology with elongated open pores (100 µm), high porosity (around 92%) and perfectly dispersed nanofiller. The compression moduli up to 10 MPa were identified independent on the nanofiller content. Functionalized TiO2 nanoparticles induced formation of hydroxyapatite clusters as much as unfunctionalized TiO2. The prepared scaffolds showed properties ideal for scaffold vascularization, cell attachment, growth and proliferation.

Keywords: biodegradation, bone tissue engineering, mineralization, PLA scaffolds

Procedia PDF Downloads 242
1961 Polymeric Microspheres for Bone Tissue Engineering

Authors: Yamina Boukari, Nashiru Billa, Andrew Morris, Stephen Doughty, Kevin Shakesheff

Abstract:

Poly (lactic-co-glycolic) acid (PLGA) is a synthetic polymer that can be used in bone tissue engineering with the aim of creating a scaffold in order to support the growth of cells. The formation of microspheres from this polymer is an attractive strategy that would allow for the development of an injectable system, hence avoiding invasive surgical procedures. The aim of this study was to develop a microsphere delivery system for use as an injectable scaffold in bone tissue engineering and evaluate various formulation parameters on its properties. Porous and lysozyme-containing PLGA microspheres were prepared using the double emulsion solvent evaporation method from various molecular weights (MW). Scaffolds were formed by sintering to contain 1 -3mg of lysozyme per gram of scaffold. The mechanical and physical properties of the scaffolds were assessed along with the release of lysozyme, which was used as a model protein. The MW of PLGA was found to have an influence on microsphere size during fabrication, with increased MW leading to an increased microsphere diameter. An inversely proportional relationship was displayed between PLGA MW and mechanical strength of formed scaffolds across loadings for low, intermediate and high MW respectively. Lysozyme release from both microspheres and formed scaffolds showed an initial burst release phase, with both microspheres and scaffolds fabricated using high MW PLGA showing the lowest protein release. Following the initial burst phase, the profiles for each MW followed a similar slow release over 30 days. Overall, the results of this study demonstrate that lysozyme can be successfully incorporated into porous PLGA scaffolds and released over 30 days in vitro, and that varying the MW of the PLGA can be used as a method of altering the physical properties of the resulting scaffolds.

Keywords: bone, microspheres, PLGA, tissue engineering

Procedia PDF Downloads 409
1960 The Use of STIMULAN Resorbable Antibiotic Beads in Conjunction with Autologous Tissue Transfer to Treat Recalcitrant Infections and Osteomyelitis in Diabetic Foot Wounds

Authors: Hayden R Schott, John M Felder III

Abstract:

Introduction: Chronic lower extremity wounds in the diabetic and vasculopathic populations are associated with a high degree of morbidity.When wounds require more extensive treatment than can be offered by wound care centers, more aggressive solutions involve local tissue transfer and microsurgical free tissue transfer for achieving definitive soft tissue coverage. These procedures of autologous tissue transfer (ATT) offer resilient, soft tissue coverage of limb-threatening wounds and confer promising limb salvage rates. However, chronic osteomyelitis and recalcitrant soft tissue infections are common in severe diabetic foot wounds and serve to significantly complicate ATT procedures. Stimulan is a resorbable calcium sulfate antibiotic carrier. The use of stimulan antibiotic beads to treat chronic osteomyelitis is well established in the orthopedic and plastic surgery literature. In these procedures, the beads are placed beneath the skin flap to directly deliver antibiotics to the infection site. The purpose of this study was to quantify the success of Stimulan antibiotic beads in treating recalcitrant infections in patients with diabetic foot wounds receiving ATT. Methods: A retrospective review of clinical and demographic information was performed on patients who underwent ATT with the placement of Stimulan antibiotic beads for attempted limb salvage from 2018-21. Patients were analyzed for preoperative wound characteristics, demographics, infection recurrence, and adverse outcomes as a result of product use. The primary endpoint was 90 day infection recurrence, with secondary endpoints including 90 day complications. Outcomes were compared using basic statistics and Fisher’s exact tests. Results: In this time span, 14 patients were identified. At the time of surgery, all patients exhibited clinical signs of active infection, including positive cultures and erythema. 57% of patients (n=8) exhibited chronic osteomyelitis prior to surgery, and 71% (n=10) had exposed bone at the wound base. In 57% of patients (n=8), Stimulan beads were placed beneath a free tissue flap and beneath a pedicle tissue flap in 42% of patients (n=6). In all patients, Stimulan beads were only applied once. Recurrent infections were observed in 28% of patients (n=4) at 90 days post-op, and flap nonadherence was observed in 7% (n=1). These were the only Stimulan related complications observed. Ultimately, lower limb salvage was successful in 85% of patients (n=12). Notably, there was no significant association between the preoperative presence of osteomyelitis and recurrent infections. Conclusions: The use of Stimulanantiobiotic beads to treat recalcitrant infections in patients receiving definitive skin coverage of diabetic foot wounds does not appear to demonstrate unnecessary risk. Furthermore, the lack of significance between the preoperative presence of osteomyelitis and recurrent infections indicates the successful use of Stimulan to dampen infection in patients with osteomyelitis, as is consistent with the literature. Further research is needed to identify Stimulan as the significant contributor to infection treatment using future cohort and case control studies with more patients. Nonetheless, the use of Stimulan antibiotic beads in patients with diabetic foot wounds demonstrates successful infection suppression and maintenance of definitive soft tissue coverage.

Keywords: wound care, stimulan antibiotic beads, free tissue transfer, plastic surgery, wound, infection

Procedia PDF Downloads 59
1959 Reduce of the Consumption of Industrial Kilns a Pottery Kiln as Example, Recovery of Lost Energy Using a System of Heat Exchangers and Modeling of Heat Transfer Through the Walls of the Kiln

Authors: Maha Bakkari, Fatiha Lemmeni, Rachid Tadili

Abstract:

In this work, we present some characteristics of the furnace studied, its operating principle and the experimental measurements of the evolutions of the temperatures inside and outside the walls of the This work deals with the problem of energy consumption of pottery kilns whose energy consumption is relatively too high. In this work, we determined the sources of energy loss by studying the heat transfer of a pottery furnace, we proposed a recovery system to reduce energy consumption, and then we developed a numerical model modeling the transfers through the walls of the furnace and to optimize the insulation (reduce heat losses) by testing multiple insulators. The recovery and reuse of energy recovered by the recovery system will present a significant gain in energy consumption of the oven and cooking time. This research is one of the solutions that helps reduce the greenhouse effect of the planet earth, a problem that worries the world.

Keywords: recovery lost energy, energy efficiency, modeling, heat transfer

Procedia PDF Downloads 52
1958 Preparation of Polyethylene/Cashewnut Flour/ Gum Arabic Polymer Blends Through Melt-blending and Determination of Their Biodegradation by Composting Method for Possible Reduction of Polyethylene-based Wastes from the Environment

Authors: Abubakar Umar Birnin-yauri

Abstract:

Plastic wastes arising from Polyethylene (PE)-based materials are increasingly becoming environmental problem, this is owed to the fact that these PE waste materials will only decompose over hundreds, or even thousands of years, during which they cause serious environmental problems. In this research, Polymer blends prepared from PE, Cashewnut flour (CNF) and Gum Arabic (GA) were studied in order to assay their biodegradation potentials via composting method. Different sample formulations were made i.e., X1= (70% PE, 25% CNF and 5% GA, X2= (70% PE, 20% CNF and 10% GA), X3= (70% PE, 15% CNF and 15% GA), X4 = (70% PE, 10% CNF and 20% GA) and X5 = (70% PE, 5% CNF and 25% GA) respectively. The results obtained showed that X1 recorded weight loss of 9.89% of its original weight after the first 20 days and 37.45% after 100 day, and X2 lost 12.67 % after the first 20 days and 42.56% after 100day, sample X5 experienced the greatest weight lost in the two methods adopted which are 52.9% and 57.89%. Instrumental analysis such as Fourier Transform Infrared Spectroscopy, Thermogravimetric analysis and Scanning electron microscopy were performed on the polymer blends before and after biodegradation. The study revealed that the biodegradation of the polymer blends is influenced by the contents of both the CNF and GA added into the blends.

Keywords: polyethylene, cashewnut, gum Arabic, biodegradation, blend, environment

Procedia PDF Downloads 43
1957 The Influence of Aerobic Physical Exercise with Different Frequency to Concentration of Vascular Endothelial Growth Factor in Brain Tissue of Wistar Rat

Authors: Rostika Flora, Muhammad Zulkarnain, Syokumawena

Abstract:

Background: Aerobic physical exercises are recommended to keep body fit and healthy although physical exercises themselves can increase body metabolism and oxygen and can lead into tissue hypoxia. Oxygen pressure can serve as Vascular Endhothelial Growth Factor (VEGF) regulator. Hypoxia increases gene expression of VEGF through ascendant regulation of HIF-1. VEGF is involved in regulating angiogenesis process. Aerobic physical exercises can increase the concentration of VEGF in brain and enables angiogenesis process. We have investigated the influence of aerobic physical exercise to the VGEF concentration of wistar rat’s brain. Methods: This was experimental study using post test only control group design. Independent t-test was used as statistical test. The samples were twenty four wistar rat (Rattus Norvegicus) which were divided into four groups: group P1 (control group), group P2 (treatment group with once-a-week exercise), group P3 (treatment group with three time-a-week exercise), and group P4 (treatment group with seven time-a-week exercise). Group P2, P3, and P4 were treated with treadmil with speed of 20 m/minute for 30 minutes. The concentration of VEGF was determined by ELISA. Results: There was a significant increase of VEGF in treatment group compared with control one (<0.05). The maximum increase was found in group P2 (129.02±64.49) and the minimum increase was in group P4 (96.98±11.20). Conclusion: The frequency of aerobic physical exercises influenced the concentration of Vascular Endhothelial Growth Factor (VEGF) of brain tissue of Rattus Norvegicus.

Keywords: brain tissue, hypoxia, physical exercises, vascular endhothelial growth factor

Procedia PDF Downloads 457
1956 Land Use Change Detection Using Satellite Images for Najran City, Kingdom of Saudi Arabia (KSA)

Authors: Ismail Elkhrachy

Abstract:

Determination of land use changing is an important component of regional planning for applications ranging from urban fringe change detection to monitoring change detection of land use. This data are very useful for natural resources management.On the other hand, the technologies and methods of change detection also have evolved dramatically during past 20 years. So it has been well recognized that the change detection had become the best methods for researching dynamic change of land use by multi-temporal remotely-sensed data. The objective of this paper is to assess, evaluate and monitor land use change surrounding the area of Najran city, Kingdom of Saudi Arabia (KSA) using Landsat images (June 23, 2009) and ETM+ image(June. 21, 2014). The post-classification change detection technique was applied. At last,two-time subset images of Najran city are compared on a pixel-by-pixel basis using the post-classification comparison method and the from-to change matrix is produced, the land use change information obtained.Three classes were obtained, urban, bare land and agricultural land from unsupervised classification method by using Erdas Imagine and ArcGIS software. Accuracy assessment of classification has been performed before calculating change detection for study area. The obtained accuracy is between 61% to 87% percent for all the classes. Change detection analysis shows that rapid growth in urban area has been increased by 73.2%, the agricultural area has been decreased by 10.5 % and barren area reduced by 7% between 2009 and 2014. The quantitative study indicated that the area of urban class has unchanged by 58.2 km〗^2, gained 70.3 〖km〗^2 and lost 16 〖km〗^2. For bare land class 586.4〖km〗^2 has unchanged, 53.2〖km〗^2 has gained and 101.5〖km〗^2 has lost. While agriculture area class, 20.2〖km〗^2 has unchanged, 31.2〖km〗^2 has gained and 37.2〖km〗^2 has lost.

Keywords: land use, remote sensing, change detection, satellite images, image classification

Procedia PDF Downloads 501
1955 Cell Patterns and Tissue Metamorphoses Based on Cell Surface Mechanism

Authors: Reyhane Hamed Kamran

Abstract:

Early stage morphogenesis requires the execution of complex systems that direct the nearby conduct of gatherings of cells. The organization of such instruments has been, for the most part, deciphered through the recognizable proof of moderated groups of flagging pathways that spatially and transiently control cell conduct. In any case, how this data is handled to control cell shape and cell elements is an open territory of examination. The structure that rises up out of differing controls, for example, cell science, material science, and formative science, focuses to bond and cortical actin arranges as controllers of cell surface mechanics. In this specific circumstance, a scope of formative marvels can be clarified by the guideline of cell surface pressure.

Keywords: cell, tissue damage, morphogenesis, cell conduct

Procedia PDF Downloads 73
1954 Cell Patterns and Tissue Metamorphoses Based on Cell Surface Mechanics

Authors: Narin Salehiyan

Abstract:

Early stage morphogenesis requires the execution of complex systems that direct the nearby conduct of gatherings of cells. The organization of such instruments has been, for the most part, deciphered through the recognizable proof of moderated groups of flagging pathways that spatially and transiently control cell conduct. In any case, how this data is handled to control cell shape and cell elements is an open territory of examination. The structure that rises up out of differing controls, for example, cell science, material science and formative science, focuses to bond and cortical actin arranges as controllers of cell surface mechanics. In this specific circumstance, a scope of formative marvels can be clarified by the guideline of cell surface pressure.

Keywords: cell, tissue damage, morphogenesis, cell conduct

Procedia PDF Downloads 52
1953 Fabrication of Hybrid Scaffolds Consisting of Cell-laden Electrospun Micro/Nanofibers and PCL Micro-structures for Tissue Regeneration

Authors: MyungGu Yeo, JongHan Ha, Gi-Hoon Yang, JaeYoon Lee, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim

Abstract:

Tissue engineering is a rapidly growing interdisciplinary research area that may provide options for treating damaged tissues and organs. As a promising technique for regenerating various tissues, this technology requires biomedical scaffolds, which serve as an artificial extracellular matrix (ECM) to support neotissue growth. Electrospun micro/nanofibers have been used widely in tissue engineering because of their high surface-area-to-volume ratio and structural similarity to extracellular matrix. However, low mechanical sustainability, low 3D shape-ability, and low cell infiltration have been major limitations to their use. In this work, we propose new hybrid scaffolds interlayered with cell-laden electrospun micro/nano fibers and poly(caprolactone) microstructures. Also, we applied various concentrations of alginate and electric field strengths to determine optimal conditions for the cell-electrospinning process. The combination of cell-laden bioink (2 ⅹ 10^5 osteoblast-like MG63 cells/mL, 2 wt% alginate, 2 wt% poly(ethylene oxide), and 0.7 wt% lecithin) and a 0.16 kV/mm electric field showed the highest cell viability and fiber formation in this process. Using these conditions and PCL microstructures, we achieved mechanically stable hybrid scaffolds. In addition, the cells embedded in the fibrous structure were viable and proliferated. We suggest that the cell-embedded hybrid scaffolds fabricated using the cell-electrospinning process may be useful for various soft- and hard-tissue regeneration applications.

Keywords: bioink, cell-laden scaffold, micro/nanofibers, poly(caprolactone)

Procedia PDF Downloads 350