Search results for: performance optimized space networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18350

Search results for: performance optimized space networks

170 Membrane Technologies for Obtaining Bioactive Fractions from Blood Main Protein: An Exploratory Study for Industrial Application

Authors: Fatima Arrutia, Francisco Amador Riera

Abstract:

The meat industry generates large volumes of blood as a result of meat processing. Several industrial procedures have been implemented in order to treat this by-product, but are focused on the production of low-value products, and in many cases, blood is simply discarded as waste. Besides, in addition to economic interests, there is an environmental concern due to bloodborne pathogens and other chemical contaminants found in blood. Consequently, there is a dire need to find extensive uses for blood that can be both applicable to industrial scale and able to yield high value-added products. Blood has been recognized as an important source of protein. The main blood serum protein in mammals is serum albumin. One of the top trends in food market is functional foods. Among them, bioactive peptides can be obtained from protein sources by microbiological fermentation or enzymatic and chemical hydrolysis. Bioactive peptides are short amino acid sequences that can have a positive impact on health when administered. The main drawback for bioactive peptide production is the high cost of the isolation, purification and characterization techniques (such as chromatography and mass spectrometry) that make unaffordable the scale-up. On the other hand, membrane technologies are very suitable to apply to the industry because they offer a very easy scale-up and are low-cost technologies, compared to other traditional separation methods. In this work, the possibility of obtaining bioactive peptide fractions from serum albumin by means of a simple procedure of only 2 steps (hydrolysis and membrane filtration) was evaluated, as an exploratory study for possible industrial application. The methodology used in this work was, firstly, a tryptic hydrolysis of serum albumin in order to release the peptides from the protein. The protein was previously subjected to a thermal treatment in order to enhance the enzyme cleavage and thus the peptide yield. Then, the obtained hydrolysate was filtered through a nanofiltration/ultrafiltration flat rig at three different pH values with two different membrane materials, so as to compare membrane performance. The corresponding permeates were analyzed by liquid chromatography-tandem mass spectrometry technology in order to obtain the peptide sequences present in each permeate. Finally, different concentrations of every permeate were evaluated for their in vitro antihypertensive and antioxidant activities though ACE-inhibition and DPPH radical scavenging tests. The hydrolysis process with the previous thermal treatment allowed achieving a degree of hydrolysis of the 49.66% of the maximum possible. It was found that peptides were best transmitted to the permeate stream at pH values that corresponded to their isoelectric points. Best selectivity between peptide groups was achieved at basic pH values. Differences in peptide content were found between membranes and also between pH values for the same membrane. The antioxidant activity of all permeates was high compared with the control only for the highest dose. However, antihypertensive activity was best for intermediate concentrations, rather than higher or lower doses. Therefore, although differences between them, all permeates were promising regarding antihypertensive and antioxidant properties.

Keywords: bioactive peptides, bovine serum albumin, hydrolysis, membrane filtration

Procedia PDF Downloads 173
169 Achieving Flow at Work: An Experience Sampling Study to Comprehend How Cognitive Task Characteristics and Work Environments Predict Flow Experiences

Authors: Jonas De Kerf, Rein De Cooman, Sara De Gieter

Abstract:

For many decades, scholars have aimed to understand how work can become more meaningful by maximizing both potential and enhancing feelings of satisfaction. One of the largest contributions towards such positive psychology was made with the introduction of the concept of ‘flow,’ which refers to a condition in which people feel intense engagement and effortless action. Since then, valuable research on work-related flow has indicated that this state of mind is related to positive outcomes for both organizations (e.g., social, supportive climates) and workers (e.g., job satisfaction). Yet, scholars still do not fully comprehend how such deep involvement at work is obtained, given the notion that flow is considered a short-term, complex, and dynamic experience. Most research neglects that people who experience flow ought to be optimally challenged so that intense concentration is required. Because attention is at the core of this enjoyable state of mind, this study aims to comprehend how elements that affect workers’ cognitive functioning impact flow at work. Research on cognitive performance suggests that working on mentally demanding tasks (e.g., information processing tasks) requires workers to concentrate deeply, as a result leading to flow experiences. Based on social facilitation theory, working on such tasks in an isolated environment eases concentration. Prior research has indicated that working at home (instead of working at the office) or in a closed office (rather than in an open-plan office) impacts employees’ overall functioning in terms of concentration and productivity. Consequently, we advance such knowledge and propose an interaction by combining cognitive task characteristics and work environments among part-time teleworkers. Hence, we not only aim to shed light on the relation between cognitive tasks and flow but also provide empirical evidence that workers performing such tasks achieve the highest states of flow while working either at home or in closed offices. In July 2022, an experience-sampling study will be conducted that uses a semi-random signal schedule to understand how task and environment predictors together impact part-time teleworkers’ flow. More precisely, about 150 knowledge workers will fill in multiple surveys a day for two consecutive workweeks to report their flow experiences, cognitive tasks, and work environments. Preliminary results from a pilot study indicate that on a between level, tasks high in information processing go along with high self-reported fluent productivity (i.e., making progress). As expected, evidence was found for higher fluency in productivity for workers performing information processing tasks both at home and in a closed office, compared to those performing the same tasks at the office or in open-plan offices. This study expands the current knowledge on work-related flow by looking at a task and environmental predictors that enable workers to obtain such a peak state. While doing so, our findings suggest that practitioners should strive for ideal alignments between tasks and work locations to work with both deep involvement and gratification.

Keywords: cognitive work, office lay-out, work location, work-related flow

Procedia PDF Downloads 66
168 Buoyant Gas Dispersion in a Small Fuel Cell Enclosure: A Comparison Study Using Plain and Pressed Louvre Vent Passive Ventilation Schemes

Authors: T. Ghatauray, J. Ingram, P. Holborn

Abstract:

The transition from a ‘carbon rich’ fossil fuel dependent to a ‘sustainable’ and ‘renewable’ hydrogen based society will see the deployment of hydrogen fuel cells (HFC) in transport applications and in the generation of heat and power for buildings, as part of a decentralised power network. Many deployments will be low power HFCs for domestic combined heat and power (CHP) and commercial ‘transportable’ HFCs for environmental situations, such as lighting and telephone towers. For broad commercialisation of small fuel cells to be achieved there needs to be significant confidence in their safety in both domestic and environmental applications. Low power HFCs are housed in protective steel enclosures. Standard enclosures have plain rectangular ventilation openings intended for thermal management of electronics and not the dispersion of a buoyant gas. Degradation of the HFC or supply pipework in use could lead to a low-level leak and a build-up of hydrogen gas in the enclosure. Hydrogen’s wide flammable range (4-75%) is a significant safety concern, with ineffective enclosure ventilation having the potential to cause flammable mixtures to develop with the risk of explosion. Mechanical ventilation is effective at managing enclosure hydrogen concentrations, but drains HFC power and is vulnerable to failure. This is undesirable in low power and remote installations and reliable passive ventilation systems are preferred. Passive ventilation depends upon buoyancy driven flow, with the size, shape and position of ventilation openings critical for producing predictable flows and maintaining low buoyant gas concentrations. With environmentally sited enclosures, ventilation openings with pressed horizontal and angled louvres are preferred to protect the HFC and electronics inside. There is an economic cost to adding louvres, but also a safety concern. A question arises over whether the use of pressed louvre vents impairs enclosure passive ventilation performance, when compared to same opening area plain vents. Comparison small enclosure (0.144m³) tests of same opening area pressed louvre and plain vents were undertaken. A displacement ventilation arrangement was incorporated into the enclosure with opposing upper and lower ventilation openings. A range of vent areas were tested. Helium (used as a safe analogue for hydrogen) was released from a 4mm nozzle at the base of the enclosure to simulate a hydrogen leak at leak rates from 1 to 10 lpm. Helium sensors were used to record concentrations at eight heights in the enclosure. The enclosure was otherwise empty. These tests determined that the use of pressed and angled louvre ventilation openings on the enclosure impaired the passive ventilation flow and increased helium concentrations in the enclosure. High-level stratified buoyant gas layers were also found to be deeper than with plain vent openings and were within the flammable range. The presence of gas within the flammable range is of concern, particularly as the addition of the fuel cell and electronics in the enclosure would further reduce the available volume and increase concentrations. The opening area of louvre vents would need to be greater than equivalent plain vents to achieve comparable ventilation flows or alternative schemes would need to be considered.

Keywords: enclosure, fuel cell, helium, hydrogen safety, louvre vent, passive ventilation

Procedia PDF Downloads 250
167 Luminescent Properties of Plastic Scintillator with Large Area Photonic Crystal Prepared by a Combination of Nanoimprint Lithography and Atomic Layer Deposition

Authors: Jinlu Ruan, Liang Chen, Bo Liu, Xiaoping Ouyang, Zhichao Zhu, Zhongbing Zhang, Shiyi He, Mengxuan Xu

Abstract:

Plastic scintillators play an important role in the measurement of a mixed neutron/gamma pulsed radiation, neutron radiography and pulse shape discrimination technology. In some research, these luminescent properties are necessary that photons produced by the interactions between a plastic scintillator and radiations can be detected as much as possible by the photoelectric detectors and more photons can be emitted from the scintillators along a specific direction where detectors are located. Unfortunately, a majority of these photons produced are trapped in the plastic scintillators due to the total internal reflection (TIR), because there is a significant light-trapping effect when the incident angle of internal scintillation light is larger than the critical angle. Some of these photons trapped in the scintillator may be absorbed by the scintillator itself and the others are emitted from the edges of the scintillator. This makes the light extraction of plastic scintillators very low. Moreover, only a small portion of the photons emitted from the scintillator easily can be detected by detectors effectively, because the distribution of the emission directions of this portion of photons exhibits approximate Lambertian angular profile following a cosine emission law. Therefore, enhancing the light extraction efficiency and adjusting the emission angular profile become the keys for improving the number of photons detected by the detectors. In recent years, photonic crystal structures have been covered on inorganic scintillators to enhance the light extraction efficiency and adjust the angular profile of scintillation light successfully. However, that, preparation methods of photonic crystals will deteriorate performance of plastic scintillators and even destroy the plastic scintillators, makes the investigation on preparation methods of photonic crystals for plastic scintillators and luminescent properties of plastic scintillators with photonic crystal structures inadequate. Although we have successfully made photonic crystal structures covered on the surface of plastic scintillators by a modified self-assembly technique and achieved a great enhance of light extraction efficiency without evident angular-dependence for the angular profile of scintillation light, the preparation of photonic crystal structures with large area (the diameter is larger than 6cm) and perfect periodic structure is still difficult. In this paper, large area photonic crystals on the surface of scintillators were prepared by nanoimprint lithography firstly, and then a conformal layer with material of high refractive index on the surface of photonic crystal by atomic layer deposition technique in order to enhance the stability of photonic crystal structures and increase the number of leaky modes for improving the light extraction efficiency. The luminescent properties of the plastic scintillator with photonic crystals prepared by the mentioned method are compared with those of the plastic scintillator without photonic crystal. The results indicate that the number of photons detected by detectors is increased by the enhanced light extraction efficiency and the angular profile of scintillation light exhibits evident angular-dependence for the scintillator with photonic crystals. The mentioned preparation of photonic crystals is beneficial to scintillation detection applications and lays an important technique foundation for the plastic scintillators to meet special requirements under different application backgrounds.

Keywords: angular profile, atomic layer deposition, light extraction efficiency, plastic scintillator, photonic crystal

Procedia PDF Downloads 168
166 Tele-Rehabilitation for Multiple Sclerosis: A Case Study

Authors: Sharon Harel, Rachel Kizony, Yoram Feldman, Gabi Zeilig, Mordechai Shani

Abstract:

Multiple Sclerosis (MS) is a neurological disease that may cause restriction in participation in daily activities of young adults. Main symptoms include fatigue, weakness and cognitive decline. The appearance of symptoms, their severity and deterioration rate, change between patients. The challenge of health services is to provide long-term rehabilitation services to people with MS. The objective of this presentation is to describe a course of tele-rehabilitation service of a woman with MS. Methods; R is a 48 years-old woman, diagnosed with MS when she was 22. She started to suffer from weakness of her non-dominant left upper extremity about ten years after the diagnosis. She was referred to the tele-rehabilitation service by her rehabilitation team, 16 years after diagnosis. Her goals were to improve ability to use her affected upper extremity in daily activities. On admission her score in the Mini-Mental State Exam was 30/30. Her Fugl-Meyer Assessment (FMA) score of the left upper extremity was 48/60, indicating mild weakness and she had a limitation of her shoulder abduction (90 degrees). In addition, she reported little use of her arm in daily activities as shown in her responses to the Motor Activity Log (MAL) that were equal to 1.25/5 in amount and 1.37 in quality of use. R. received two 30 minutes on-line sessions per week in the tele-rehabilitation service, with the CogniMotion system. These were complemented by self-practice with the system. The CogniMotion system provides a hybrid (synchronous-asynchronous), the home-based tele-rehabilitation program to improve the motor, cognitive and functional status of people with neurological deficits. The system consists of a computer, large monitor, and the Microsoft’s Kinect 3D sensor. This equipment is located in the client’s home and connected to a clinician’s computer setup in a remote clinic via WiFi. The client sits in front of the monitor and uses his body movements to interact with games and tasks presented on the monitor. The system provides feedback in the form of ‘knowledge of results’ (e.g., the success of a game) and ‘knowledge of performance’ (e.g., alerts for compensatory movements) to enhance motor learning. The games and tasks were adapted for R. motor abilities and level of difficulty was gradually increased according to her abilities. The results of her second assessment (after 35 on-line sessions) showed improvement in her FMA score to 52 and shoulder abduction to 140 degrees. Moreover, her responses to the MAL indicated an increased amount (2.4) and quality (2.2) of use of her left upper extremity in daily activities. She reported high level of enjoyment from the treatments (5/5), specifically the combination of cognitive challenges while moving her body. In addition, she found the system easy to use as reflected by her responses to the System Usability Scale (85/100). To-date, R. continues to receive treatments in the tele-rehabilitation service. To conclude, this case report shows the potential of using tele-rehabilitation for people with MS to provide strategies to enhance the use of the upper extremity in daily activities as well as for maintaining motor function.

Keywords: motor function, multiple-sclerosis, tele-rehabilitation, daily activities

Procedia PDF Downloads 150
165 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto ɤ-Alumina and Bio-Char

Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain

Abstract:

Climate change has becoming a global environmental issue that may trigger irreversible changes in the environment with catastrophic consequences for human, animals and plants on our planet. Methane, carbon dioxide and nitrous oxide are the greenhouse gases (GHG) and as the main factor that significantly contributes to the global warming. Mainly carbon dioxide be produced and released to atmosphere by thermal industrial and power generation sectors. Methane is dominant component of natural gas releases significant of thermal heat, and the gaseous pollutants when homogeneous thermal combustion takes place at high temperature. Heterogeneous catalytic Combustion (HCC) principle is promising technologies towards environmental friendly energy production should be developed to ensure higher yields with lower pollutants gaseous emissions and perform complete combustion oxidation at moderate temperature condition as comparing to homogeneous high thermal combustion. Hence the principle has become a very interesting alternative total oxidation for the treatment of pollutants gaseous emission especially NOX product formation. Noble metals are dispersed on a support-porous HCC such as γ- Al2O3, TiO2 and ThO2 to increase thermal stability of catalyst and to increase to effectiveness of catalytic combustion. Support-porous HCC material to be selected based on factors of the surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. γ- Al2O3 with high catalytic activity and can last longer life of catalyst, is commonly used as the support for Pd catalyst at low temperatures. Sustainable and renewable support-material of bio-mass char was derived from agro-industrial waste material and used to compare with those the conventional support-porous material. The abundant of biomass wastes generated in palm oil industries is one potential source to convert the wastes into sustainable material as replacement of support material for catalysts. Objective of this study was to compare the kinetic rate of reaction the combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc) support derived from shell kernel. The 2wt% Pd was prepared using incipient wetness impregnation method and the HCC performance was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. Material characterization was determined using TGA, SEM, and BET surface area. The methane porous-HCC conversion was carried out by online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature is prepared 2wt% Pd/Bc > calcined 2wt% Pd/ Al2O3 > prepared 2wt% Pd/ Al2O3 > calcined 2wt% Pd/Bc. Hence the usage of agro-industrial bio-mass waste material can enhance the sustainability principle.

Keywords: catalytic-combustion, environmental, support-bio-char material, sustainable and renewable material

Procedia PDF Downloads 372
164 Increased Stability of Rubber-Modified Asphalt Mixtures to Swelling, Expansion and Rebound Effect during Post-Compaction

Authors: Fernando Martinez Soto, Gaetano Di Mino

Abstract:

The application of rubber into bituminous mixtures requires attention and care during mixing and compaction. Rubber modifies the properties because it reacts in the internal structure of bitumen at high temperatures changing the performance of the mixture (interaction process of solvents with binder-rubber aggregate). The main change is the increasing of the viscosity and elasticity of the binder due to the larger sizes of the rubber particles by dry process but, this positive effect is counteracted by short mixing times, compared to wet technology, and due to the transport processes, curing time and post-compaction of the mixtures. Therefore, negative effects as swelling of rubber particles, rebounding effect of the specimens and thermal changes by different expansion of the structure inside the mixtures, can change the mechanical properties of the rubberized blends. Based on the dry technology, different asphalt-rubber binders using devulcanized or natural rubber (truck and bus tread rubber), have served to demonstrate these effects and how to solve them into two dense-gap graded rubber modified asphalt concrete mixes (RUMAC) to enhance the stability, workability and durability of the compacted samples by Superpave gyratory compactor method. This paper specifies the procedures developed in the Department of Civil Engineering of the University of Palermo during September 2016 to March 2017, for characterizing the post-compaction and mix-stability of the one conventional mixture (hot mix asphalt without rubber) and two gap-graded rubberized asphalt mixes according granulometry for rail sub-ballast layers with nominal size of Ø22.4mm of aggregates according European standard. Thus, the main purpose of this laboratory research is the application of ambient ground rubber from scrap tires processed at conventional temperature (20ºC) inside hot bituminous mixtures (160-220ºC) as a substitute for 1.5%, 2% and 3% by weight of the total aggregates (3.2%, 4.2% and, 6.2% respectively by volumetric part of the limestone aggregates of bulk density equal to 2.81g/cm³) considered, not as a part of the asphalt binder. The reference bituminous mixture was designed with 4% of binder and ± 3% of air voids, manufactured for a conventional bitumen B50/70 at 160ºC-145ºC mix-compaction temperatures to guarantee the workability of the mixes. The proportions of rubber proposed are #60-40% for mixtures with 1.5 to 2% of rubber and, #20-80% for mixture with 3% of rubber (as example, a 60% of Ø0.4-2mm and 40% of Ø2-4mm). The temperature of the asphalt cement is between 160-180 ºC for mixing and 145-160 ºC for compaction, according to the optimal values for viscosity using Brookfield viscometer and 'ring and ball' - penetration tests. These crumb rubber particles act as a rubber-aggregate into the mixture, varying sizes between 0.4mm to 2mm in a first fraction, and 2-4mm as second proportion. Ambient ground rubber with a specific gravity of 1.154g/cm³ is used. The rubber is free of loose fabric, wire, and other contaminants. It was found optimal results in real beams and cylindrical specimens with each HMA mixture reducing the swelling effect. Different factors as temperature, particle sizes of rubber, number of cycles and pressures of compaction that affect the interaction process are explained.

Keywords: crumb-rubber, gyratory compactor, rebounding effect, superpave mix-design, swelling, sub-ballast railway

Procedia PDF Downloads 217
163 Bacteriophages for Sustainable Wastewater Treatment: Application in Black Water Decontamination with an Emphasis to DRDO Biotoilet

Authors: Sonika Sharma, Mohan G. Vairale, Sibnarayan Datta, Soumya Chatterjee, Dharmendra Dubey, Rajesh Prasad, Raghvendra Budhauliya, Bidisha Das, Vijay Veer

Abstract:

Bacteriophages are viruses that parasitize specific bacteria and multiply in metabolising host bacteria. Bacteriophages hunt for a single or a subset of bacterial species, making them potential antibacterial agents. Utilizing the ability of phages to control bacterial populations has several applications from medical to the fields of agriculture, aquaculture and the food industry. However, harnessing phage based techniques in wastewater treatments to improve quality of effluent and sludge release into the environment is a potential area for R&D application. Phage mediated bactericidal effect in any wastewater treatment process has many controlling factors that lead to treatment performance. In laboratory conditions, titer of bacteriophages (coliphages) isolated from effluent water of a specially designed anaerobic digester of human night soil (DRDO Biotoilet) was successfully increased with a modified protocol of the classical double layer agar technique. Enrichment of the same was carried out and efficacy of the phage enriched medium was evaluated at different conditions (specific media, temperature, storage conditions). Growth optimization study was carried out on different media like soybean casein digest medium (Tryptone soya medium), Luria-Bertani medium, phage deca broth medium and MNA medium (Modified nutrient medium). Further, temperature-phage yield relationship was also observed at three different temperatures 27˚C, 37˚C and 44˚C at laboratory condition. Results showed the higher activity of coliphage 27˚C and at 37˚C. Further, addition of divalent ions (10mM MgCl2, 5mM CaCl2) and 5% glycerol resulted in a significant increase in phage titer. Besides this, effect of antibiotics addition like ampicillin and kanamycin at different concentration on plaque formation was analysed and reported that ampicillin at a concentration of 1mg/ml ampicillin stimulates phage infection and results in more number of plaques. Experiments to test viability of phage showed that it can remain active for 6 months at 4˚C in fresh tryptone soya broth supplemented with fresh culture of coliforms (early log phase). The application of bacteriophages (especially coliphages) for treatment of effluent of human faecal matter contaminated effluent water is unique. This environment-friendly treatment system not only reduces the pathogenic coliforms, but also decreases the competition between nuisance bacteria and functionally important microbial populations. Therefore, the phage based cocktail to treat fecal pathogenic bacteria present in black water has many implication in wastewater treatment processes including ‘DRDO Biotoilet’, which is an ecofriendly appropriate and affordable human faecal matter treatment technology for different climates and situations.

Keywords: wastewater, microbes, virus, biotoilet, phage viability

Procedia PDF Downloads 403
162 Motherhood Factors Influencing the Business Growth of Women-Owned Sewing Businesses in Lagos, Nigeria: A Mixed Method Study

Authors: Oyedele Ogundana, Amon Simba, Kostas Galanakis, Lynn Oxborrow

Abstract:

The debate about factors influencing the business growth of women-owned businesses has been a topical issue in business management. Currently, scholars have identified the issues of access to money, market, and management as canvasing factors influencing the business growth of women-owned businesses. However, the influence of motherhood (household/family context) on business growth is inconclusive in the literature; despite that women are more family-oriented than their male counterparts. Therefore, this research study considers the influence of motherhood factor (household/family context) on the business growth of women-owned sewing businesses (WOSBs) in Lagos, Nigeria. The sewing business sector is chosen as the fashion industry (which includes sewing businesses) currently accounts for the second largest number of jobs in Sub-Saharan Africa, following agriculture. Thus, sewing businesses provide a rich ground for contributing to existing scholarly work. Research questions; (1) In what way does the motherhood factor influence the business growth of WOSBs in Lagos? (2) To what extent does the motherhood factor influence the business growth of WOSBs in Lagos? For the method design, a pragmatic approach, a mixed-methods technique and an abductive form of reasoning are adopted. The method design is chosen because it fits, better than other research perspectives, with the research questions posed in this study. For instance, using a positivist approach will not sufficiently answer research question 1, neither will an interpretive approach sufficiently answer research question 2. Therefore, the research method design is divided into 2 phases, and the results from one phase are used to inform the development of the subsequent phases (only phase 1 has been completed at the moment). The first phase uses qualitative data and analytical method to answer research question 1. While the second phase of the research uses quantitative data and analytical method to answer research question 2. For the qualitative phase, 5 WOSBs were purposefully selected and interviewed. The sampling technique is selected as it was not the intention of the researcher to make any statistical inferences, at this phase, rather the purpose was just exploratory. Therefore, the 5 sampled women comprised of 2 unmarried women, 1 married woman with no child, and 2 married women with children. A 40-60 minutes interview was conducted per participants. The interviews were audio-recorded and transcribed. Thereafter, the data were analysed using thematic analysis in order to unearth patterns and relationships. Findings for the first phase of this research reveals that motherhood (household/family context) directly influences (positively/negatively) the performance of WOSBs in Lagos. Apart from a direct influence on WOSBs, motherhood also moderates (positively/negatively) other factors–e.g., access to money, management/human resources and market/opportunities– influencing WOSBs in Lagos. To further strengthen this conclusion, a word frequency query result shows that ‘family,’ ‘husband’ and ‘children’ are among the 10 words used frequently in all the interview transcripts. This first phase contributes to existing studies by showing the various forms by which motherhood influences WOSBs. The second phase (which data are yet to be collected) would reveal the extent to which motherhood influence the business growth of WOSBs in Lagos.

Keywords: women-owned sewing businesses, business growth, motherhood, Lagos

Procedia PDF Downloads 141
161 Flexible Ethylene-Propylene Copolymer Nanofibers Decorated with Ag Nanoparticles as Effective 3D Surface-Enhanced Raman Scattering Substrates

Authors: Yi Li, Rui Lu, Lianjun Wang

Abstract:

With the rapid development of chemical industry, the consumption of volatile organic compounds (VOCs) has increased extensively. In the process of VOCs production and application, plenty of them have been transferred to environment. As a result, it has led to pollution problems not only in soil and ground water but also to human beings. Thus, it is important to develop a sensitive and cost-effective analytical method for trace VOCs detection in environment. Surface-enhanced Raman Spectroscopy (SERS), as one of the most sensitive optical analytical technique with rapid response, pinpoint accuracy and noninvasive detection, has been widely used for ultratrace analysis. Based on the plasmon resonance on the nanoscale metallic surface, SERS technology can even detect single molecule due to abundant nanogaps (i.e. 'hot spots') on the nanosubstrate. In this work, a self-supported flexible silver nitrate (AgNO3)/ethylene-propylene copolymer (EPM) hybrid nanofibers was fabricated by electrospinning. After an in-situ chemical reduction using ice-cold sodium borohydride as reduction agent, numerous silver nanoparticles were formed on the nanofiber surface. By adjusting the reduction time and AgNO3 content, the morphology and dimension of silver nanoparticles could be controlled. According to the principles of solid-phase extraction, the hydrophobic substance is more likely to partition into the hydrophobic EPM membrane in an aqueous environment while water and other polar components are excluded from the analytes. By the enrichment of EPM fibers, the number of hydrophobic molecules located on the 'hot spots' generated from criss-crossed nanofibers is greatly increased, which further enhances SERS signal intensity. The as-prepared Ag/EPM hybrid nanofibers were first employed to detect common SERS probe molecule (p-aminothiophenol) with the detection limit down to 10-12 M, which demonstrated an excellent SERS performance. To further study the application of the fabricated substrate for monitoring hydrophobic substance in water, several typical VOCs, such as benzene, toluene and p-xylene, were selected as model compounds. The results showed that the characteristic peaks of these target analytes in the mixed aqueous solution could be distinguished even at a concentration of 10-6 M after multi-peaks gaussian fitting process, including C-H bending (850 cm-1), C-C ring stretching (1581 cm-1, 1600 cm-1) of benzene, C-H bending (844 cm-1 ,1151 cm-1), C-C ring stretching (1001 cm-1), CH3 bending vibration (1377 cm-1) of toluene, C-H bending (829 cm-1), C-C stretching (1614 cm-1) of p-xylene. The SERS substrate has remarkable advantages which combine the enrichment capacity from EPM and the Raman enhancement of Ag nanoparticles. Meanwhile, the huge specific surface area resulted from electrospinning is benificial to increase the number of adsoption sites and promotes 'hot spots' formation. In summary, this work provides powerful potential in rapid, on-site and accurate detection of trace VOCs using a portable Raman.

Keywords: electrospinning, ethylene-propylene copolymer, silver nanoparticles, SERS, VOCs

Procedia PDF Downloads 139
160 Urban Slum Communities Engage in the Fight Against TB in Karnataka, South India

Authors: N. Rambabu, H. Gururaj, Reynold Washington, Oommen George

Abstract:

Motivation: Under the USAID Strengthening Health Outcomes through Private Sector (SHOPS-TB) initiative, Karnataka Health Promotion Trust (KHPT) with technical support of Abt associates is implementing a TB prevention and care model in Karnataka State, South India. KHPT is the interface agency between the public and private sectors, and providers and the target community facilitating early TB case detection and enhancing treatment compliance through private health care providers (pHCP) engagement in RNTCP. The project coverage is 0.84 million urban poor from 663 slums in 12 districts of Karnataka. Problem Statement: India with the highest burden of global TB (26%) and two million cases annually, accounts for approximately one fifth of the global incidence. WHO estimates 300,000 people die from TB annually in India. India expanded the coverage of Directly Observed Treatment, Short-course chemotherapy (DOTS) to the entire country as early as 2006. However, the performance of RNTCP has not been uniform across states. While the national annual new smear-positive (NSP) case notification rate is 53, it is much lower at 47 in Karnataka. A third of TB patients in India reside in urban slums. Approach: Under SHOPS, KHPT actively engages with communities through key opinion leaders and community structures. Interpersonal communication, by Outreach workers through house-to-house visits and at aggregation points, is the primary method used for communication about TB and its management and to increase demand for sputum examination and DOTS. pHCP are mapped, trained and mentored by KHPT. ORWs also provide patient and family counseling on TB treatment, side effects and adherence, screen close contacts of index patients especially children under 6 years of age and screen co-morbidities including HIV, diabetes and malnutrition and risk factors including alcoholism, tobacco use, occupational hazards making appropriate accompanied or documented referrals. A treatment ‘buddy’ system for the patients involving close friends or family members, ICT-based support, DOTS Prerana (inspiration) groups of TB patients, family members and community, DOTS Mitra (friend) helpline services are also used for care and support services. Results: The intervention educated 39988 slum dwellers, referred 1731 chest symptomatics, tested 1061 patients and initiated 248 patients on anti-TB treatment within three months of intervention through continuous community engagement. Conclusions: The intervention’s potential to increase access to preferred health care providers, reduce patient and health system delays in diagnosis and initiation of treatment, improve health seeking behaviour and enhance compliance of pHCPs to standard treatment protocols is being monitored. Initial results are promising.

Keywords: DOTS, KHPT, health outcomes, public and private sector

Procedia PDF Downloads 294
159 University Climate and Psychological Adjustment: African American Women’s Experiences at Predominantly White Institutions in the United States

Authors: Faheemah N. Mustafaa, Tamarie Macon, Tabbye Chavous

Abstract:

A major concern of university leaders worldwide is how to create environments where students from diverse racial/ethnic, national, and cultural backgrounds can thrive. Over the past decade or so in the United States, African American women have done exceedingly well in terms of college enrollment, academic performance, and completion. However, the relative academic successes of African American women in higher education has in some ways overshadowed social challenges many Black women continue to encounter on college campuses in the United States. Within predominantly White institutions (PWIs) in particular, there is consistent evidence that many Black students experience racially hostile climates. However, research studies on racial climates within PWIs have mostly focused on cross-sectional comparisons of minority and majority group experiences, and few studies have examined campus racial climate in relation to short- and longer-term well-being. One longitudinal study reported that African American women’s psychological well-being was positively related to their comfort in cross-racial interactions (a concept closely related to campus climate). Thus, our primary research question was: Do African American women’s perceptions of campus climate (tension and positive association) during their freshman year predict their reports of psychological distress and well-being (self-acceptance) during their sophomore year? Participants were part of a longitudinal survey examining African American college students’ academic identity development, particularly in Science, Technology, Engineering, and Mathematics (STEM) fields. The final subsample included 134 self-identified African American/Black women enrolled in PWIs. Accounting for background characteristics (mother’s education, family income, interracial contact, and prior levels of outcomes), we employed hierarchical regression to examine relationships between campus racial climate during freshman year and psychological adjustment one year later. Both regression models significantly predicted African American women’s psychological outcomes (for distress, F(7,91)= 4.34, p < .001; and for self-acceptance, F(7,90)= 4.92, p < .001). Although none of the controls were significant predictors, perceptions of racial tension on campus were associated with both distress and self-acceptance. More perceptions of tension were related to African American women’s greater psychological distress the following year (B= 0.22, p= .01). Additionally, racial tension predicted later self-acceptance in the expected direction: Higher first-year reports of racial tension were related to less positive attitudes toward the self during the sophomore year (B= -0.16, p= .04). However, perceptions that it was normative for Black and White students to socialize on campus (or positive association scores) were unrelated to psychological distress or self-acceptance. Findings highlight the relevance of examining multiple facets of campus racial climate in relation to psychological adjustment, with possible emphasis on the import of racial tension on African American women’s psychological adjustment. Results suggest that negative dimensions of campus racial climate may have lingering effects on psychological well-being, over and above more positive aspects of climate. Thus, programs targeted toward improving student relations on campus should consider addressing cross-racial tensions.

Keywords: higher education, psychological adjustment, university climate, university students

Procedia PDF Downloads 361
158 Design of Evaluation for Ehealth Intervention: A Participatory Study in Italy, Israel, Spain and Sweden

Authors: Monika Jurkeviciute, Amia Enam, Johanna Torres Bonilla, Henrik Eriksson

Abstract:

Introduction: Many evaluations of eHealth interventions conclude that the evidence for improved clinical outcomes is limited, especially when the intervention is short, such as one year. Often, evaluation design does not address the feasibility of achieving clinical outcomes. Evaluations are designed to reflect upon clinical goals of intervention without utilizing the opportunity to illuminate effects on organizations and cost. A comprehensive design of evaluation can better support decision-making regarding the effectiveness and potential transferability of eHealth. Hence, the purpose of this paper is to present a feasible and comprehensive design of evaluation for eHealth intervention, including the design process in different contexts. Methodology: The situation of limited feasibility of clinical outcomes was foreseen in the European Union funded project called “DECI” (“Digital Environment for Cognitive Inclusion”) that is run under the “Horizon 2020” program with an aim to define and test a digital environment platform within corresponding care models that help elderly people live independently. A complex intervention of eHealth implementation into elaborate care models in four different countries was planned for one year. To design the evaluation, a participative approach was undertaken using Pettigrew’s lens of change and transformations, including context, process, and content. Through a series of workshops, observations, interviews, and document analysis, as well as a review of scientific literature, a comprehensive design of evaluation was created. Findings: The findings indicate that in order to get evidence on clinical outcomes, eHealth interventions should last longer than one year. The content of the comprehensive evaluation design includes a collection of qualitative and quantitative methods for data gathering which illuminates non-medical aspects. Furthermore, it contains communication arrangements to discuss the results and continuously improve the evaluation design, as well as procedures for monitoring and improving the data collection during the intervention. The process of the comprehensive evaluation design consists of four stages: (1) analysis of a current state in different contexts, including measurement systems, expectations and profiles of stakeholders, organizational ambitions to change due to eHealth integration, and the organizational capacity to collect data for evaluation; (2) workshop with project partners to discuss the as-is situation in relation to the project goals; (3) development of general and customized sets of relevant performance measures, questionnaires and interview questions; (4) setting up procedures and monitoring systems for the interventions. Lastly, strategies are presented on how challenges can be handled during the design process of evaluation in four different countries. The evaluation design needs to consider contextual factors such as project limitations, and differences between pilot sites in terms of eHealth solutions, patient groups, care models, national and organizational cultures and settings. This implies a need for the flexible approach to evaluation design to enable judgment over the effectiveness and potential for adoption and transferability of eHealth. In summary, this paper provides learning opportunities for future evaluation designs of eHealth interventions in different national and organizational settings.

Keywords: ehealth, elderly, evaluation, intervention, multi-cultural

Procedia PDF Downloads 293
157 Thinking Lean in ICU: A Time Motion Study Quantifying ICU Nurses’ Multitasking Time Allocation

Authors: Fatma Refaat Ahmed, PhD, RN. Assistant Professor, Department of Nursing, College of Health Sciences, University of Sharjah, UAE. ([email protected]). Sally Mohamed Farghaly, Nursing Administration Department, Faculty of Nursing, Alexandria University, Alexandria, Egypt. ([email protected])

Abstract:

Context: Intensive care unit (ICU) nurses often face pressure and constraints in their work, leading to the rationing of care when demands exceed available time and resources. Observations suggest that ICU nurses are frequently distracted from their core nursing roles by non-core tasks. This study aims to provide evidence on ICU nurses' multitasking activities and explore the association between nurses' personal and clinical characteristics and their time allocation. Research Aim: The aim of this study is to quantify the time spent by ICU nurses on multitasking activities and investigate the relationship between their personal and clinical characteristics and time allocation. Methodology: A self-observation form utilizing the "Diary" recording method was used to record the number of tasks performed by ICU nurses and the time allocated to each task category. Nurses also reported on the distractions encountered during their nursing activities. A convenience sample of 60 ICU nurses participated in the study, with each nurse observed for one nursing shift (6 hours), amounting to a total of 360 hours. The study was conducted in two ICUs within a university teaching hospital in Alexandria, Egypt. Findings: The results showed that ICU nurses completed 2,730 direct patient-related tasks and 1,037 indirect tasks during the 360-hour observation period. Nurses spent an average of 33.65 minutes on ventilator care-related tasks, 14.88 minutes on tube care-related tasks, and 10.77 minutes on inpatient care-related tasks. Additionally, nurses spent an average of 17.70 minutes on indirect care tasks per hour. The study identified correlations between nursing time and nurses' personal and clinical characteristics. Theoretical Importance: This study contributes to the existing research on ICU nurses' multitasking activities and their relationship with personal and clinical characteristics. The findings shed light on the significant time spent by ICU nurses on direct care for mechanically ventilated patients and the distractions that require attention from ICU managers. Data Collection: Data were collected using self-observation forms completed by participating ICU nurses. The forms recorded the number of tasks performed, the time allocated to each task category, and any distractions encountered during nursing activities. Analysis Procedures: The collected data were analyzed to quantify the time spent on different tasks by ICU nurses. Correlations were also examined between nursing time and nurses' personal and clinical characteristics. Question Addressed: This study addressed the question of how ICU nurses allocate their time across multitasking activities and whether there is an association between nurses' personal and clinical characteristics and time allocation. Conclusion: The findings of this study emphasize the need for a lean evaluation of ICU nurses' activities to identify and address potential gaps in patient care and distractions. Implementing lean techniques can improve efficiency, safety, clinical outcomes, and satisfaction for both patients and nurses, ultimately enhancing the quality of care and organizational performance in the ICU setting.

Keywords: motion study, ICU nurse, lean, nursing time, multitasking activities

Procedia PDF Downloads 43
156 Application of Self-Efficacy Theory in Counseling Deaf and Hard of Hearing Students

Authors: Nancy A. Delich, Stephen D. Roberts

Abstract:

This case study explores using self-efficacy theory in counseling deaf and hard of hearing students in one California school district. Self-efficacy is described as the confidence a student has for performing a set of skills required to succeed at a specific task. When students need to learn a skill, self-efficacy can be a major factor in influencing behavioral change. Self-efficacy is domain specific, meaning that students can have high confidence in their abilities to accomplish a task in one domain, while at the same time having low confidence in their abilities to accomplish another task in a different domain. The communication isolation experienced by deaf and hard of hearing children and adolescents can negatively impact their belief about their ability to navigate life challenges. There is a need to address issues that impact deaf and hard of hearing students’ social-emotional development. Failure to address these needs may result in depression, suicidal ideation, and anxiety among other mental health concerns. Self-efficacy training can be used to address these socio-emotional developmental issues with this population. Four sources of experiences are applied during an intervention: (a) enactive mastery experience, (b) vicarious experience, (c) verbal persuasion, and (d) physiological and affective states. This case study describes the use of self-efficacy training with a coed group of 12 deaf and hard of hearing high school students who experienced bullying at school. Beginning with enactive mastery experience, the counselor introduced the topic of bullying to the group. The counselor educated the students about the different types of bullying while teaching them the terminology, signs and their meanings. The most effective way to increase self-efficacy is through extensive practice. To better understand these concepts, the students practiced through role-playing with the goal of developing self-advocacy skills. Vicarious experience is the perception that students have about their capabilities. Viewing other students advocating for themselves, cognitively rehearsing what actions they will and will not take, and teaching each other how to stand up against bullying can strengthen their belief in successfully overcoming bullying. The third source of self-efficacy beliefs is verbal persuasion. It occurs when others express belief in the capabilities of the student. Didactic training and pedagogic materials on bullying were employed as part of the group counseling sessions. The fourth source of self-efficacy appraisals is physiological and affective states. Students expect positive emotions to be associated with successful skilled performance. When students practice new skills, the counselor can apply several strategies to enhance self-efficacy while reducing and controlling emotional and physical states. The intervention plan incorporated all four sources of self-efficacy training during several interactive group sessions regarding bullying. There was an increased understanding around the issues of bullying, resulting in the students’ belief of their ability to perform protective behaviors and deter future occurrences. The outcome of the intervention plan resulted in a reduction of reported bullying incidents. In conclusion, self-efficacy training can be an effective counseling and teaching strategy in addressing and enhancing the social-emotional functioning with deaf and hard of hearing adolescents.

Keywords: counseling, self-efficacy, bullying, social-emotional development, mental health, deaf and hard of hearing students

Procedia PDF Downloads 327
155 Learning-Teaching Experience about the Design of Care Applications for Nursing Professionals

Authors: A. Gonzalez Aguna, J. M. Santamaria Garcia, J. L. Gomez Gonzalez, R. Barchino Plata, M. Fernandez Batalla, S. Herrero Jaen

Abstract:

Background: Computer Science is a field that transcends other disciplines of knowledge because it allows to support all kinds of physical and mental tasks. Health centres have a greater number and complexity of technological devices and the population consume and demand services derived from technology. Also, nursing education plans have included competencies related to and, even, courses about new technologies are offered to health professionals. However, nurses still limit their performance to the use and evaluation of products previously built. Objective: Develop a teaching-learning methodology for acquiring skills on designing applications for care. Methodology: Blended learning teaching with a group of graduate nurses through official training within a Master's Degree. The study sample was selected by intentional sampling without exclusion criteria. The study covers from 2015 to 2017. The teaching sessions included a four-hour face-to-face class and between one and three tutorials. The assessment was carried out by written test consisting of the preparation of an IEEE 830 Standard Specification document where the subject chosen by the student had to be a problem in the area of care. Results: The sample is made up of 30 students: 10 men and 20 women. Nine students had a degree in nursing, 20 diploma in nursing and one had a degree in Computer Engineering. Two students had a degree in nursing specialty through residence and two in equivalent recognition by exceptional way. Except for the engineer, no subject had previously received training in this regard. All the sample enrolled in the course received the classroom teaching session, had access to the teaching material through a virtual area and maintained at least one tutoring. The maximum of tutorials were three with an hour in total. Among the material available for consultation was an example of a document drawn up based on the IEEE Standard with an issue not related to care. The test to measure competence was completed by the whole group and evaluated by a multidisciplinary teaching team of two computer engineers and two nurses. Engineers evaluated the correctness of the characteristics of the document and the degree of comprehension in the elaboration of the problem and solution elaborated nurses assessed the relevance of the chosen problem statement, the foundation, originality and correctness of the proposed solution and the validity of the application for clinical practice in care. The results were of an average grade of 8.1 over 10 points, a range between 6 and 10. The selected topic barely coincided among the students. Examples of care areas selected are care plans, family and community health, delivery care, administration and even robotics for care. Conclusion: The applied methodology of learning-teaching for the design of technologies demonstrates the success in the training of nursing professionals. The role of expert is essential to create applications that satisfy the needs of end users. Nursing has the possibility, the competence and the duty to participate in the process of construction of technological tools that are going to impact in care of people, family and community.

Keywords: care, learning, nursing, technology

Procedia PDF Downloads 109
154 Online Faculty Professional Development: An Approach to the Design Process

Authors: Marie Bountrogianni, Leonora Zefi, Krystle Phirangee, Naza Djafarova

Abstract:

Faculty development is critical for any institution as it impacts students’ learning experiences and faculty performance with regards to course delivery. With that in mind, The Chang School at Ryerson University embarked on an initiative to develop a comprehensive, relevant faculty development program for online faculty and instructors. Teaching Adult Learners Online (TALO) is a professional development program designed to build capacity among online teaching faculty to enhance communication/facilitation skills for online instruction and establish a Community of Practice to allow for opportunities for online faculty to network and exchange ideas and experiences. TALO is comprised of four online modules and each module provides three hours of learning materials. The topics focus on online teaching and learning experience, principles and practices, opportunities and challenges in online assessments as well as course design and development. TALO offers a unique experience for online instructors who are placed in the role of a student and an instructor through interactivities involving discussions, hands-on assignments, peer mentoring while experimenting with technological tools available for their online teaching. Through exchanges and informal peer mentoring, a small interdisciplinary community of practice has started to take shape. Successful participants have to meet four requirements for completion: i) participate actively in online discussions and activities, ii) develop a communication plan for the course they are teaching, iii) design one learning activity/or media component, iv) design one online learning module. This study adopted a mixed methods exploratory sequential design. For the qualitative phase of this study, a thorough literature review was conducted on what constitutes effective faculty development programs. Based on that review, the design team identified desired competencies for online teaching/facilitation and course design. Once the competencies were identified, a focus group interview with The Chang School teaching community was conducted as a needs assessment and to validate the competencies. In the quantitative phase, questionnaires were distributed to instructors and faculty after the program was launched to continue ongoing evaluation and revisions, in hopes of further improving the program to meet the teaching community’s needs. Four faculty members participated in a one-hour focus group interview. Major findings from the focus group interview revealed that for the training program, faculty wanted i) to better engage students online, ii) to enhance their online teaching with specific strategies, iii) to explore different ways to assess students online. 91 faculty members completed the questionnaire in which findings indicated that: i) the majority of faculty stated that they gained the necessary skills to demonstrate instructor presence through communication and use of technological tools provided, ii) increased faculty confidence with course management strategies, iii) learning from peers is most effective – the Community of Practice is strengthened and valued even more as program alumni become facilitators. Although this professional development program is not mandatory for online instructors, since its launch in Fall 2014, over 152 online instructors have successfully completed the program. A Community of Practice emerged as a result of the program and participants continue to exchange thoughts and ideas about online teaching and learning.

Keywords: community of practice, customized, faculty development, inclusive design

Procedia PDF Downloads 148
153 Planning Fore Stress II: Study on Resiliency of New Architectural Patterns in Urban Scale

Authors: Amir Shouri, Fereshteh Tabe

Abstract:

Master planning and urban infrastructure’s thoughtful and sequential design strategies will play the major role in reducing the damages of natural disasters, war and or social/population related conflicts for cities. Defensive strategies have been revised during the history of mankind after having damages from natural depressions, war experiences and terrorist attacks on cities. Lessons learnt from Earthquakes, from 2 world war casualties in 20th century and terrorist activities of all times. Particularly, after Hurricane Sandy of New York in 2012 and September 11th attack on New York’s World Trade Centre (WTC) in 21st century, there have been series of serious collaborations between law making authorities, urban planners and architects and defence related organizations to firstly, getting prepared and/or prevent such activities and secondly, reduce the human loss and economic damages to minimum. This study will work on developing a model of planning for New York City, where its citizens will get minimum impacts in threat-full time with minimum economic damages to the city after the stress is passed. The main discussion in this proposal will focus on pre-hazard, hazard-time and post-hazard transformative policies and strategies that will reduce the “Life casualties” and will ease “Economic Recovery” in post-hazard conditions. This proposal is going to scrutinize that one of the key solutions in this path might be focusing on all overlaying possibilities on architectural platforms of three fundamental infrastructures, the transportation, the power related sources and defensive abilities on a dynamic-transformative framework that will provide maximum safety, high level of flexibility and fastest action-reaction opportunities in stressful periods of time. “Planning Fore Stress” is going to be done in an analytical, qualitative and quantitative work frame, where it will study cases from all over the world. Technology, Organic Design, Materiality, Urban forms, city politics and sustainability will be discussed in deferent cases in international scale. From the modern strategies of Copenhagen for living friendly with nature to traditional approaches of Indonesian old urban planning patterns, the “Iron Dome” of Israel to “Tunnels” in Gaza, from “Ultra-high-performance quartz-infused concrete” of Iran to peaceful and nature-friendly strategies of Switzerland, from “Urban Geopolitics” in cities, war and terrorism to “Design of Sustainable Cities” in the world, will all be studied with references and detailed look to analysis of each case in order to propose the most resourceful, practical and realistic solutions to questions on “New City Divisions”, “New City Planning and social activities” and “New Strategic Architecture for Safe Cities”. This study is a developed version of a proposal that was announced as winner at MoMA in 2013 in call for ideas for Rockaway after Sandy Hurricane took place.

Keywords: urban scale, city safety, natural disaster, war and terrorism, city divisions, architecture for safe cities

Procedia PDF Downloads 457
152 Assessment of Efficiency of Underwater Undulatory Swimming Strategies Using a Two-Dimensional CFD Method

Authors: Dorian Audot, Isobel Margaret Thompson, Dominic Hudson, Joseph Banks, Martin Warner

Abstract:

In competitive swimming, after dives and turns, athletes perform underwater undulatory swimming (UUS), copying marine mammals’ method of locomotion. The body, performing this wave-like motion, accelerates the fluid downstream in its vicinity, generating propulsion with minimal resistance. Through this technique, swimmers can maintain greater speeds than surface swimming and take advantage of the overspeed granted by the dive (or push-off). Almost all previous work has considered UUS when performed at maximum effort. Critical parameters to maximize UUS speed are frequently discussed; however, this does not apply to most races. In only 3 out of the 16 individual competitive swimming events are athletes likely to attempt to perform UUS with the greatest speed, without thinking of the cost of locomotion. In the other cases, athletes will want to control the speed of their underwater swimming, attempting to maximise speed whilst considering energy expenditure appropriate to the duration of the event. Hence, there is a need to understand how swimmers adapt their underwater strategies to optimize the speed within the allocated energetic cost. This paper develops a consistent methodology that enables different sets of UUS kinematics to be investigated. These may have different propulsive efficiencies and force generation mechanisms (e.g.: force distribution along with the body and force magnitude). The developed methodology, therefore, needs to: (i) provide an understanding of the UUS propulsive mechanisms at different speeds, (ii) investigate the key performance parameters when UUS is not performed solely for maximizing speed; (iii) consistently determine the propulsive efficiency of a UUS technique. The methodology is separated into two distinct parts: kinematic data acquisition and computational fluid dynamics (CFD) analysis. For the kinematic acquisition, the position of several joints along the body and their sequencing were either obtained by video digitization or by underwater motion capture (Qualisys system). During data acquisition, the swimmers were asked to perform UUS at a constant depth in a prone position (facing the bottom of the pool) at different speeds: maximum effort, 100m pace, 200m pace and 400m pace. The kinematic data were input to a CFD algorithm employing a two-dimensional Large Eddy Simulation (LES). The algorithm adopted was specifically developed in order to perform quick unsteady simulations of deforming bodies and is therefore suitable for swimmers performing UUS. Despite its approximations, the algorithm is applied such that simulations are performed with the inflow velocity updated at every time step. It also enables calculations of the resistive forces (total and applied to each segment) and the power input of the modeled swimmer. Validation of the methodology is achieved by comparing the data obtained from the computations with the original data (e.g.: sustained swimming speed). This method is applied to the different kinematic datasets and provides data on swimmers’ natural responses to pacing instructions. The results show how kinematics affect force generation mechanisms and hence how the propulsive efficiency of UUS varies for different race strategies.

Keywords: CFD, efficiency, human swimming, hydrodynamics, underwater undulatory swimming

Procedia PDF Downloads 189
151 Balloon Analogue Risk Task (BART) Performance Indicators Help Predict Outcomes of Matched Savings Program

Authors: Carlos M. Parra, Matthew Sutherland, Ranjita Poudel

Abstract:

Reduced mental-bandwidth related to low socioeconomic status (low-SES) might lead to impulsivity and risk-taking behavior, which poses as a major hurdle towards asset building (savings) behavior. Understanding the relationship between risk-related personality metrics as well as laboratory risk behavior and real-life savings behavior can help facilitate the development of effective asset building programs, which are vital for mitigating financial vulnerability and income inequality. As such, this study explored the relationship between personality metrics, laboratory behavior in a risky decision-making task and real-life asset building (savings) behaviors among individuals with low-SES from Miami, Florida (FL). Study participants (12 male, 15 female) included racially and ethnically diverse adults (mean age 41.22 ± 12.65 years), with incomplete higher education (18% had High School Diploma, 30% Associates, and 52% Some College), and low annual income (mean $13,872 ± $8020.43). Participants completed eight self-report surveys and played a widely used risky decision-making paradigm called the Balloon Analogue Risk Task (BART). Specifically, participants played three runs of BART (20 trials in each run; total 60 trials). In addition, asset building behavior data was collected for 24 participants who opened and used savings accounts and completed a 6-month savings program that involved monthly matches, and a final reward for completing the savings program without any interim withdrawals. Each participant’s total savings at the end of this program was the main asset building indicator considered. In addition, a new effective use of average pump bet (EUAPB) indicator was developed to characterize each participant’s ability to place winning bets. This indicator takes the ratio of each participant’s total BART earnings to average pump bet (APB) in all 60 trials. Our findings indicated that EUAPB explained more than a third of the variation in total savings among participants. Moreover, participants who managed to obtain BART earnings of at least 30 cents out of their APB, also tended to exhibit better asset building (savings) behavior. In particular, using this criterion to separate participants into high and low EUAPB groups, the nine participants with high EUAPB (mean BART earnings of 35.64 cents per APB) ended up with higher mean total savings ($255.11), while the 15 participants with low EUAPB (mean BART earnings of 22.50 cents per APB) obtained lower mean total savings ($40.01). All mean differences are statistically significant (2-tailed p  .0001) indicating that the relation between higher EUAPB and higher total savings is robust. Overall, these findings can help refine asset building interventions implemented by policy makers and practitioners interested in reducing financial vulnerability among low-SES population. Specifically, by helping identify individuals who are likely to readily take advantage of savings opportunities (such as matched savings programs) and avoiding the stipulation of unnecessary and expensive financial coaching programs to these individuals. This study was funded by J.P. Morgan Chase (JPMC) and carried out by scientists from Florida International University (FIU) in partnership with Catalyst Miami.

Keywords: balloon analogue risk task (BART), matched savings programs, asset building capability, low-SES participants

Procedia PDF Downloads 120
150 The Association between Gene Polymorphisms of GPX, SEPP1, and SEP15, Plasma Selenium Levels, Urinary Total Arsenic Concentrations, and Prostate Cancer

Authors: Yu-Mei Hsueh, Wei-Jen Chen, Yung-Kai Huang, Cheng-Shiuan Tsai, Kuo-Cheng Yeh

Abstract:

Prostate cancer occurs in men over the age of 50, and rank sixth of the top ten cancers in Taiwan, and the incidence increased gradually over the past decade in Taiwan. Arsenic is confirmed as a carcinogen by International Agency for Research on (IARC). Arsenic induces oxidative stress may be a risk factor for prostate cancer, but the mechanism is not clear. Selenium is an important antioxidant element. Whether the association between plasma selenium levels and risk of prostate cancer are modified by different genotype of selenoprotein is still unknown. Glutathione peroxidase, selenoprotein P (SEPP1) and 15 kDa selenoprotein (SEP 15) are selenoprotein and regulates selenium transport and the oxidation and reduction reaction. However, the association between gene polymorphisms of selenoprotein and prostate cancer is not yet clear. The aim of this study is to determine the relationship between plasma selenium, polymorphism of selenoprotein, urinary total arsenic concentration and prostate cancer. This study is a hospital-based case-control study. Three hundred twenty-two cases of prostate cancer and age (±5 years) 1:1 matched 322 control group were recruited from National Taiwan University Hospital, Taipei Medical University Hospital, and Wan Fang Hospital. Well-trained personnel carried out standardized personal interviews based on a structured questionnaire. Information collected included demographic and socioeconomic characteristics, lifestyle and disease history. Blood and urine samples were also collected at the same time. The Research Ethics Committee of National Taiwan University Hospital, Taipei, Taiwan, approved the study. All patients provided informed consent forms before sample and data collection. Buffy coat was to extract DNA, and the polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) was used to measure the genotypes of SEPP1 rs3797310, SEP15 rs5859, GPX1 rs1050450, GPX2 rs4902346, GPX3 rs4958872, and GPX4 rs2075710. Plasma concentrations of selenium were determined by inductively coupled plasma mass spectrometry (ICP-MS).Urinary arsenic species concentrations were measured by high-performance liquid chromatography links hydride generator and atomic absorption spectrometer (HPLC-HG-AAS). Subject with high education level compared to those with low educational level had a lower prostate cancer odds ratio (OR) Mainland Chinese and aboriginal people had a lower OR of prostate cancer compared to Fukien Taiwanese. After adjustment for age, educational level, subjects with GPX1 rs1050450 CT and TT genotype compared to the CC genotype have lower, OR of prostate cancer, the OR and 95% confidence interval (Cl) was 0.53 (0.31-0.90). SEPP1 rs3797310 CT+TT genotype compared to those with CC genotype had a marginally significantly lower OR of PC. The low levels of plasma selenium and the high urinary total arsenic concentrations had the high OR of prostate cancer in a significant dose-response manner, and SEPP1 rs3797310 genotype modified this joint association.

Keywords: prostate cancer, plasma selenium concentration, urinary total arsenic concentrations, glutathione peroxidase, selenoprotein P, selenoprotein 15, gene polymorphism

Procedia PDF Downloads 250
149 Modelling of Reactive Methodologies in Auto-Scaling Time-Sensitive Services With a MAPE-K Architecture

Authors: Óscar Muñoz Garrigós, José Manuel Bernabeu Aubán

Abstract:

Time-sensitive services are the base of the cloud services industry. Keeping low service saturation is essential for controlling response time. All auto-scalable services make use of reactive auto-scaling. However, reactive auto-scaling has few in-depth studies. This presentation shows a model for reactive auto-scaling methodologies with a MAPE-k architecture. Queuing theory can compute different properties of static services but lacks some parameters related to the transition between models. Our model uses queuing theory parameters to relate the transition between models. It associates MAPE-k related times, the sampling frequency, the cooldown period, the number of requests that an instance can handle per unit of time, the number of incoming requests at a time instant, and a function that describes the acceleration in the service's ability to handle more requests. This model is later used as a solution to horizontally auto-scale time-sensitive services composed of microservices, reevaluating the model’s parameters periodically to allocate resources. The solution requires limiting the acceleration of the growth in the number of incoming requests to keep a constrained response time. Business benefits determine such limits. The solution can add a dynamic number of instances and remains valid under different system sizes. The study includes performance recommendations to improve results according to the incoming load shape and business benefits. The exposed methodology is tested in a simulation. The simulator contains a load generator and a service composed of two microservices, where the frontend microservice depends on a backend microservice with a 1:1 request relation ratio. A common request takes 2.3 seconds to be computed by the service and is discarded if it takes more than 7 seconds. Both microservices contain a load balancer that assigns requests to the less loaded instance and preemptively discards requests if they are not finished in time to prevent resource saturation. When load decreases, instances with lower load are kept in the backlog where no more requests are assigned. If the load grows and an instance in the backlog is required, it returns to the running state, but if it finishes the computation of all requests and is no longer required, it is permanently deallocated. A few load patterns are required to represent the worst-case scenario for reactive systems: the following scenarios test response times, resource consumption and business costs. The first scenario is a burst-load scenario. All methodologies will discard requests if the rapidness of the burst is high enough. This scenario focuses on the number of discarded requests and the variance of the response time. The second scenario contains sudden load drops followed by bursts to observe how the methodology behaves when releasing resources that are lately required. The third scenario contains diverse growth accelerations in the number of incoming requests to observe how approaches that add a different number of instances can handle the load with less business cost. The exposed methodology is compared against a multiple threshold CPU methodology allocating/deallocating 10 or 20 instances, outperforming the competitor in all studied metrics.

Keywords: reactive auto-scaling, auto-scaling, microservices, cloud computing

Procedia PDF Downloads 68
148 The Governance of Net-Zero Emission Urban Bus Transitions in the United Kingdom: Insight from a Transition Visioning Stakeholder Workshop

Authors: Iraklis Argyriou

Abstract:

The transition to net-zero emission urban bus (ZEB) systems is receiving increased attention in research and policymaking throughout the globe. Most studies in this area tend to address techno-economic aspects and the perspectives of a narrow group of stakeholders, while they largely overlook analysis of current bus system dynamics. This offers limited insight into the types of ZEB governance challenges and opportunities that are encountered in real-world contexts, as well as into some of the immediate actions that need to be taken to set off the transition over the longer term. This research offers a multi-stakeholder perspective into both the technical and non-technical factors that influence ZEB transitions within a particular context, the UK. It does so by drawing from a recent transition visioning stakeholder workshop (June 2023) with key public, private and civic actors of the urban bus transportation system. Using NVivo software to qualitatively analyze the workshop discussions, the research examines the key technological and funding aspects, as well as the short-term actions (over the next five years), that need to be addressed for supporting the ZEB transition in UK cities. It finds that ZEB technology has reached a mature stage (i.e., high efficiency of batteries, motors and inverters), but important improvements can be pursued through greater control and integration of ZEB technological components and systems. In this regard, telemetry, predictive maintenance and adaptive control strategies pertinent to the performance and operation of ZEB vehicles have a key role to play in the techno-economic advancement of the transition. Yet, more pressing gaps were identified in the current ZEB funding regime. Whereas the UK central government supports greater ZEB adoption through a series of grants and subsidies, the scale of the funding and its fragmented nature do not match the needs for a UK-wide transition. Funding devolution arrangements (i.e., stable funding settlement deals between the central government and the devolved administrations/local authorities), as well as locally-driven schemes (i.e., congestion charging/workplace parking levy), could then enhance the financial prospects of the transition. As for short-term action, three areas were identified as critical: (1) the creation of whole value chains around the supply, use and recycling of ZEB components; (2) the ZEB retrofitting of existing fleets; and (3) integrated transportation that prioritizes buses as a first-choice, convenient and reliable mode while it simultaneously reduces car dependency in urban areas. Taken together, the findings point to the need for place-based transition approaches that create a viable techno-economic ecosystem for ZEB development but at the same time adopt a broader governance perspective beyond a ‘net-zero’ and ‘bus sectoral’ focus. As such, multi-actor collaborations and the coordination of wider resources and agency, both vertically across institutional scales and horizontally across transport, energy and urban planning, become fundamental features of comprehensive ZEB responses. The lessons from the UK case can inform a broader body of empirical contextual knowledge of ZEB transition governance within domestic political economies of public transportation.

Keywords: net-zero emission transition, stakeholders, transition governance, UK, urban bus transportation

Procedia PDF Downloads 52
147 Design, Fabrication and Analysis of Molded and Direct 3D-Printed Soft Pneumatic Actuators

Authors: N. Naz, A. D. Domenico, M. N. Huda

Abstract:

Soft Robotics is a rapidly growing multidisciplinary field where robots are fabricated using highly deformable materials motivated by bioinspired designs. The high dexterity and adaptability to the external environments during contact make soft robots ideal for applications such as gripping delicate objects, locomotion, and biomedical devices. The actuation system of soft robots mainly includes fluidic, tendon-driven, and smart material actuation. Among them, Soft Pneumatic Actuator, also known as SPA, remains the most popular choice due to its flexibility, safety, easy implementation, and cost-effectiveness. However, at present, most of the fabrication of SPA is still based on traditional molding and casting techniques where the mold is 3d printed into which silicone rubber is cast and consolidated. This conventional method is time-consuming and involves intensive manual labour with the limitation of repeatability and accuracy in design. Recent advancements in direct 3d printing of different soft materials can significantly reduce the repetitive manual task with an ability to fabricate complex geometries and multicomponent designs in a single manufacturing step. The aim of this research work is to design and analyse the Soft Pneumatic Actuator (SPA) utilizing both conventional casting and modern direct 3d printing technologies. The mold of the SPA for traditional casting is 3d printed using fused deposition modeling (FDM) with the polylactic acid (PLA) thermoplastic wire. Hyperelastic soft materials such as Ecoflex-0030/0050 are cast into the mold and consolidated using a lab oven. The bending behaviour is observed experimentally with different pressures of air compressor to ensure uniform bending without any failure. For direct 3D-printing of SPA fused deposition modeling (FDM) with thermoplastic polyurethane (TPU) and stereolithography (SLA) with an elastic resin are used. The actuator is modeled using the finite element method (FEM) to analyse the nonlinear bending behaviour, stress concentration and strain distribution of different hyperelastic materials after pressurization. FEM analysis is carried out using Ansys Workbench software with a Yeon-2nd order hyperelastic material model. FEM includes long-shape deformation, contact between surfaces, and gravity influences. For mesh generation, quadratic tetrahedron, hybrid, and constant pressure mesh are used. SPA is connected to a baseplate that is in connection with the air compressor. A fixed boundary is applied on the baseplate, and static pressure is applied orthogonally to all surfaces of the internal chambers and channels with a closed continuum model. The simulated results from FEM are compared with the experimental results. The experiments are performed in a laboratory set-up where the developed SPA is connected to a compressed air source with a pressure gauge. A comparison study based on performance analysis is done between FDM and SLA printed SPA with the molded counterparts. Furthermore, the molded and 3d printed SPA has been used to develop a three-finger soft pneumatic gripper and has been tested for handling delicate objects.

Keywords: finite element method, fused deposition modeling, hyperelastic, soft pneumatic actuator

Procedia PDF Downloads 60
146 Genomic and Proteomic Variability in Glycine Max Genotypes in Response to Salt Stress

Authors: Faheema Khan

Abstract:

To investigate the ability of sensitive and tolerant genotype of Glycine max to adapt to a saline environment in a field, we examined the growth performance, water relation and activities of antioxidant enzymes in relation to photosynthetic rate, chlorophyll a fluorescence, photosynthetic pigment concentration, protein and proline in plants exposed to salt stress. Ten soybean genotypes (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712) were selected and grown hydroponically. After 3 days of proper germination, the seedlings were transferred to Hoagland’s solution (Hoagland and Arnon 1950). The growth chamber was maintained at a photosynthetic photon flux density of 430 μmol m−2 s−1, 14 h of light, 10 h of dark and a relative humidity of 60%. The nutrient solution was bubbled with sterile air and changed on alternate days. Ten-day-old seedlings were given seven levels of salt in the form of NaCl viz., T1 = 0 mM NaCl, T2=25 mM NaCl, T3=50 mM NaCl, T4=75 mM NaCl, T5=100 mM NaCl, T6=125 mM NaCl, T7=150 mM NaCl. The investigation showed that genotype Pusa-24, PK-416 and Pusa-20 appeared to be the most salt-sensitive. genotypes as inferred from their significantly reduced length, fresh weight and dry weight in response to the NaCl exposure. Pusa-37 appeared to be the most tolerant genotype since no significant effect of NaCl treatment on growth was found. We observed a greater decline in the photosynthetic variables like photosynthetic rate, chlorophyll fluorescence and chlorophyll content, in salt-sensitive (Pusa-24) genotype than in salt-tolerant Pusa-37 under high salinity. Numerous primers were verified on ten soybean genotypes obtained from Operon technologies among which 30 RAPD primers shown high polymorphism and genetic variation. The Jaccard’s similarity coefficient values for each pairwise comparison between cultivars were calculated and similarity coefficient matrix was constructed. The closer varieties in the cluster behaved similar in their response to salinity tolerance. Intra-clustering within the two clusters precisely grouped the 10 genotypes in sub-cluster as expected from their physiological findings.Salt tolerant genotype Pusa-37, was further analysed by 2-Dimensional gel electrophoresis to analyse the differential expression of proteins at high salt stress. In the Present study, 173 protein spots were identified. Of these, 40 proteins responsive to salinity were either up- or down-regulated in Pusa-37. Proteomic analysis in salt-tolerant genotype (Pusa-37) led to the detection of proteins involved in a variety of biological processes, such as protein synthesis (12 %), redox regulation (19 %), primary and secondary metabolism (25 %), or disease- and defence-related processes (32 %). In conclusion, the soybean plants in our study responded to salt stress by changing their protein expression pattern. The photosynthetic, biochemical and molecular study showed that there is variability in salt tolerance behaviour in soybean genotypes. Pusa-24 is the salt-sensitive and Pusa-37 is the salt-tolerant genotype. Moreover this study gives new insights into the salt-stress response in soybean and demonstrates the power of genomic and proteomic approach in plant biology studies which finally could help us in identifying the possible regulatory switches (gene/s) controlling the salt tolerant genotype of the crop plants and their possible role in defence mechanism.

Keywords: glycine max, salt stress, RAPD, genomic and proteomic variability

Procedia PDF Downloads 393
145 A High-Throughput Enzyme Screening Method Using Broadband Coherent Anti-stokes Raman Spectroscopy

Authors: Ruolan Zhang, Ryo Imai, Naoko Senda, Tomoyuki Sakai

Abstract:

Enzymes have attracted increasing attentions in industrial manufacturing for their applicability in catalyzing complex chemical reactions under mild conditions. Directed evolution has become a powerful approach to optimize enzymes and exploit their full potentials under the circumstance of insufficient structure-function knowledge. With the incorporation of cell-free synthetic biotechnology, rapid enzyme synthesis can be realized because no cloning procedure such as transfection is needed. Its open environment also enables direct enzyme measurement. These properties of cell-free biotechnology lead to excellent throughput of enzymes generation. However, the capabilities of current screening methods have limitations. Fluorescence-based assay needs applicable fluorescent label, and the reliability of acquired enzymatic activity is influenced by fluorescent label’s binding affinity and photostability. To acquire the natural activity of an enzyme, another method is to combine pre-screening step and high-performance liquid chromatography (HPLC) measurement. But its throughput is limited by necessary time investment. Hundreds of variants are selected from libraries, and their enzymatic activities are then identified one by one by HPLC. The turn-around-time is 30 minutes for one sample by HPLC, which limits the acquirable enzyme improvement within reasonable time. To achieve the real high-throughput enzyme screening, i.e., obtain reliable enzyme improvement within reasonable time, a widely applicable high-throughput measurement of enzymatic reactions is highly demanded. Here, a high-throughput screening method using broadband coherent anti-Stokes Raman spectroscopy (CARS) was proposed. CARS is one of coherent Raman spectroscopy, which can identify label-free chemical components specifically from their inherent molecular vibration. These characteristic vibrational signals are generated from different vibrational modes of chemical bonds. With the broadband CARS, chemicals in one sample can be identified from their signals in one broadband CARS spectrum. Moreover, it can magnify the signal levels to several orders of magnitude greater than spontaneous Raman systems, and therefore has the potential to evaluate chemical's concentration rapidly. As a demonstration of screening with CARS, alcohol dehydrogenase, which converts ethanol and nicotinamide adenine dinucleotide oxidized form (NAD+) to acetaldehyde and nicotinamide adenine dinucleotide reduced form (NADH), was used. The signal of NADH at 1660 cm⁻¹, which is generated from nicotinamide in NADH, was utilized to measure the concentration of it. The evaluation time for CARS signal of NADH was determined to be as short as 0.33 seconds while having a system sensitivity of 2.5 mM. The time course of alcohol dehydrogenase reaction was successfully measured from increasing signal intensity of NADH. This measurement result of CARS was consistent with the result of a conventional method, UV-Vis. CARS is expected to have application in high-throughput enzyme screening and realize more reliable enzyme improvement within reasonable time.

Keywords: Coherent Anti-Stokes Raman Spectroscopy, CARS, directed evolution, enzyme screening, Raman spectroscopy

Procedia PDF Downloads 103
144 Improved Morphology in Sequential Deposition of the Inverted Type Planar Heterojunction Solar Cells Using Cheap Additive (DI-H₂O)

Authors: Asmat Nawaz, Ceylan Zafer, Ali K. Erdinc, Kaiying Wang, M. Nadeem Akram

Abstract:

Hybrid halide Perovskites with the general formula ABX₃, where X = Cl, Br or I, are considered as an ideal candidates for the preparation of photovoltaic devices. The most commonly and successfully used hybrid halide perovskite for photovoltaic applications is CH₃NH₃PbI₃ and its analogue prepared from lead chloride, commonly symbolized as CH₃NH₃PbI₃_ₓClₓ. Some researcher groups are using lead free (Sn replaces Pb) and mixed halide perovskites for the fabrication of the devices. Both mesoporous and planar structures have been developed. By Comparing mesoporous structure in which the perovskite materials infiltrate into mesoporous metal oxide scaffold, the planar architecture is much simpler and easy for device fabrication. In a typical perovskite solar cell, a perovskite absorber layer is sandwiched between the hole and electron transport. Upon the irradiation, carriers are created in the absorber layer that can travel through hole and electron transport layers and the interface in between. We fabricated inverted planar heterojunction structure ITO/PEDOT/ Perovskite/PCBM/Al, based solar cell via two-step spin coating method. This is also called Sequential deposition method. A small amount of cheap additive H₂O was added into PbI₂/DMF to make a homogeneous solution. We prepared four different solution such as (W/O H₂O, 1% H₂O, 2% H₂O, 3% H₂O). After preparing, the whole night stirring at 60℃ is essential for the homogenous precursor solutions. We observed that the solution with 1% H₂O was much more homogenous at room temperature as compared to others. The solution with 3% H₂O was precipitated at once at room temperature. The four different films of PbI₂ were formed on PEDOT substrates by spin coating and after that immediately (before drying the PbI₂) the substrates were immersed in the methyl ammonium iodide solution (prepared in isopropanol) for the completion of the desired perovskite film. After getting desired films, rinse the substrates with isopropanol to remove the excess amount of methyl ammonium iodide and finally dried it on hot plate only for 1-2 minutes. In this study, we added H₂O in the PbI₂/DMF precursor solution. The concept of additive is widely used in the bulk- heterojunction solar cells to manipulate the surface morphology, leading to the enhancement of the photovoltaic performance. There are two most important parameters for the selection of additives. (a) Higher boiling point w.r.t host material (b) good interaction with the precursor materials. We observed that the morphology of the films was improved and we achieved a denser, uniform with less cavities and almost full surface coverage films but only using precursor solution having 1% H₂O. Therefore, we fabricated the complete perovskite solar cell by sequential deposition technique with precursor solution having 1% H₂O. We concluded that with the addition of additives in the precursor solutions one can easily be manipulate the morphology of the perovskite film. In the sequential deposition method, thickness of perovskite film is in µm and the charge diffusion length of PbI₂ is in nm. Therefore, by controlling the thickness using other deposition methods for the fabrication of solar cells, we can achieve the better efficiency.

Keywords: methylammonium lead iodide, perovskite solar cell, precursor composition, sequential deposition

Procedia PDF Downloads 217
143 A Hardware-in-the-loop Simulation for the Development of Advanced Control System Design for a Spinal Joint Wear Simulator

Authors: Kaushikk Iyer, Richard M Hall, David Keeling

Abstract:

Hardware-in-the-loop (HIL) simulation is an advanced technique for developing and testing complex real-time control systems. This paper presents the benefits of HIL simulation and how it can be implemented and used effectively to develop, test, and validate advanced control algorithms used in a spinal joint Wear simulator for the Tribological testing of spinal disc prostheses. spinal wear simulator is technologically the most advanced machine currently employed For the in-vitro testing of newly developed spinal Discimplants. However, the existing control techniques, such as a simple position control Does not allow the simulator to test non-sinusoidal waveforms. Thus, there is a need for better and advanced control methods that can be developed and tested Rigorouslybut safely before deploying it into the real simulator. A benchtop HILsetupis was created for experimentation, controller verification, and validation purposes, allowing different control strategies to be tested rapidly in a safe environment. The HIL simulation aspect in this setup attempts to replicate similar spinal motion and loading conditions. The spinal joint wear simulator containsa four-Barlinkpowered by electromechanical actuators. LabVIEW software is used to design a kinematic model of the spinal wear Simulator to Validatehow each link contributes towards the final motion of the implant under test. As a result, the implant articulates with an angular motion specified in the international standards, ISO-18192-1, that define fixed, simplified, and sinusoid motion and load profiles for wear testing of cervical disc implants. Using a PID controller, a velocity-based position control algorithm was developed to interface with the benchtop setup that performs HIL simulation. In addition to PID, a fuzzy logic controller (FLC) was also developed that acts as a supervisory controller. FLC provides intelligence to the PID controller by By automatically tuning the controller for profiles that vary in amplitude, shape, and frequency. This combination of the fuzzy-PID controller is novel to the wear testing application for spinal simulators and demonstrated superior performance against PIDwhen tested for a spectrum of frequency. Kaushikk Iyer is a Ph.D. Student at the University of Leeds and an employee at Key Engineering Solutions, Leeds, United Kingdom, (e-mail: [email protected], phone: +44 740 541 5502). Richard M Hall is with the University of Leeds, the United Kingdom as a professor in the Mechanical Engineering Department (e-mail: [email protected]). David Keeling is the managing director of Key Engineering Solutions, Leeds, United Kingdom (e-mail: [email protected]). Results obtained are successfully validated against the load and motion tolerances specified by the ISO18192-1 standard and fall within limits, that is, ±0.5° at the maxima and minima of the motion and ±2 % of the complete cycle for phasing. The simulation results prove the efficacy of the test setup using HIL simulation to verify and validate the accuracy and robustness of the prospective controller before its deployment into the spinal wear simulator. This method of testing controllers enables a wide range of possibilities to test advanced control algorithms that can potentially test even profiles of patients performing various dailyliving activities.

Keywords: Fuzzy-PID controller, hardware-in-the-loop (HIL), real-time simulation, spinal wear simulator

Procedia PDF Downloads 150
142 Smart and Active Package Integrating Printed Electronics

Authors: Joana Pimenta, Lorena Coelho, José Silva, Vanessa Miranda, Jorge Laranjeira, Rui Soares

Abstract:

In this paper, the results of R&D on an innovative food package for increased shelf-life are presented. SAP4MA aims at the development of a printed active device that enables smart packaging solutions for food preservation, targeting the extension of the shelf-life of the packed food through the controlled release of active natural antioxidant agents at the onset of the food degradation process. To do so, SAP4MA focuses on the development of active devices such as printed heaters and batteries/supercapacitors in a label format to be integrated on packaging lids during its injection molding process, promoting the passive release of natural antioxidants after the product is packed, during transportation and in the shelves, and actively when the end-user activates the package, just prior to consuming the product at home. When the active device present on the lid is activated, the release of the natural antioxidants embedded in the inner layer of the packaging lid in direct contact with the headspace atmosphere of the food package starts. This approach is based on the use of active functional coatings composed of nano encapsulated active agents (natural antioxidants species) in the prevention of the oxidation of lipid compounds in food by agents such as oxygen. Thus keeping the product quality during the shelf-life, not only when the user opens the packaging, but also during the period from food packaging up until the purchase by the consumer. The active systems that make up the printed smart label, heating circuit, and battery were developed using screen-printing technology. These systems must operate under the working conditions associated with this application. The printed heating circuit was studied using three different substrates and two different conductive inks. Inks were selected, taking into consideration that the printed circuits will be subjected to high pressures and temperatures during the injection molding process. The circuit must reach a homogeneous temperature of 40ºC in the entire area of the lid of the food tub, promoting a gradual and controlled release of the antioxidant agents. In addition, the circuit design involves a high level of study in order to guarantee maximum performance after the injection process and meet the specifications required by the control electronics component. Furthermore, to characterize the different heating circuits, the electrical resistance promoted by the conductive ink and the circuit design, as well as the thermal behavior of printed circuits on different substrates, were evaluated. In the injection molding process, the serpentine-shaped design developed for the heating circuit was able to resolve the issues connected to the injection point; in addition, the materials used in the support and printing had high mechanical resistance against the pressure and temperature inherent to the injection process. Acknowledgment: This research has been carried out within the Project “Smart and Active Packing for Margarine Product” (SAP4MA) running under the EURIPIDES Program being co-financed by COMPETE 2020 – the Operational Programme for Competitiveness and Internationalization and under Portugal 2020 through the European Regional Development Fund (ERDF).

Keywords: smart package, printed heat circuits, printed batteries, flexible and printed electronic

Procedia PDF Downloads 82
141 Rural-To-Urban Migrants' Experiences with Primary Care in Four Types of Medical Institutions in Guangzhou, China

Authors: Jiazhi Zeng, Leiyu Shi, Xia Zou, Wen Chen, Li Ling

Abstract:

Background: China is facing the unprecedented challenge of rapidly increasing rural-to-urban migration. Due to the household registration system, migrants are in a vulnerable state when they attempt to access to primary care services. A strong primary care system can reduce health inequities and mitigate socioeconomic disparities in healthcare utilization. Literature indicated that migrants were more reliant on the primary care system than local residents. Although the Chinese government has attached great importance to creating an efficient health system, primary care services are still underutilized. The referral system between primary care institutions and hospitals has not yet been completely established in China. The general populations often go directly to hospitals instead of primary care institutions for their primary care. Primary care institutions generally consist of community health centers (CHCs) and community health stations (CHSs) in urban areas, and township health centers (THCs) and rural health stations (THSs) in rural areas. In addition, primary care services are also provided by the outpatient department of municipal hospitals and tertiary hospitals. A better understanding of migrants’ experiences with primary care in the above-mentioned medical institutions is critical for improving the performance of primary care institutions and providing indications of the attributes that require further attention. The purpose of this pioneering study is to explore rural-to-urban migrants’ experiences in primary care, compare their primary care experiences in four types of medical institutions in Guangzhou, China, and suggest implications for targeted interventions to improve primary care for the migrants. Methods: This was a cross-sectional study conducted with 736 rural-to-urban migrants in Guangzhou, China, in 2014. A multistage sampling method was employed. A validated Chinese version of Primary Care Assessment Tool - Adult Short Version (PCAT-AS) was used to collect information on migrants’ primary care experiences. The PCAT-AS consists of 10 domains. Analysis of covariance was conducted for comparison on PCAT domain scores and total scores among migrants accessing four types of medical institutions. Multiple linear regression models were used to explore factors associated with PCAT total scores. Results: After controlling for socio-demographic characteristics, migrant characteristics, health status and health insurance status, migrants accessing primary care in tertiary hospitals had the highest PCAT total scores when compared with those accessing primary care THCs/ RHSs (25.49 vs. 24.18, P=0.007) and CHCs/ CHSs(25.49 vs. 24.24, P=0.006). There was no statistical significant difference for PCAT total scores between migrants accessing primary care in CHCs/CHSs and those in municipal hospitals (24.24 vs. 25.02, P=0.436). Factors positively associated with higher PCAT total scores also included insurance covering parts of healthcare payment (P < 0.001). Conclusions: This study highlights the need for improvement in primary care provided by primary care institutions for rural-to-urban migrants. Migrants receiving primary care from THCs, RHSs, CHSs and CHSs reported worse primary care experiences than those receiving primary care from tertiary hospitals. Relevant policies related to medical insurance should be implemented for providing affordable healthcare services for migrants accessing primary care. Further research exploring the specific reasons for poorer PCAT scores of primary care institutions users will be needed.

Keywords: China, PCAT, primary care, rural-to-urban migrants

Procedia PDF Downloads 334