Search results for: oscillatory parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8594

Search results for: oscillatory parameters

8474 Physical and Chemical Parameters of Lower Ogun River, Ogun State, Nigeria

Authors: F.I. Adeosun, A.A. Idowu, D.O. Odulate,

Abstract:

The aims of carrying out this experiment were to determine the water quality and to investigate if the various human and ecological activities around the river have any effect on the physico-chemical parameters of the river’s resources with a view to effectively utilizing these resources. Water samples were collected from two stations on the surface water of Lower Ogun River Akomoje biweekly for a period of 5 months (January to May, 2011). Results showed that temperature ranged between 24.0-30.7oC, transparency (0.53-1.00 m), depth (1.0-3.88 m), alkalinity (4.5-14.5 mg/l), nitrates (0.235-5.445 mg/l), electrical conductivity (140-190µS/cm), dissolved oxygen (4.12-5.32 mg/l), phosphates (0.02 mg/l-0.7 5 mg/l) and total dissolved solids (70-95).The parameters at the deep end (station A) accounted for the bulk of the highest values; there was however no significant differences between the stations at P˂0.05 with the exception of transparency, depth, total dissolved solids and electrical conductivity. The phosphate value was relatively low which accounted for the low productivity and high transparency. The results obtained from the physico-chemical parameters agreed with the limits set by both national and international bodies for drinking and fish growth. It was however observed that during the period of data collection, catch was low and this could be attributed to low level of primary productivity due to the quality of physico-chemical parameters of the water. It is recommended that the agencies involved in the management of the river should put the right policies in place that will effectively enhance proper exploitation of the water resources. More research should also be carried out on the physico-chemical parameters since this work only studied the water for five months.

Keywords: physical, chemical, parameters, water quality, Ogunriver

Procedia PDF Downloads 652
8473 Multi-Objective Optimization of Wear Parameters of Tube Like Clay Mineral Filled Thermoplastic Polymer Using Response Surface Methodology

Authors: Vasu Velagapudi, G. Suresh

Abstract:

PTFE/HNTs nanocomposites are fabricated with 4%, 6%, and 8% by weight fraction, and the optimization study of wear parameters are performed using response surface methodology (RSM). The experiments are carried out on a pin on disc (POD) wear tester under different operating parameters planned according to Taguchi L27 orthogonal array. The input factors considered are wt% HNTs addition, sliding velocity, load, and distance with three levels for each factor. From ANOVA: The factors load, speed and distance and their interactions have a significant effect on COF. Also for SWR, composition factor and interaction of load and speed are observed to be significant ( < 0.05) Optimum input parameters corresponding to desirability 1 are found to be: COF (0.11) and SWR (17.5)×10⁻⁶ (mm3/N-m) at 6.34 wt% of composition, 5N of load, 2 km of distance and 1 m/sec of velocity.

Keywords: PTFE/HNT, nanocomposites, response surface methodology (RSM), specific wear rate

Procedia PDF Downloads 371
8472 An Optimization of Machine Parameters for Modified Horizontal Boring Tool Using Taguchi Method

Authors: Thirasak Panyaphirawat, Pairoj Sapsmarnwong, Teeratas Pornyungyuen

Abstract:

This paper presents the findings of an experimental investigation of important machining parameters for the horizontal boring tool modified to mouth with a horizontal lathe machine to bore an overlength workpiece. In order to verify a usability of a modified tool, design of experiment based on Taguchi method is performed. The parameters investigated are spindle speed, feed rate, depth of cut and length of workpiece. Taguchi L9 orthogonal array is selected for four factors three level parameters in order to minimize surface roughness (Ra and Rz) of S45C steel tubes. Signal to noise ratio analysis and analysis of variance (ANOVA) is performed to study an effect of said parameters and to optimize the machine setting for best surface finish. The controlled factors with most effect are depth of cut, spindle speed, length of workpiece, and feed rate in order. The confirmation test is performed to test the optimal setting obtained from Taguchi method and the result is satisfactory.

Keywords: design of experiment, Taguchi design, optimization, analysis of variance, machining parameters, horizontal boring tool

Procedia PDF Downloads 411
8471 Unsteady Similarity Solution for a Slender Dry Patch in a Thin Newtonian Fluid Film

Authors: S. S. Abas, Y. M. Yatim

Abstract:

In this paper the unsteady, slender, symmetric dry patch in an infinitely wide and thin liquid film of Newtonian fluid draining under gravity down an inclined plane in the presence of strong surface-tension effect is considered. A similarity transformation, named a travelling-wave similarity solution is used to reduce the governing partial differential equation into the ordinary differential equation which is then solved numerically using a shooting method. The introduction of surface-tension effect on the flow leads to a fourth-order ordinary differential equation. The solution obtained predicts that the dry patch has a quartic shape and the free surface has a capillary ridge near the contact line which decays in an oscillatory manner far from it.

Keywords: dry patch, Newtonian fluid, similarity solution, surface-tension effect, travelling-wave, unsteady thin-film flow

Procedia PDF Downloads 281
8470 The Role of Social Parameters in the Choice of Address Forms Used in Kinship Domain in Punjab, Pakistan

Authors: Ana Ramsha, Samrah Hidayat

Abstract:

This study examines the role of social parameters in the choice of address forms used in kinship domain in Punjab, Pakistan. The study targeted 140 respondents in order to test the impact of social factors along with the regional differences in the choices of address forms in kinship domain. Statistical analyses are done by applying t-test for gender in relation to choices of address forms and ANOVA for age, income, education and social class. The study finds out that there is a strong connection of different social parameters not only with language use and practice but also in choices and use of address forms, especially in kinship relationships. Moreover, it is highlighted that gender does not influence in the choices of address forms, even the participants belonging to young and middle categories show no significant difference with regard to the choices of address form despite the fact that all the factors and parameters exert influence on the choices of address forms. Hence address forms as being one of the major traits of language and society is affected by all the social factors around and regional differences are also most important as they give identity and ethnicity to the society.

Keywords: address forms, kinship, social parameters, linguistics

Procedia PDF Downloads 99
8469 Influence of Machining Process on Surface Integrity of Plasma Coating

Authors: T. Zlámal, J. Petrů, M. Pagáč, P. Krajkovič

Abstract:

For the required function of components with the thermal spray coating, it is necessary to perform additional machining of the coated surface. The paper deals with assessing the surface integrity of Metco 2042, a plasma sprayed coating, after its machining. The selected plasma sprayed coating serves as an abradable sealing coating in a jet engine. Therefore, the spray and its surface must meet high quality and functional requirements. Plasma sprayed coatings are characterized by lamellar structure, which requires a special approach to their machining. Therefore, the experimental part involves the set-up of special cutting tools and cutting parameters under which the applied coating was machined. For the assessment of suitably set machining parameters, selected parameters of surface integrity were measured and evaluated during the experiment. To determine the size of surface irregularities and the effect of the selected machining technology on the sprayed coating surface, the surface roughness parameters Ra and Rz were measured. Furthermore, the measurement of sprayed coating surface hardness by the HR 15 Y method before and after machining process was used to determine the surface strengthening. The changes of strengthening were detected after the machining. The impact of chosen cutting parameters on the surface roughness after the machining was not proven.

Keywords: machining, plasma sprayed coating, surface integrity, strengthening

Procedia PDF Downloads 230
8468 Characterization of Calcium-Signalling Mediated by Human GPR55 Expressed in HEK293 Cells

Authors: Yousuf M. Al Suleimani, Robin Hiley

Abstract:

The endogenous phospholipid lysophosphatidylinositol (LPI) was recently identified as a novel ligand for the G protein-coupled receptor 55 (GPR55) and an inducer of intracellular Ca2+ [Ca2+]i release. This study attempts to characterize Ca2+ signals provoked by LPI in HEK293 cells engineered to stably express human GPR55 and to test cannabinoid ligand activity at GPR55. The study shows that treatment with LPI stimulates a sustained, oscillatory Ca2+ release. The response is characterized by an initial rapid rise, which is mediated by the Gαq-PLC-IP3 pathway, and this is followed by prolonged oscillations that require RhoA activation. Ca2+ oscillations are initiated by intracellular mechanisms and extracellular Ca2+ is only required to replenish Ca2+ lost from the cytoplasm. Analysis of cannabinoid ligand activity at GPR55 revealed no clear effect of the endocannabinoid anandamide, however, rimonabant and the CB1 receptor antagonist AM251 evoked GPR55-mediated [Ca2+]i. Thus, LPI is likely to be a key plasma membrane mediator of signaling events and changes in gene expression through GPR55 activation.

Keywords: lysophosphatidylinositol, calcium, GPR55, cannabinoid

Procedia PDF Downloads 327
8467 The Physicochemical Properties of Two Rivers in Eastern Cape South Africa as Relates to Vibrio Spp Density

Authors: Oluwatayo Abioye, Anthony Okoh

Abstract:

In the past view decades; human has experienced outbreaks of infections caused by pathogenic Vibrio spp which are commonly found in aquatic milieu. Asides the well-known Vibrio cholerae, discovery of other pathogens in this genus has been on the increase. While the dynamics of occurrence and distribution of Vibrio spp have been linked to some physicochemical parameters in salt water, data in relation to fresh water is limited. Hence, two rivers of importance in the Eastern Cape, South Africa were selected for this study. In all, eleven sampling sites were systematically identified and relevant physicochemical parameters, as well as Vibrio spp density, were determined for the period of six months using standard instruments and methods. Results were statistically analysed to determined key physicochemical parameters that determine the density of Vibrio spp in the selected rivers. Results: The density of Vibrio spp in all the sampling points ranges between < 1 CFU/mL to 174 x 10-2 CFU/mL. The physicochemical parameters of some of the sampling points were above the recommended standards. The regression analysis showed that Vibrio density in the selected rivers depends on a complex relationship between various physicochemical parameters. Conclusion: This study suggests that Vibrio spp density in fresh water does not depend on only temperature and salinity as suggested by earlier studies on salt water but rather on a complex relationship between several physicochemical parameters.

Keywords: vibrio density, physicochemical properties, pathogen, aquatic milieu

Procedia PDF Downloads 210
8466 Effects of Paroxetine on Biochemical Parameters and Reproductive Function in Male Rats

Authors: Rachid Mosbah, Aziez Chettoum, Zouhir Djerrou, Alberto Mantovani

Abstract:

Selective serotonin reuptake inhibitors (SSRI) are a class of molecules used in treating depression, anxiety, and mood disorders. Paroxetine (PRT) is one of the mostly prescribed antidepressant which has attracted great attention regarding its side effects in recent years. This study was planned to assess the adverse effects of PRT on the biochemical parameters and reproductive system. Fourteen male Wistar rats were randomly allocated into two groups (7 rats or each): control and treated with PRT at dose of 5mg/kg.bw for two weeks. At the end of the experiment, blood was collected from retro orbital plexus for measuring the biochemical parameters, whereas the reproductive organs were removed for measuring semen quality and the histological investigations. Results showed that PRT induced significant changes in some biochemical parameters and alteration of semen quality including sperm count, spermatids number and sperm viability, motility, and abnormalities. The histopathological examinations of testis and epididymis revealed an alteration of spermatogenesis, cellular disorganization and vacuolization, enlargement of interstitial space, shrinkage and degenerative changes in the epithelium of seminiferous and epididymal tubules with few to nil numbers of spermatozoa in their lumen. In conclusion, PRT treatment caused changes in some biochemical parameters and sperm profile as well as histopathologic effects of reproductive organs.

Keywords: antidepressant, biochemical parameters, reproductive function, paroxetine

Procedia PDF Downloads 96
8465 Adaptive Kaman Filter for Fault Diagnosis of Linear Parameter-Varying Systems

Authors: Rajamani Doraiswami, Lahouari Cheded

Abstract:

Fault diagnosis of Linear Parameter-Varying (LPV) system using an adaptive Kalman filter is proposed. The LPV model is comprised of scheduling parameters, and the emulator parameters. The scheduling parameters are chosen such that they are capable of tracking variations in the system model as a result of changes in the operating regimes. The emulator parameters, on the other hand, simulate variations in the subsystems during the identification phase and have negligible effect during the operational phase. The nominal model and the influence vectors, which are the gradient of the feature vector respect to the emulator parameters, are identified off-line from a number of emulator parameter perturbed experiments. A Kalman filter is designed using the identified nominal model. As the system varies, the Kalman filter model is adapted using the scheduling variables. The residual is employed for fault diagnosis. The proposed scheme is successfully evaluated on simulated system as well as on a physical process control system.

Keywords: identification, linear parameter-varying systems, least-squares estimation, fault diagnosis, Kalman filter, emulators

Procedia PDF Downloads 471
8464 An Experimental Study on Ultrasonic Machining of Pure Titanium Using Full Factorial Design

Authors: Jatinder Kumar

Abstract:

Ultrasonic machining is one of the most widely used non-traditional machining processes for machining of materials that are relatively brittle, hard and fragile such as advanced ceramics, refractories, crystals, quartz etc. There is a considerable lack of research on its application to the cost-effective machining of tough materials such as titanium. In this investigation, the application of USM process for machining of titanium (ASTM Grade-I) has been explored. Experiments have been conducted to assess the effect of different parameters of USM process on machining rate and tool wear rate as response characteristics. The process parameters that were included in this study are: abrasive grit size, tool material and power rating of the ultrasonic machine. It has been concluded that titanium is fairly machinable with USM process. Significant improvement in the machining rate can be realized by manipulating the process parameters and obtaining the optimum combination of these parameters.

Keywords: abrasive grit size, tool material, titanium, ultrasonic machining

Procedia PDF Downloads 334
8463 Correlation between Electromyographic and Textural Parameters for Different Textured Indian Foods Using Principal Component Analysis

Authors: S. Rustagi, N. S. Sodhi, B. Dhillon, T. Kaur

Abstract:

The objective of this study was to check whether there is any relationship between electromyographic (EMG) and textural parameters during food texture evaluation. In this study, a total of eighteen mastication variables were measured for entire mastication, per chew mastication and three different stages of mastication (viz. early, middle and late) by EMG for five different foods using eight human subjects. Cluster analysis was used to reduce the number of mastication variables from 18 to 5, so that principal component analysis (PCA) could be applied on them. The PCA further resulted in two meaningful principal components. The principal component scores for each food were measured and correlated with five textural parameters (viz. hardness, cohesiveness, chewiness, gumminess and adhesiveness). Correlation coefficients were found to be statistically significant (p < 0.10) for cohesiveness and adhesiveness while if we reduce the significance level (p < 0.20) then chewiness also showed correlation with mastication parameters.

Keywords: electromyography, mastication, sensory, texture

Procedia PDF Downloads 311
8462 Simple Rheological Method to Estimate the Branch Structures of Polyethylene under Reactive Modification

Authors: Mahdi Golriz

Abstract:

The aim of this work is to estimate the change in molecular structure of linear low-density polyethylene (LLDPE) during peroxide modification can be detected by a simple rheological method. For this purpose a commercial grade LLDPE (Exxon MobileTM LL4004EL) was reacted with different doses of dicumyl peroxide (DCP). The samples were analyzed by size-exclusion chromatography coupled with a light scattering detector. The dynamic shear oscillatory measurements showed a deviation of the δ-׀G ׀٭curve from that of the linear LLDPE, which can be attributed to the presence of long-chain branching (LCB). By the use of a simple rheological method that utilizes melt rheology, transformations in molecular architecture induced on an originally linear low density polyethylene during the early stages of reactive modification were indicated. Reasonable and consistent estimates are obtained, concerning the degree of LCB, the volume fraction of the various molecular species produced in peroxide modification of LLDPE.

Keywords: linear low-density polyethylene, peroxide modification, long-chain branching, rheological method

Procedia PDF Downloads 127
8461 The Hansen Solubility Parameters of Some Lignosulfonates

Authors: Bernt O. Myrvold

Abstract:

Lignosulfonates (LS) find widespread use as dispersants, binders, anti-oxidants, and fillers. In most of these applications LS is used in formulation together with a number of other components. To better understand the interactions between LS and water and possibly other components in a formulation, the Hansen solubility parameters have been determined for some LS. The Hansen solubility parameter splits the total solubility parameter into three components, the dispersive, polar and hydrogen bonding part. The Hansen solubility parameter was determined by comparing the solubility in a number of solvents and solvent mixtures. We have found clear differences in the solubility parameters, with softwood LS being closer to water than hardwood LS.

Keywords: Hansen solubility parameter, lignosulfonate (LS), solubility, solvent

Procedia PDF Downloads 550
8460 Numerical Analysis on the Effect of Abrasive Parameters on Wall Shear Stress and Jet Exit Kinetic Energy

Authors: D. Deepak, N. Yagnesh Sharma

Abstract:

Abrasive Water Jet (AWJ) machining is a relatively new nontraditional machine tool used in machining of fiber reinforced composite. The quality of machined surface depends on jet exit kinetic energy which depends on various operating and material parameters. In the present work the effect abrasive parameters such as its size, concentration and type on jet kinetic energy is investigated using computational fluid dynamics (CFD). In addition, the effect of these parameters on wall shear stress developed inside the nozzle is also investigated. It is found that for the same operating parameters, increase in the abrasive volume fraction (concentration) results in significant decrease in the wall shear stress as well as the jet exit kinetic energy. Increase in the abrasive particle size results in marginal decrease in the jet exit kinetic energy. Numerical simulation also indicates that garnet abrasives produce better jet exit kinetic energy than aluminium oxide and silicon carbide.

Keywords: abrasive water jet machining, jet kinetic energy, operating pressure, wall shear stress, Garnet abrasive

Procedia PDF Downloads 349
8459 On an Experimental Method for Investigating the Dynamic Parameters of Multi-Story Buildings at Vibrating Seismic Loadings

Authors: Shakir Mamedov, Tukezban Hasanova

Abstract:

Research of dynamic properties of various materials and elements of structures at shock affecting and on the waves so many scientific works of the Azerbaijani scientists are devoted. However, Experimental definition of dynamic parameters of fluctuations of constructions and buildings while carries estimated character. The purpose of the present experimental researches is definition of parameters of fluctuations of installation of observations. In this case, a mockup of four floor buildings and sixteen floor skeleton-type buildings built in the Baku with the stiffening diaphragm at natural vibrating seismic affectings.

Keywords: fluctuations, seismoreceivers, dynamic experiments, acceleration

Procedia PDF Downloads 366
8458 Simplified Modelling of Visco-Elastic Fluids for Use in Recoil Damping Systems

Authors: Prasad Pokkunuri

Abstract:

Visco-elastic materials combine the stress response properties of both solids and fluids and have found use in a variety of damping applications – both vibrational and acoustic. Defense and automotive applications, in particular, are subject to high impact and shock loading – for example: aircraft landing gear, firearms, and shock absorbers. Field responsive fluids – a class of smart materials – are the preferred choice of energy absorbents because of their controllability. These fluids’ stress response can be controlled by the application of a magnetic or electric field, in a closed loop. Their rheological properties – elasticity, plasticity, and viscosity – can be varied all the way from that of a liquid such as water to a hard solid. This work presents a simplified model to study the impulse response behavior of such fluids for use in recoil damping systems. The well-known Burger’s equation, in conjunction with various visco-elastic constitutive models, is used to represent fluid behavior. The Kelvin-Voigt, Upper Convected Maxwell (UCM), and Oldroyd-B constitutive models are implemented in this study. Using these models in a one-dimensional framework eliminates additional complexities due to geometry, pressure, body forces, and other source terms. Using a finite difference formulation to numerically solve the governing equation(s), the response to an initial impulse is studied. The disturbance is confined within the problem domain with no-inflow, no-outflow boundary conditions, and its decay characteristics studied. Visco-elastic fluids typically involve a time-dependent stress relaxation which gives rise to interesting behavior when subjected to an impulsive load. For particular values of viscous damping and elastic modulus, the fluid settles into a stable oscillatory state, absorbing and releasing energy without much decay. The simplified formulation enables a comprehensive study of different modes of system response, by varying relevant parameters. Using the insights gained from this study, extension to a more detailed multi-dimensional model is considered.

Keywords: Burgers Equation, Impulse Response, Recoil Damping Systems, Visco-elastic Fluids

Procedia PDF Downloads 269
8457 Optimization of the Transfer Molding Process by Implementation of Online Monitoring Techniques for Electronic Packages

Authors: Burcu Kaya, Jan-Martin Kaiser, Karl-Friedrich Becker, Tanja Braun, Klaus-Dieter Lang

Abstract:

Quality of the molded packages is strongly influenced by the process parameters of the transfer molding. To achieve a better package quality and a stable transfer molding process, it is necessary to understand the influence of the process parameters on the package quality. This work aims to comprehend the relationship between the process parameters, and to identify the optimum process parameters for the transfer molding process in order to achieve less voids and wire sweep. To achieve this, a DoE is executed for process optimization and a regression analysis is carried out. A systematic approach is represented to generate models which enable an estimation of the number of voids and wire sweep. Validation experiments are conducted to verify the model and the results are presented.

Keywords: dielectric analysis, electronic packages, epoxy molding compounds, transfer molding process

Procedia PDF Downloads 358
8456 Optimization of Fermentation Parameters for Bioethanol Production from Waste Glycerol by Microwave Induced Mutant Escherichia coli EC-MW (ATCC 11105)

Authors: Refal Hussain, Saifuddin M. Nomanbhay

Abstract:

Glycerol is a valuable raw material for the production of industrially useful metabolites. Among many promising applications for the use of glycerol is its bioconversion to high value-added compounds, such as bioethanol through microbial fermentation. Bioethanol is an important industrial chemical with emerging potential as a biofuel to replace vanishing fossil fuels. The yield of liquid fuel in this process was greatly influenced by various parameters viz, temperature, pH, glycerol concentration, organic concentration, and agitation speed were considered. The present study was undertaken to investigate optimum parameters for bioethanol production from raw glycerol by immobilized mutant Escherichia coli (E.coli) (ATCC11505) strain on chitosan cross linked glutaraldehyde optimized by Taguchi statistical method in shake flasks. The initial parameters were set each at four levels and the orthogonal array layout of L16 (45) conducted. The important controlling parameters for optimized the operational fermentation was temperature 38 °C, medium pH 6.5, initial glycerol concentration (250 g/l), and organic source concentration (5 g/l). Fermentation with optimized parameters was carried out in a custom fabricated shake flask. The predicted value of bioethanol production under optimized conditions was (118.13 g/l). Immobilized cells are mainly used for economic benefits of continuous production or repeated use in continuous as well as in batch mode.

Keywords: bioethanol, Escherichia coli, immobilization, optimization

Procedia PDF Downloads 619
8455 Investigation of Some Flotation Parameters and the Role of Dispersants in the Flotation of Chalcopyrite

Authors: H. A. Taner, V. Önen

Abstract:

A suitable choice of flotation parameters and reagents have a strong effect on the effectiveness of flotation process. The objective of this paper is to give an overview of the flotation of chalcopyrite with the different conditions and dispersants. Flotation parameters such as grinding time, pH, type, and dosage of dispersant were investigated. In order to understand the interaction of some dispersants, sodium silicate, sodium hexametaphosphate and sodium polyphosphate were used. The optimum results were obtained at a pH of 11.5 and a grinding time of 10 minutes. A copper concentrate was produced assaying 29.85% CuFeS2 and 65.97% flotation recovery under optimum rougher flotation conditions with sodium silicate.

Keywords: chalcopyrite, dispersant, flotation, reagent

Procedia PDF Downloads 157
8454 Optimal Closed-loop Input Shaping Control Scheme for a 3D Gantry Crane

Authors: Mohammad Javad Maghsoudi, Z. Mohamed, A. R. Husain

Abstract:

Input shaping has been utilized for vibration reduction of many oscillatory systems. This paper presents an optimal closed-loop input shaping scheme for control of a three dimensional (3D) gantry crane system including. This includes a PID controller and Zero Vibration shaper which consider two control objectives concurrently. The control objectives are minimum sway of a payload and fast and accurate positioning of a trolley. A complete mathematical model of a lab-scaled 3D gantry crane is simulated in Simulink. Moreover, by utilizing PSO algorithm and a proposed scheme the controller is designed to cater both control objectives concurrently. Simulation studies on a 3D gantry crane show that the proposed optimal controller has an acceptable performance. The controller provides good position response with satisfactory payload sway in both rail and trolley responses.

Keywords: 3D gantry crane, input shaping, closed-loop control, optimal scheme, PID

Procedia PDF Downloads 390
8453 Effective Parameter Selection for Audio-Based Music Mood Classification for Christian Kokborok Song: A Regression-Based Approach

Authors: Sanchali Das, Swapan Debbarma

Abstract:

Music mood classification is developing in both the areas of music information retrieval (MIR) and natural language processing (NLP). Some of the Indian languages like Hindi English etc. have considerable exposure in MIR. But research in mood classification in regional language is very less. In this paper, powerful audio based feature for Kokborok Christian song is identified and mood classification task has been performed. Kokborok is an Indo-Burman language especially spoken in the northeastern part of India and also some other countries like Bangladesh, Myanmar etc. For performing audio-based classification task, useful audio features are taken out by jMIR software. There are some standard audio parameters are there for the audio-based task but as known to all that every language has its unique characteristics. So here, the most significant features which are the best fit for the database of Kokborok song is analysed. The regression-based model is used to find out the independent parameters that act as a predictor and predicts the dependencies of parameters and shows how it will impact on overall classification result. For classification WEKA 3.5 is used, and selected parameters create a classification model. And another model is developed by using all the standard audio features that are used by most of the researcher. In this experiment, the essential parameters that are responsible for effective audio based mood classification and parameters that do not significantly change for each of the Christian Kokborok songs are analysed, and a comparison is also shown between the two above model.

Keywords: Christian Kokborok song, mood classification, music information retrieval, regression

Procedia PDF Downloads 191
8452 Phytotoxicity of Lead on the Physiological Parameters of Two Varieties of Broad Bean (Vicia faba)

Authors: El H. Bouziani, H. A. Reguieg Yssaad

Abstract:

The phytotoxicity of heavy metals can be expressed on roots and visible part of plants and is characterized by molecular and metabolic answers at various levels of organization of the whole plant. The present study was undertaken on two varieties of broad bean Vicia faba (Sidi Aïch and Super Aguadulce). The device was mounted on a substrate prepared by mixing sand, soil and compost, the substrate was artificially contaminated with three doses of lead nitrate [Pb(NO3)2] 0, 500 and 1000 ppm. Our objective is to follow the behavior of plant opposite the stress by evaluating the physiological parameters. The results reveal a reduction in the parameters of the productivity (chlorophyll and proteins production) with an increase in the osmoregulators (soluble sugars and proline).These results show that the production of broad bean is strongly modified by the disturbance of its internal physiology under lead exposure.

Keywords: broad bean, lead, stress, physiological parameters, phytotoxicity

Procedia PDF Downloads 278
8451 Axial Flux Permanent Magnet Motor Design and Optimization by Using Artificial Neural Networks

Authors: Tugce Talay, Kadir Erkan

Abstract:

In this study, the necessary steps for the design of axial flow permanent magnet motors are shown. The design and analysis of the engine were carried out based on ANSYS Maxwell program. The design parameters of the ANSYS Maxwell program and the artificial neural network system were established in MATLAB and the most efficient design parameters were found with the trained neural network. The results of the Maxwell program and the results of the artificial neural networks are compared and optimal working design parameters are found. The most efficient design parameters were submitted to the ANSYS Maxwell 3D design and the cogging torque was examined and design studies were carried out to reduce the cogging torque.

Keywords: AFPM, ANSYS Maxwell, cogging torque, design optimisation, efficiency, NNTOOL

Procedia PDF Downloads 186
8450 Parameter Estimation for the Oral Minimal Model and Parameter Distinctions Between Obese and Non-obese Type 2 Diabetes

Authors: Manoja Rajalakshmi Aravindakshana, Devleena Ghosha, Chittaranjan Mandala, K. V. Venkateshb, Jit Sarkarc, Partha Chakrabartic, Sujay K. Maity

Abstract:

Oral Glucose Tolerance Test (OGTT) is the primary test used to diagnose type 2 diabetes mellitus (T2DM) in a clinical setting. Analysis of OGTT data using the Oral Minimal Model (OMM) along with the rate of appearance of ingested glucose (Ra) is performed to study differences in model parameters for control and T2DM groups. The differentiation of parameters of the model gives insight into the behaviour and physiology of T2DM. The model is also studied to find parameter differences among obese and non-obese T2DM subjects and the sensitive parameters were co-related to the known physiological findings. Sensitivity analysis is performed to understand changes in parameter values with model output and to support the findings, appropriate statistical tests are done. This seems to be the first preliminary application of the OMM with obesity as a distinguishing factor in understanding T2DM from estimated parameters of insulin-glucose model and relating the statistical differences in parameters to diabetes pathophysiology.

Keywords: oral minimal model, OGTT, obese and non-obese T2DM, mathematical modeling, parameter estimation

Procedia PDF Downloads 68
8449 A Comparative CFD Study on the Hemodynamics of Flow through an Idealized Symmetric and Asymmetric Stenosed Arteries

Authors: B. Prashantha, S. Anish

Abstract:

The aim of the present study is to computationally evaluate the hemodynamic factors which affect the formation of atherosclerosis and plaque rupture in the human artery. An increase of atherosclerosis disease in the artery causes geometry changes, which results in hemodynamic changes such as flow separation, reattachment, and adhesion of new cells (chemotactic) in the artery. Hence, geometry plays an important role in the determining the nature of hemodynamic patterns. Influence of stenosis in the non-bifurcating artery, under pulsatile flow condition, has been studied on an idealized geometry. Analysis of flow through symmetric and asymmetric stenosis in the artery revealed the significance of oscillating shear index (OSI), flow separation, low WSS zones and secondary flow patterns on plaque formation. The observed characteristic of flow in the post-stenotic region highlight the importance of plaque eccentricity on the formation of secondary stenosis on the arterial wall.

Keywords: atherosclerotic plaque, oscillatory shear index, stenosis nature, wall shear stress

Procedia PDF Downloads 327
8448 Identification of Impact Load and Partial System Parameters Using 1D-CNN

Authors: Xuewen Yu, Danhui Dan

Abstract:

The identification of impact load and some hard-to-obtain system parameters is crucial for the activities of analysis, validation, and evaluation in the engineering field. This paper proposes a method that utilizes neural networks based on 1D-CNN to identify the impact load and partial system parameters from measured responses. To this end, forward computations are conducted to provide datasets consisting of the triples (parameter θ, input u, output y). Then neural networks are trained to learn the mapping from input to output, fu|{θ} : y → u, as well as from input and output to parameter, fθ : (u, y) → θ. Afterward, feeding the trained neural networks the measured output response, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameters.

Keywords: convolutional neural network, impact load identification, system parameter identification, inverse problem

Procedia PDF Downloads 58
8447 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.

Keywords: hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters

Procedia PDF Downloads 275
8446 Fabrication and Characterization of Gelatin Nanofibers Dissolved in Concentrated Acetic Acid

Authors: Kooshina Koosha, Sima Habibi, Azam Talebian

Abstract:

Electrospinning is a simple, versatile and widely accepted technique to produce ultra-fine fibers ranging from nanometer to micron. Recently there has been great interest in developing this technique to produce nanofibers with novel properties and functionalities. The electrospinning field is extremely broad, and consequently there have been many useful reviews discussing various aspects from detailed fiber formation mechanism to the formation of nanofibers and to discussion on a wide range of applications. On the other hand, the focus of this study is quite narrow, highlighting electrospinning parameters. This work will briefly cover the solution and processing parameters (for instance; concentration, solvent type, voltage, flow rate, distance between the collector and the tip of the needle) impacting the morphological characteristics of nanofibers, such as diameter. In this paper, a comprehensive work would be presented on the research of producing nanofibers from natural polymer entitled Gelatin.

Keywords: electrospinning, solution parameters, process parameters, natural fiber

Procedia PDF Downloads 244
8445 The Effect of Pulling and Rotation Speed on the Jet Grout Columns

Authors: İbrahim Hakkı Erkan, Özcan Tan

Abstract:

The performance of jet grout columns was affected by many controlled and uncontrolled parameters. The leading parameters for the controlled ones can be listed as injection pressure, rod pulling speed, rod rotation speed, number of nozzles, nozzle diameter and Water/Cement ratio. And the uncontrolled parameters are soil type, soil structure, soil layering condition, underground water level, the changes in strength parameters and the rheologic properties of cement in time. In this study, the performance of jet grout columns and the effects of pulling speed and rotation speed were investigated experimentally. For this purpose, a laboratory type jet grouting system was designed for the experiments. Through this system, jet grout columns were produced in three different conditions. The results of the study showed that the grout pressure and the lifting speed significantly affect the performance of the jet grouting columns.

Keywords: jet grout, sandy soils, soil improvement, soilcreate

Procedia PDF Downloads 229