Search results for: numerical calculation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4562

Search results for: numerical calculation

722 Efficacy of Erector Spinae Plane Block for Postoperative Pain Management in Coronary Artery Bypass Graft Patients

Authors: Santosh Sharma Parajuli, Diwas Manandhar

Abstract:

Background: Perioperative pain management plays an integral part in patients undergoing cardiac surgery. We studied the effect of Erector Spinae Plane block on acute postoperative pain reduction and 24 hours opioid consumption in adult cardiac surgical patients. Methods: Twenty-five adult cardiac surgical patients who underwent cardiac surgery with sternotomy in whom ESP catheters were placed preoperatively were kept in group E, and the other 25 patients who had undergone cardiac surgery without ESP catheter and pain management done with conventional opioid injection were placed in group C. Fentanyl was used for pain management. The primary study endpoint was to compare the consumption of fentanyl and to assess the numeric rating scale in the postoperative period in the first 24 hours in both groups. Results: The 24 hours fentanyl consumption was 43.00±51.29 micrograms in the Erector Spinae Plane catheter group and 147.00±60.94 micrograms in the control group postoperatively which was statistically significant (p <0.001). The numeric rating scale was also significantly reduced in the Erector Spinae Plane group compared to the control group in the first 24 hours postoperatively. Conclusion: Erector Spinae Plane block is superior to the conventional opioid injection method for postoperative pain management in CABG patients. Erector Spinae Plane block not only decreases the overall opioid consumption but also the NRS score in these patients.

Keywords: erector, spinae, plane, numerical rating scale

Procedia PDF Downloads 43
721 Propeller Performance Modeling through a Computational Fluid Dynamics Analysis Method

Authors: Maxime Alex Junior Kuitche, Ruxandra Mihaela Botez, Jean-Chirstophe Maunand

Abstract:

The evolution of aircraft is closely linked to the study and improvement of propulsion systems. Determining the propulsion performance is a real challenge in aircraft modeling and design. In addition to theoretical methodologies, experimental procedures are used to obtain a good estimation of the propulsion performances. For piston-propeller propulsion, the propeller needs several experimental tests which could be extremely demanding in terms of time and money. This paper presents a new procedure to estimate the performance of a propeller from a numerical approach using computational fluid dynamic analysis. The propeller was initially scanned, and then, its 3D model was represented using CATIA. A structured meshing and Shear Stress Transition k-ω turbulence model were applied to describe accurately the flow pattern around the propeller. Thus, the Partial Differential Equations were solved using ANSYS FLUENT software. The method was applied on the UAS-S45’s propeller designed and manufactured by Hydra Technologies in Mexico. An extensive investigation was performed for several flight conditions in terms of altitudes and airspeeds with the aim to determine thrust coefficients, power coefficients and efficiency of the propeller. The Computational Fluid Dynamics results were compared with experimental data acquired from wind tunnel tests performed at the LARCASE Price-Paidoussis wind tunnel. The results of this comparison have demonstrated that our approach was highly accurate.

Keywords: CFD analysis, propeller performance, unmanned aerial system propeller, UAS-S45

Procedia PDF Downloads 325
720 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling

Authors: Florin Leon, Silvia Curteanu

Abstract:

Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.

Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression

Procedia PDF Downloads 270
719 Settlement Analysis of Back-To-Back Mechanically Stabilized Earth Walls

Authors: Akhila Palat, B. Umashankar

Abstract:

Back-to-back Mechanically Stabilized Earth (MSE) walls are cost-effective soil-retaining structures that can tolerate large settlements compared to conventional gravity retaining walls. They are also an economical way to meet everyday earth retention needs for highway and bridge grade separations, railroads, commercial and residential developments. But, existing design guidelines (FHWA/BS/ IS codes) do not provide a mechanistic approach for the design of back-to-back reinforced retaining walls. The settlement analysis of such structures is limited in the literature. A better understanding of the deformations of this wall system requires an analytical tool that incorporates the properties of backfill material, foundation soil, and geosynthetic reinforcement, and account for the soil–structure interactions in a realistic manner. This study was conducted to investigate the effect of reinforced back-to-back MSE walls on wall settlements and facing deformations. Back-to-back reinforced retaining walls were modeled and compared using commercially available finite difference package FLAC 2D. Parametric studies were carried out for various angles of shearing resistance of backfill material and foundation soil, and the axial stiffness of the reinforcement. A 6m-high wall was modeled, and the facing panels were taken as full-length panels with nominal thickness. Reinforcement was modeled as cable elements (two-dimensional structural elements). Interfaces were considered between soil and wall, and soil and reinforcement.

Keywords: back-to-back walls, numerical modeling, reinforced wall, settlement

Procedia PDF Downloads 271
718 Design and Analysis of a Lightweight Fire-Resistant Door

Authors: Zainab Fadil, Mouath Alawadhi, Abdullah Alhusainan, Fahad Alqadiri, Abdulaziz Alqadiri

Abstract:

This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire-resistance doors. Fire-rated doors specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.

Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers

Procedia PDF Downloads 53
717 Magnetic Navigation of Nanoparticles inside a 3D Carotid Model

Authors: E. G. Karvelas, C. Liosis, A. Theodorakakos, T. E. Karakasidis

Abstract:

Magnetic navigation of the drug inside the human vessels is a very important concept since the drug is delivered to the desired area. Consequently, the quantity of the drug required to reach therapeutic levels is being reduced while the drug concentration at targeted sites is increased. Magnetic navigation of drug agents can be achieved with the use of magnetic nanoparticles where anti-tumor agents are loaded on the surface of the nanoparticles. The magnetic field that is required to navigate the particles inside the human arteries is produced by a magnetic resonance imaging (MRI) device. The main factors which influence the efficiency of the usage of magnetic nanoparticles for biomedical applications in magnetic driving are the size and the magnetization of the biocompatible nanoparticles. In this study, a computational platform for the simulation of the optimal gradient magnetic fields for the navigation of magnetic nanoparticles inside a carotid artery is presented. For the propulsion model of the particles, seven major forces are considered, i.e., the magnetic force from MRIs main magnet static field as well as the magnetic field gradient force from the special propulsion gradient coils. The static field is responsible for the aggregation of nanoparticles, while the magnetic gradient contributes to the navigation of the agglomerates that are formed. Moreover, the contact forces among the aggregated nanoparticles and the wall and the Stokes drag force for each particle are considered, while only spherical particles are used in this study. In addition, gravitational forces due to gravity and the force due to buoyancy are included. Finally, Van der Walls force and Brownian motion are taken into account in the simulation. The OpenFoam platform is used for the calculation of the flow field and the uncoupled equations of particles' motion. To verify the optimal gradient magnetic fields, a covariance matrix adaptation evolution strategy (CMAES) is used in order to navigate the particles into the desired area. A desired trajectory is inserted into the computational geometry, which the particles are going to be navigated in. Initially, the CMAES optimization strategy provides the OpenFOAM program with random values of the gradient magnetic field. At the end of each simulation, the computational platform evaluates the distance between the particles and the desired trajectory. The present model can simulate the motion of particles when they are navigated by the magnetic field that is produced by the MRI device. Under the influence of fluid flow, the model investigates the effect of different gradient magnetic fields in order to minimize the distance of particles from the desired trajectory. In addition, the platform can navigate the particles into the desired trajectory with an efficiency between 80-90%. On the other hand, a small number of particles are stuck to the walls and remains there for the rest of the simulation.

Keywords: artery, drug, nanoparticles, navigation

Procedia PDF Downloads 85
716 Micro-Channel Flows Simulation Based on Nonlinear Coupled Constitutive Model

Authors: Qijiao He

Abstract:

MicroElectrical-Mechanical System (MEMS) is one of the most rapidly developing frontier research field both in theory study and applied technology. Micro-channel is a very important link component of MEMS. With the research and development of MEMS, the size of the micro-devices and the micro-channels becomes further smaller. Compared with the macroscale flow, the flow characteristics of gas in the micro-channel have changed, and the rarefaction effect appears obviously. However, for the rarefied gas and microscale flow, Navier-Stokes-Fourier (NSF) equations are no longer appropriate due to the breakup of the continuum hypothesis. A Nonlinear Coupled Constitutive Model (NCCM) has been derived from the Boltzmann equation to describe the characteristics of both continuum and rarefied gas flows. We apply the present scheme to simulate continuum and rarefied gas flows in a micro-channel structure. And for comparison, we apply other widely used methods which based on particle simulation or direct solution of distribution function, such as Direct simulation of Monte Carlo (DSMC), Unified Gas-Kinetic Scheme (UGKS) and Lattice Boltzmann Method (LBM), to simulate the flows. The results show that the present solution is in better agreement with the experimental data and the DSMC, UGKS and LBM results than the NSF results in rarefied cases but is in good agreement with the NSF results in continuum cases. And some characteristics of both continuum and rarefied gas flows are observed and analyzed.

Keywords: continuum and rarefied gas flows, discontinuous Galerkin method, generalized hydrodynamic equations, numerical simulation

Procedia PDF Downloads 142
715 Impact of the Electricity Market Prices during the COVID-19 Pandemic on Energy Storage Operation

Authors: Marin Mandić, Elis Sutlović, Tonći Modrić, Luka Stanić

Abstract:

With the restructuring and deregulation of the power system, storage owners, generation companies or private producers can offer their multiple services on various power markets and earn income in different types of markets, such as the day-ahead, real-time, ancillary services market, etc. During the COVID-19 pandemic, electricity prices, as well as ancillary services prices, increased significantly. The optimization of the energy storage operation was performed using a suitable model for simulating the operation of a pumped storage hydropower plant under market conditions. The objective function maximizes the income earned through energy arbitration, regulation-up, regulation-down and spinning reserve services. The optimization technique used for solving the objective function is mixed integer linear programming (MILP). In numerical examples, the pumped storage hydropower plant operation has been optimized considering the already achieved hourly electricity market prices from Nord Pool for the pre-pandemic (2019) and the pandemic (2020 and 2021) years. The impact of the electricity market prices during the COVID-19 pandemic on energy storage operation is shown through the analysis of income, operating hours, reserved capacity and consumed energy for each service. The results indicate the role of energy storage during a significant fluctuation in electricity and services prices.

Keywords: electrical market prices, electricity market, energy storage optimization, mixed integer linear programming (MILP) optimization

Procedia PDF Downloads 140
714 Woodcast Is Ecologically Sound and Tolerated by Majority of Patients

Authors: R. Hassan, J. Duncombe, E. Darke, A. Dias, K. Anderson, R. G. Middleton

Abstract:

Background: NHS England has set itself the task of delivering a “Net Zero” National Health service by 2040. It is incumbent upon all health care practioners to work towards this goal. Orthopaedic surgeons are no exception. Distal radial fractures are the most common fractures sustained by the adult population. However, studiesare shortcoming on individual patient experience. The aim of this study was to assess the patient’ssatisfaction and outcomes with woodcast used in the conservative management of distal radius fractures. Methods: For all patients managed with woodcast in our unit, we undertook a structured questionnairethat included the Patient Rated Wrist Evaluation (PRWE) score, The EQ-5D-5L score, and the pain numerical score at the time of injury and six weeks after. Results: 30 patients were initially managed with woodcast.80% of patients tolerated woodcast for the full duration of their treatment. Of these, 20% didn’t tolerate woodcast and had their casts removed within 48 hours. Of the remaining, 79.1% were satisfied about woodcast comfort, 66% were very satisfied about woodcast weight, 70% were satisfied with temperature and sweatiness, 62.5% were very satisfied about the smell/odour, and 75% were satisfied about the level of support woodcast provided. During their treatment, 83.3% of patients rated their pain as five or less. Conclusion: For those who completed their treatment in woodcast, none required any further intervention or utilised the open appointment because of ongoing wrist problems. In conclusion, when woodcast is tolerated, patients’ satisfaction and outcome levels were good. However, we acknowledged 20% of patients in our series were not able to tolerate woodacst, Therefore, we suggest a comparison between the widely used synthetic plaster of Pariscasting and woodcast to come in order.

Keywords: distal radius fractures, ecological cast, sustainability, woodcast

Procedia PDF Downloads 64
713 Designing and Prototyping Permanent Magnet Generators for Wind Energy

Authors: T. Asefi, J. Faiz, M. A. Khan

Abstract:

This paper introduces dual rotor axial flux machines with surface mounted and spoke type ferrite permanent magnets with concentrated windings; they are introduced as alternatives to a generator with surface mounted Nd-Fe-B magnets. The output power, voltage, speed and air gap clearance for all the generators are identical. The machine designs are optimized for minimum mass using a population-based algorithm, assuming the same efficiency as the Nd-Fe-B machine. A finite element analysis (FEA) is applied to predict the performance, emf, developed torque, cogging torque, no load losses, leakage flux and efficiency of both ferrite generators and that of the Nd-Fe-B generator. To minimize cogging torque, different rotor pole topologies and different pole arc to pole pitch ratios are investigated by means of 3D FEA. It was found that the surface mounted ferrite generator topology is unable to develop the nominal electromagnetic torque, and has higher torque ripple and is heavier than the spoke type machine. Furthermore, it was shown that the spoke type ferrite permanent magnet generator has favorable performance and could be an alternative to rare-earth permanent magnet generators, particularly in wind energy applications. Finally, the analytical and numerical results are verified using experimental results.

Keywords: axial flux, permanent magnet generator, dual rotor, ferrite permanent magnet generator, finite element analysis, wind turbines, cogging torque, population-based algorithms

Procedia PDF Downloads 119
712 Numerical and Simulation Analysis of Composite Friction Materials Using Single Plate Clutch Pad in Agricultural Tractors

Authors: Ravindra Raju, Vidhu Kampurath

Abstract:

For smooth transition of the power from the engine to the transmission system, a clutch is used. In agricultural tractors, friction clutches are widely used in power transmission applications. To transmit the maximum torque in friction clutches, selection of materials is one of the important tasks. The present used material for friction disc is Asbestos, Ceramic etc. In this study, analysis is performed using composites materials. The composite materials are considered due to their high strength to weight ratio. Composite materials like kevlar49, kevlar 29U were used in the study. The paper presents a systematic approach to optimize the structural and thermal characteristics of the clutch friction pad. A single plate clutch is modeled using Creo 2.0 software and analyzed using ANSYS. Thermal analysis considers the reduction of heat generated between the friction surfaces and reducing the temperature rise during the steady state period. Structural analysis is done to minimize the stresses developed as a result of the loading contact between friction surfaces. Also, modal analysis is done to optimize the natural frequency of the friction plate to avoid being in resonance with the engine frequency range. The analysis carried out on ANSYS workbench to get the foremost appropriate friction material for clutch. From the analyzed results stress, strain / total deformation values and natural frequency of the materials were compared for all the composite materials and the best one was taken out. For the study purpose, specifications of the clutch are obtained from the MF1035 (47KW) Tractor model.

Keywords: ANSYS, clutch, composite materials, creo

Procedia PDF Downloads 263
711 A Modified Refined Higher Order Zigzag Theory for Stress Analysis of Hybrid Composite Laminates

Authors: Dhiraj Biswas, Chaitali Ray

Abstract:

A modified refined higher order zigzag theory has been developed in this paper in order to compute the accurate interlaminar stresses within hybrid laminates. Warping has significant effect on the mechanical behaviour of the laminates. To the best of author(s)’ knowledge the stress analysis of hybrid laminates is not reported in the published literature. The present paper aims to develop a new C0 continuous element based on the refined higher order zigzag theories considering warping effect in the formulation of hybrid laminates. The eight noded isoparametric plate bending element is used for the flexural analysis of laminated composite plates to study the performance of the proposed model. The transverse shear stresses are computed by using the differential equations of stress equilibrium in a simplified manner. A computer code has been developed using MATLAB software package. Several numerical examples are solved to assess the performance of the present finite element model based on the proposed higher order zigzag theory by comparing the present results with three-dimensional elasticity solutions. The present formulation is validated by comparing the results obtained from the relevant literature. An extensive parametric study has been carried out on the hybrid laminates with varying percentage of materials and angle of orientation of fibre content.

Keywords: hybrid laminate, Interlaminar stress, refined higher order zigzag theory, warping effect

Procedia PDF Downloads 195
710 Shear Stress and Effective Structural Stress ‎Fields of an Atherosclerotic Coronary Artery

Authors: Alireza Gholipour, Mergen H. Ghayesh, Anthony Zander, Stephen J. Nicholls, Peter J. Psaltis

Abstract:

A three-dimensional numerical model of an atherosclerotic coronary ‎artery is developed for the determination of high-risk situation and ‎hence heart attack prediction. Employing the finite element method ‎‎(FEM) using ANSYS, fluid-structure interaction (FSI) model of the ‎artery is constructed to determine the shear stress distribution as well ‎as the von Mises stress field. A flexible model for an atherosclerotic ‎coronary artery conveying pulsatile blood is developed incorporating ‎three-dimensionality, artery’s tapered shape via a linear function for ‎artery wall distribution, motion of the artery, blood viscosity via the ‎non-Newtonian flow theory, blood pulsation via use of one-period ‎heartbeat, hyperelasticity via the Mooney-Rivlin model, viscoelasticity ‎via the Prony series shear relaxation scheme, and micro-calcification ‎inside the plaque. The material properties used to relate the stress field ‎to the strain field have been extracted from clinical data from previous ‎in-vitro studies. The determined stress fields has potential to be used as ‎a predictive tool for plaque rupture and dissection.‎ The results show that stress concentration due to micro-calcification ‎increases the von Mises stress significantly; chance of developing a ‎crack inside the plaque increases. Moreover, the blood pulsation varies ‎the stress distribution substantially for some cases.‎

Keywords: atherosclerosis, fluid-structure interaction‎, coronary arteries‎, pulsatile flow

Procedia PDF Downloads 142
709 Optimal Selling Prices for Small Sized Poultry Farmers

Authors: Hidefumi Kawakatsu, Dong Li, Kosuke Kato

Abstract:

In Japan, meat-type chickens are mainly classified into three categories: (1) Broilers, (2) Branded chickens, and (3) Jidori (Free-range local traditional pedigree chickens). The Jidori chickens are certified by the Japanese Ministry of Agriculture, whilst, for the Branded chickens, there is no regulation with respect to their breed (genotype) or methods for rearing them. It is, therefore, relatively easy for poultry farmers to introduce Branded than Jidori chickens. The Branded chickens are normally fed a low-calorie diet with ingredients such as herbs, which lengthens their breeding period (compared with that of the Broilers) and increases their market value. In the field of inventory management, fast-growing animals such as broilers are categorised as ameliorating items. To the best of our knowledge, there are no previous studies that have explicitly considered smaller sized poultry farmers with limited breeding areas. This study develops an inventory model for a small sized poultry farmer that produces both the Broilers (Product 1) and the Branded chickens (Product 2) with different amelioration rates. The poultry farmer’s total profit per unit of time is formulated as a function of selling prices by using a price-dependent demand function. The existence of a unique optimal selling price for each product, which maximises the total profit, established. It has also been confirmed through numerical examples that, when the breeding area is fixed, the total profit could increase if the poultry farmer reduced the product quantity of Product 1 to introduce Product 2.

Keywords: amelioration, deterioration, small sized poultry farmers, optimal price

Procedia PDF Downloads 183
708 Impact of Data and Model Choices to Urban Flood Risk Assessments

Authors: Abhishek Saha, Serene Tay, Gerard Pijcke

Abstract:

The availability of high-resolution topography and rainfall information in urban areas has made it necessary to revise modeling approaches used for simulating flood risk assessments. Lidar derived elevation models that have 1m or lower resolutions are becoming widely accessible. The classical approaches of 1D-2D flow models where channel flow is simulated and coupled with a coarse resolution 2D overland flow models may not fully utilize the information provided by high-resolution data. In this context, a study was undertaken to compare three different modeling approaches to simulate flooding in an urban area. The first model used is the base model used is Sobek, which uses 1D model formulation together with hydrologic boundary conditions and couples with an overland flow model in 2D. The second model uses a full 2D model for the entire area with shallow water equations at the resolution of the digital elevation model (DEM). These models are compared against another shallow water equation solver in 2D, which uses a subgrid method for grid refinement. These models are simulated for different horizontal resolutions of DEM varying between 1m to 5m. The results show a significant difference in inundation extents and water levels for different DEMs. They are also sensitive to the different numerical models with the same physical parameters, such as friction. The study shows the importance of having reliable field observations of inundation extents and levels before a choice of model and data can be made for spatial flood risk assessments.

Keywords: flooding, DEM, shallow water equations, subgrid

Procedia PDF Downloads 113
707 Assessment of the Landscaped Biodiversity in the National Park of Tlemcen (Algeria) Using Per-Object Analysis of Landsat Imagery

Authors: Bencherif Kada

Abstract:

In the forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape, and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification, that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction, and area of an object, etc.), and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify of the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak, and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants, and bare soils. Texture attributes seem to provide no useful information, while spatial attributes of shape and compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.

Keywords: forest, oaks, remote sensing, diversity, shrublands

Procedia PDF Downloads 84
706 Physical and Morphological Response to Land Reclamation Projects in a Wave-Dominated Bay

Authors: Florian Monetti, Brett Beamsley, Peter McComb, Simon Weppe

Abstract:

Land reclamation from the ocean has considerably increased over past decades to support worldwide rapid urban growth. Reshaping the coastline, however, inevitably affects coastal systems. One of the main challenges for coastal oceanographers is to predict the physical and morphological responses for nearshore systems to man-made changes over multiple time-scales. Fully-coupled numerical models are powerful tools for simulating the wide range of interactions between flow field and bedform morphology. Restricted and inconsistent measurements, combined with limited computational resources, typically make this exercise complex and uncertain. In the present study, we investigate the impact of proposed land reclamation within a wave-dominated bay in New Zealand. For this purpose, we first calibrated our morphological model based on the long-term evolution of the bay resulting from land reclamation carried out in the 1950s. This included the application of sedimentological spin-up and reduction techniques based on historical bathymetry datasets. The updated bathymetry, including the proposed modifications of the bay, was then used to predict the effect of the proposed land reclamation on the wave climate and morphology of the bay after one decade. We show that reshaping the bay induces a distinct symmetrical response of the shoreline which likely will modify the nearshore wave patterns and consequently recreational activities in the area.

Keywords: coastal waves, impact of land reclamation, long-term coastal evolution, morphodynamic modeling

Procedia PDF Downloads 143
705 Assessment of Tidal Current Energy Potential at LAMU and Mombasa in Kenya

Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema

Abstract:

The tidal power potential available for electricity generation from Mombasa and Lamu sites in Kenya will be examined. Several African countries in the Western Indian Ocean endure insufficiencies in the power sector, including both generation and distribution. One important step towards increasing energy security and availability is to intensify the use of renewable energy sources. The access to cost-efficient hydropower is low in Mombasa and Lamu hence Ocean energy will play an important role. Global-Level resource assessments and oceanographic literature and data have been compiled in an analysis between technology-specific requirements for ocean energy technologies (salinity, tide, tidal current, wave, Ocean thermal energy conversion, wind and solar) and the physical resources in Lamu and Mombasa. The potential for tide and tidal current power is more restricted but may be of interest at some locations. The theoretical maximum power produced over a tidal cycle is determined by the product of the forcing tide and the undisturbed volumetric flow-rate. The extraction of the maximum power reduces the flow-rate, but a significant portion of the maximum power can be extracted with little change to the tidal dynamics. Two-dimensional finite-element, numerical simulations designed and developed agree with the theory. Temporal variations in resource intensity, as well as the differences between small-scale and large-scale applications, are considered.

Keywords: energy assessment, marine tidal power, renewable energy, tidal dynamics

Procedia PDF Downloads 537
704 Numerical Approach to a Mathematical Modeling of Bioconvection Due to Gyrotactic Micro-Organisms over a Nonlinear Inclined Stretching Sheet

Authors: Madhu Aneja, Sapna Sharma

Abstract:

The water-based bioconvection of a nanofluid containing motile gyrotactic micro-organisms over nonlinear inclined stretching sheet has been investigated. The governing nonlinear boundary layer equations of the model are reduced to a system of ordinary differential equations via Oberbeck-Boussinesq approximation and similarity transformations. Further, the modified set of equations with associated boundary conditions are solved using Finite Element Method. The impact of various pertinent parameters on the velocity, temperature, nanoparticles concentration, density of motile micro-organisms profiles are obtained and analyzed in details. The results show that with the increase in angle of inclination δ, velocity decreases while temperature, nanoparticles concentration, a density of motile micro-organisms increases. Additionally, the skin friction coefficient, Nusselt number, Sherwood number, density number are computed for various thermophysical parameters. It is noticed that increasing Brownian motion and thermophoresis parameter leads to an increase in temperature of fluid which results in a reduction in Nusselt number. On the contrary, Sherwood number rises with an increase in Brownian motion and thermophoresis parameter. The findings have been validated by comparing the results of special cases with existing studies.

Keywords: bioconvection, finite element method, gyrotactic micro-organisms, inclined stretching sheet, nanofluid

Procedia PDF Downloads 159
703 The Inverse Problem in Energy Beam Processes Using Discrete Adjoint Optimization

Authors: Aitor Bilbao, Dragos Axinte, John Billingham

Abstract:

The inverse problem in Energy Beam (EB) Processes consists of defining the control parameters, in particular the 2D beam path (position and orientation of the beam as a function of time), to arrive at a prescribed solution (freeform surface). This inverse problem is well understood for conventional machining, because the cutting tool geometry is well defined and the material removal is a time independent process. In contrast, EB machining is achieved through the local interaction of a beam of particular characteristics (e.g. energy distribution), which leads to a surface-dependent removal rate. Furthermore, EB machining is a time-dependent process in which not only the beam varies with the dwell time, but any acceleration/deceleration of the machine/beam delivery system, when performing raster paths will influence the actual geometry of the surface to be generated. Two different EB processes, Abrasive Water Machining (AWJM) and Pulsed Laser Ablation (PLA), are studied. Even though they are considered as independent different technologies, both can be described as time-dependent processes. AWJM can be considered as a continuous process and the etched material depends on the feed speed of the jet at each instant during the process. On the other hand, PLA processes are usually defined as discrete systems and the total removed material is calculated by the summation of the different pulses shot during the process. The overlapping of these shots depends on the feed speed and the frequency between two consecutive shots. However, if the feed speed is sufficiently slow compared with the frequency, then consecutive shots are close enough and the behaviour can be similar to a continuous process. Using this approximation a generic continuous model can be described for both processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at each single pixel on the surface using a linear model of the process. However, this approach does not always lead to the good solution since linear models are only valid when shallow surfaces are etched. The solution of the inverse problem is improved by using a discrete adjoint optimization algorithm. Moreover, the calculation of the Jacobian matrix consumes less computation time than finite difference approaches. The influence of the dynamics of the machine on the actual movement of the jet is also important and should be taken into account. When the parameters of the controller are not known or cannot be changed, a simple approximation is used for the choice of the slope of a step profile. Several experimental tests are performed for both technologies to show the usefulness of this approach.

Keywords: abrasive waterjet machining, energy beam processes, inverse problem, pulsed laser ablation

Procedia PDF Downloads 254
702 On the convergence of the Mixed Integer Randomized Pattern Search Algorithm

Authors: Ebert Brea

Abstract:

We propose a novel direct search algorithm for identifying at least a local minimum of mixed integer nonlinear unconstrained optimization problems. The Mixed Integer Randomized Pattern Search Algorithm (MIRPSA), so-called by the author, is based on a randomized pattern search, which is modified by the MIRPSA for finding at least a local minimum of our problem. The MIRPSA has two main operations over the randomized pattern search: moving operation and shrinking operation. Each operation is carried out by the algorithm when a set of conditions is held. The convergence properties of the MIRPSA is analyzed using a Markov chain approach, which is represented by an infinite countable set of state space λ, where each state d(q) is defined by a measure of the qth randomized pattern search Hq, for all q in N. According to the algorithm, when a moving operation is carried out on the qth randomized pattern search Hq, the MIRPSA holds its state. Meanwhile, if the MIRPSA carries out a shrinking operation over the qth randomized pattern search Hq, the algorithm will visit the next state, this is, a shrinking operation at the qth state causes a changing of the qth state into (q+1)th state. It is worthwhile pointing out that the MIRPSA never goes back to any visited states because the MIRPSA only visits any qth by shrinking operations. In this article, we describe the MIRPSA for mixed integer nonlinear unconstrained optimization problems for doing a deep study of its convergence properties using Markov chain viewpoint. We herein include a low dimension case for showing more details of the MIRPSA, when the algorithm is used for identifying the minimum of a mixed integer quadratic function. Besides, numerical examples are also shown in order to measure the performance of the MIRPSA.

Keywords: direct search, mixed integer optimization, random search, convergence, Markov chain

Procedia PDF Downloads 434
701 Effect of Cavities on the Behaviour of Strip Footing Subjected to Inclined Load

Authors: Ali A. Al-Jazaairry, Tahsin T. Sabbagh

Abstract:

One of the important concerns within the field of geotechnical engineering is the presence of cavities in soils. This present work is an attempt to understand the behaviour of strip footing subjected to inclined load and constructed on cavitied soil. The failure mechanism of strip footing located above such soils was studied analytically. The capability of analytical model to correctly expect the system behaviour is assessed by carrying out verification analysis on available studies. The study was prepared by finite element software (PLAXIS) in which an elastic-perfectly plastic soil model was used. It was indicated, from the results of the study, that the load carrying capacity of foundation constructed on cavity can be analysed well using such analysis. The research covered many foundation cases, and in each foundation case, there occurs a critical depth under which the presence of cavities has shown minimum impact on the foundation performance. When cavities are found above this critical depth, the load carrying capacity of the foundation differs with many influences, such as the location and size of the cavity and footing depth. Figures involving the load carrying capacity with the affecting factors studied are presented. These figures offer information beneficial for the design of strip footings rested on underground cavities. Moreover, the results might be used to design a shallow foundation constructed on cavitied soil, whereas the obtained failure mechanisms may be employed to improve numerical solutions for this kind of problems.

Keywords: axial load, cavity, inclined load, strip footing

Procedia PDF Downloads 229
700 Comparative Mesh Sensitivity Study of Different Reynolds Averaged Navier Stokes Turbulence Models in OpenFOAM

Authors: Zhuoneng Li, Zeeshan A. Rana, Karl W. Jenkins

Abstract:

In industry, to validate a case, often a multitude of simulation are required and in order to demonstrate confidence in the process where users tend to use a coarser mesh. Therefore, it is imperative to establish the coarsest mesh that could be used while keeping reasonable simulation accuracy. To date, the two most reliable, affordable and broadly used advanced simulations are the hybrid RANS (Reynolds Averaged Navier Stokes)/LES (Large Eddy Simulation) and wall modelled LES. The potentials in these two simulations will still be developed in the next decades mainly because the unaffordable computational cost of a DNS (Direct Numerical Simulation). In the wall modelled LES, the turbulence model is applied as a sub-grid scale model in the most inner layer near the wall. The RANS turbulence models cover the entire boundary layer region in a hybrid RANS/LES (Detached Eddy Simulation) and its variants, therefore, the RANS still has a very important role in the state of art simulations. This research focuses on the turbulence model mesh sensitivity analysis where various turbulence models such as the S-A (Spalart-Allmaras), SSG (Speziale-Sarkar-Gatski), K-Omega transitional SST (Shear Stress Transport), K-kl-Omega, γ-Reθ transitional model, v2f are evaluated within the OpenFOAM. The simulations are conducted on a fully developed turbulent flow over a flat plate where the skin friction coefficient as well as velocity profiles are obtained to compare against experimental values and DNS results. A concrete conclusion is made to clarify the mesh sensitivity for different turbulence models.

Keywords: mesh sensitivity, turbulence models, OpenFOAM, RANS

Procedia PDF Downloads 229
699 Effect of Mach Number for Gust-Airfoil Interatcion Noise

Authors: ShuJiang Jiang

Abstract:

The interaction of turbulence with airfoil is an important noise source in many engineering fields, including helicopters, turbofan, and contra-rotating open rotor engines, where turbulence generated in the wake of upstream blades interacts with the leading edge of downstream blades and produces aerodynamic noise. One approach to study turbulence-airfoil interaction noise is to model the oncoming turbulence as harmonic gusts. A compact noise source produces a dipole-like sound directivity pattern. However, when the acoustic wavelength is much smaller than the airfoil chord length, the airfoil needs to be treated as a non-compact source, and the gust-airfoil interaction becomes more complicated and results in multiple lobes generated in the radiated sound directivity. Capturing the short acoustic wavelength is a challenge for numerical simulations. In this work, simulations are performed for gust-airfoil interaction at different Mach numbers, using a high-fidelity direct Computational AeroAcoustic (CAA) approach based on a spectral/hp element method, verified by a CAA benchmark case. It is found that the squared sound pressure varies approximately as the 5th power of Mach number, which changes slightly with the observer location. This scaling law can give a better sound prediction than the flat-plate theory for thicker airfoils. Besides, another prediction method, based on the flat-plate theory and CAA simulation, has been proposed to give better predictions than the scaling law for thicker airfoils.

Keywords: aeroacoustics, gust-airfoil interaction, CFD, CAA

Procedia PDF Downloads 44
698 The Potential Fresh Water Resources of Georgia and Sustainable Water Management

Authors: Nana Bolashvili, Vakhtang Geladze, Tamazi Karalashvili, Nino Machavariani, George Geladze, Davit Kartvelishvili, Ana Karalashvili

Abstract:

Fresh water is the major natural resource of Georgia. The average perennial sum of the rivers' runoff in Georgia is 52,77 km³, out of which 9,30 km³ inflows from abroad. The major volume of transit river runoff is ascribed to the Chorokhi river. Average perennial runoff in Western Georgia is 41,52 km³, in Eastern Georgia 11,25 km³. The indices of Eastern and Western Georgia were calculated with 50% and 90% river runoff respectively, while the same index calculation for other countries is based on a 50% river runoff. Out of total volume of resources, 133,2 m³/sec (4,21 km³) has been geologically prospected by the State Commission on Reserves and Acknowledged as reserves available for exploitation, 48% (2,02 km³) of which is in Western Georgia and 2,19 km³ in Eastern Georgia. Considering acknowledged water reserves of all categories per capita water resources accounts to 2,2 m³/day, whereas high industrial category -0. 88 m³ /day fresh drinking water. According to accepted norms, the possibility of using underground water reserves is 2,5 times higher than the long-term requirements of the country. The volume of abundant fresh-water reserves in Georgia is about 150 m³/sec (4,74 km³). Water in Georgia is consumed mostly in agriculture for irrigation purposes. It makes 66,4% around Georgia, in Eastern Georgia 72,4% and 38% in Western Georgia. According to the long-term forecast provision of population and the territory with water resources in Eastern Georgia will be quite normal. A bit different is the situation in the lower reaches of the Khrami and Iori rivers which could be easily overcome by corresponding financing. The present day irrigation system in Georgia does not meet the modern technical requirements. The overall efficiency of their majority varies between 0,4-0,6. Similar is the situation in the fresh water and public service water consumption. Organization of the mentioned systems, installation of water meters, introduction of new methods of irrigation without water loss will substantially increase efficiency of water use. Besides new irrigation norms developed from agro-climatic, geographical and hydrological angle will significantly reduce water waste. Taking all this into account we assume that for irrigation agricultural lands in Georgia is necessary 6,0 km³ water, 5,5 km³ of which goes to Eastern Georgia on irrigation arable areas. To increase water supply in Eastern Georgian territory and its population is possible by means of new water reservoirs as the runoff of every river considerably exceeds the consumption volume. In conclusion, we should say that fresh water resources by which Georgia is that rich could be significant source for barter exchange and investment attraction. Certain volume of fresh water can be exported from Western Georgia quite trouble free, without bringing any damage to population and hydroecosystems. The precise volume of exported water per region/time and method/place of water consumption should be defined after the estimation of different hydroecosystems and detailed analyses of water balance of the corresponding territories.

Keywords: GIS, management, rivers, water resources

Procedia PDF Downloads 328
697 Modeling Operating Theater Scheduling and Configuration: An Integrated Model in Health-Care Logistics

Authors: Sina Keyhanian, Abbas Ahmadi, Behrooz Karimi

Abstract:

We present a multi-objective binary programming model which considers surgical cases are scheduling among operating rooms and the configuration of surgical instruments in limited capacity hospital trays, simultaneously. Many mathematical models have been developed previously in the literature addressing different challenges in health-care logistics such as assigning operating rooms, leveling beds, etc. But what happens inside the operating rooms along with the inventory management of required instruments for various operations, and also their integration with surgical scheduling have been poorly discussed. Our model considers the minimization of movements between trays during a surgery which recalls the famous cell formation problem in group technology. This assumption can also provide a major potential contribution to robotic surgeries. The tray configuration problem which consumes surgical instruments requirement plan (SIRP) and sequence of surgical procedures based on required instruments (SIRO) is nested inside the bin packing problem. This modeling approach helps us understand that most of the same-output solutions will not be necessarily identical when it comes to the rearrangement of surgeries among rooms. A numerical example has been dealt with via a proposed nested simulated annealing (SA) optimization approach which provides insights about how various configurations inside a solution can alter the optimal condition.

Keywords: health-care logistics, hospital tray configuration, off-line bin packing, simulated annealing optimization, surgical case scheduling

Procedia PDF Downloads 247
696 MigrationR: An R Package for Analyzing Bird Migration Data Based on Satellite Tracking

Authors: Xinhai Li, Huidong Tian, Yumin Guo

Abstract:

Bird migration is fantastic natural phenomenon. In recent years, the use of GPS transmitters has generated a vast amount of data, and the Movebank platform has made these data publicly accessible. For researchers, what they need are data analysis tools. Although there are approximately 90 R packages dedicated to animal movement analysis, the capacity for comprehensive processing of bird migration data remains limited. Hence, we introduce a novel package called migrationR. This package enables the calculation of movement speed, direction, changes in direction, flight duration, daily and annual movement distances. Furthermore, it can pinpoint the starting and ending dates of migration, estimate nest site locations and stopovers, and visualize movement trajectories at various time scales. migrationR distinguishes individuals through NMDS (non-metric multidimensional scaling) coordinates based on movement variables such as speed, flight duration, path tortuosity, and migration timing. A distinctive aspect of the package is the development of a hetero-occurrences species distribution model that takes into account the daily rhythm of individual birds across different landcover types. Habitat use for foraging and roosting differs significantly for many waterbirds. For example, White-naped Cranes at Poyang Lake in China typically forage in croplands and roost in shallow water areas. Both of these occurrence types are of equal importance. Optimal habitats consist of a combination of crop lands and shallow waters, whereas suboptimal habitats lack both, which necessitates birds to fly extensively. With migrationR, we conduct species distribution modeling for foraging and roosting separately and utilize the moving distance between crop lands and shallow water areas as an index of overall habitat suitability. This approach offers a more nuanced understanding of the habitat requirements for migratory birds and enhances our ability to analyze and interpret their movement patterns effectively. The functions of migrationR are demonstrated using our own tracking data of 78 White-naped Crane individuals from 2014 to 2023, comprising over one million valid locations in total. migrationR can be installed from a GitHub repository by executing the following command: remotes::install_github("Xinhai-Li/migrationR").

Keywords: bird migration, hetero-occurrences species distribution model, migrationR, R package, satellite telemetry

Procedia PDF Downloads 31
695 Lattice Boltzmann Simulation of Fluid Flow and Heat Transfer Through Porous Media by Means of Pore-Scale Approach: Effect of Obstacles Size and Arrangement on Tortuosity and Heat Transfer for a Porosity Degree

Authors: Annunziata D’Orazio, Arash Karimipour, Iman Moradi

Abstract:

The size and arrangement of the obstacles in the porous media has an influential effect on the fluid flow and heat transfer, even in the same porosity. Regarding to this, in the present study, several different amounts of obstacles, in both regular and stagger arrangements, in the analogous porosity have been simulated through a channel. In order to compare the effect of stagger and regular arrangements, as well as different quantity of obstacles in the same porosity, on fluid flow and heat transfer. In the present study, the Single Relaxation Time Lattice Boltzmann Method, with Bhatnagar-Gross-Ktook (BGK) approximation and D2Q9 model, is implemented for the numerical simulation. Also, the temperature field is modeled through a Double Distribution Function (DDF) approach. Results are presented in terms of velocity and temperature fields, streamlines, percentage of pressure drop and Nusselt number of the obstacles walls. Also, the correlation between tortuosity and Nusselt number of the obstacles walls, for both regular and staggered arrangements, has been proposed. On the other hand, the results illustrated that by increasing the amount of obstacles, as well as changing their arrangement from regular to staggered, in the same porosity, the rate of tortuosity and Nusselt number of the obstacles walls increased.

Keywords: lattice boltzmann method, heat transfer, porous media, pore-scale, porosity, tortuosity

Procedia PDF Downloads 51
694 The Roman Fora in North Africa Towards a Supportive Protocol to the Decision for the Morphological Restitution

Authors: Dhouha Laribi Galalou, Najla Allani Bouhoula, Atef Hammouda

Abstract:

This research delves into the fundamental question of the morphological restitution of built archaeology in order to place it in its paradigmatic context and to seek answers to it. Indeed, the understanding of the object of the study, its analysis, and the methodology of solving the morphological problem posed, are manageable aspects only by means of a thoughtful strategy that draws on well-defined epistemological scaffolding. In this stream, the crisis of natural reasoning in archaeology has generated multiple changes in this field, ranging from the use of new tools to the integration of an archaeological information system where urbanization involves the interplay of several disciplines. The built archaeological topic is also an architectural and morphological object. It is also a set of articulated elementary data, the understanding of which is about to be approached from a logicist point of view. Morphological restitution is no exception to the rule, and the inter-exchange between the different disciplines uses the capacity of each to frame the reflection on the incomplete elements of a given architecture or on its different phases and multiple states of existence. The logicist sequence is furnished by the set of scattered or destroyed elements found, but also by what can be called a rule base which contains the set of rules for the architectural construction of the object. The knowledge base built from the archaeological literature also provides a reference that enters into the game of searching for forms and articulations. The choice of the Roman Forum in North Africa is justified by the great urban and architectural characteristics of this entity. The research on the forum involves both a fairly large knowledge base but also provides the researcher with material to study - from a morphological and architectural point of view - starting from the scale of the city down to the architectural detail. The experimentation of the knowledge deduced on the paradigmatic level, as well as the deduction of an analysis model, is then carried out on the basis of a well-defined context which contextualises the experimentation from the elaboration of the morphological information container attached to the rule base and the knowledge base. The use of logicist analysis and artificial intelligence has allowed us to first question the aspects already known in order to measure the credibility of our system, which remains above all a decision support tool for the morphological restitution of Roman Fora in North Africa. This paper presents a first experimentation of the model elaborated during this research, a model framed by a paradigmatic discussion and thus trying to position the research in relation to the existing paradigmatic and experimental knowledge on the issue.

Keywords: classical reasoning, logicist reasoning, archaeology, architecture, roman forum, morphology, calculation

Procedia PDF Downloads 116
693 Comparative Fragility Analysis of Shallow Tunnels Subjected to Seismic and Blast Loads

Authors: Siti Khadijah Che Osmi, Mohammed Ahmad Syed

Abstract:

Underground structures are crucial components which required detailed analysis and design. Tunnels, for instance, are massively constructed as transportation infrastructures and utilities network especially in urban environments. Considering their prime importance to the economy and public safety that cannot be compromised, thus any instability to these tunnels will be highly detrimental to their performance. Recent experience suggests that tunnels become vulnerable during earthquakes and blast scenarios. However, a very limited amount of studies has been carried out to study and understanding the dynamic response and performance of underground tunnels under those unpredictable extreme hazards. In view of the importance of enhancing the resilience of these structures, the overall aims of the study are to evaluate probabilistic future performance of shallow tunnels subjected to seismic and blast loads by developing detailed fragility analysis. Critical non-linear time history numerical analyses using sophisticated finite element software Midas GTS NX have been presented about the current methods of analysis, taking into consideration of structural typology, ground motion and explosive characteristics, effect of soil conditions and other associated uncertainties on the tunnel integrity which may ultimately lead to the catastrophic failure of the structures. The proposed fragility curves for both extreme loadings are discussed and compared which provide significant information the performance of the tunnel under extreme hazards which may beneficial for future risk assessment and loss estimation.

Keywords: fragility analysis, seismic loads, shallow tunnels, blast loads

Procedia PDF Downloads 313