Search results for: intellectual concentration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5457

Search results for: intellectual concentration

627 Nanobiosensor System for Aptamer Based Pathogen Detection in Environmental Waters

Authors: Nimet Yildirim Tirgil, Ahmed Busnaina, April Z. Gu

Abstract:

Environmental waters are monitored worldwide to protect people from infectious diseases primarily caused by enteric pathogens. All long, Escherichia coli (E. coli) is a good indicator for potential enteric pathogens in waters. Thus, a rapid and simple detection method for E. coli is very important to predict the pathogen contamination. In this study, to the best of our knowledge, as the first time we developed a rapid, direct and reusable SWCNTs (single walled carbon nanotubes) based biosensor system for sensitive and selective E. coli detection in water samples. We use a novel and newly developed flexible biosensor device which was fabricated by high-rate nanoscale offset printing process using directed assembly and transfer of SWCNTs. By simple directed assembly and non-covalent functionalization, aptamer (biorecognition element that specifically distinguish the E. coli O157:H7 strain from other pathogens) based SWCNTs biosensor system was designed and was further evaluated for environmental applications with simple and cost-effective steps. The two gold electrode terminals and SWCNTs-bridge between them allow continuous resistance response monitoring for the E. coli detection. The detection procedure is based on competitive mode detection. A known concentration of aptamer and E. coli cells were mixed and after a certain time filtered. The rest of free aptamers injected to the system. With hybridization of the free aptamers and their SWCNTs surface immobilized probe DNA (complementary-DNA for E. coli aptamer), we can monitor the resistance difference which is proportional to the amount of the E. coli. Thus, we can detect the E. coli without injecting it directly onto the sensing surface, and we could protect the electrode surface from the aggregation of target bacteria or other pollutants that may come from real wastewater samples. After optimization experiments, the linear detection range was determined from 2 cfu/ml to 10⁵ cfu/ml with higher than 0.98 R² value. The system was regenerated successfully with 5 % SDS solution over 100 times without any significant deterioration of the sensor performance. The developed system had high specificity towards E. coli (less than 20 % signal with other pathogens), and it could be applied to real water samples with 86 to 101 % recovery and 3 to 18 % cv values (n=3).

Keywords: aptamer, E. coli, environmental detection, nanobiosensor, SWCTs

Procedia PDF Downloads 164
626 Features of Urban Planning Design of the Largest Cities Located in Areas with High Seismic (on the example of Almaty city, Republic of Kazakhstan)

Authors: Arkinzhan Mametov, Alexey Abilov

Abstract:

Strong earthquakes are dangerous natural phenomena that lead to the destruction of entire cities and the death of a large number of people. The recent strong earthquakes in Turkey and in a number of other states have shown that as a result of them, there are significant human casualties and huge destruction. The city of Almaty is located in the foothill basin of the Trans-Ili Alatau of the Tien Shan Mountain system, in a zone with 9–10-point seismicity. Almaty (formerly Verniy) was founded in 1856 and, since that period, has experienced two catastrophic earthquakes - in 1887 and 1911, which led almost to the complete destruction of the city. Since that time, according to seismologists, the city has been annually exposed to small seismic impacts of 2-3 points. This forced the subsequent search for ways to protect buildings and the public through the use of earthquake-resistant structures and materials, limiting the number of stores of buildings and increasing gaps between them, which was carried out quite consistently and since 1957. However, at present, it is necessary to state a number of violations, primarily of the urban development plan – the placement of high-density multi-stores commercial housing in the urban environment, bypassing the existing regulations and standards in the city. Their appearance contributes to a greater concentration of residents transport in a limited area, which can lead to harmful consequences during powerful earthquakes. The experience of eliminating the consequences of catastrophic earthquakes shows that an important factor in reducing human losses is timely technical and medical assistance to victims of earthquakes, the elimination of blockages, provision of temporary housing and evacuation of the population, especially in winter. In cities located in areas with high seismicity, it is necessary to ensure strict compliance with the requirements of urban development regulations, taking into account the entire complex of planning and organizational measures to minimize the destruction of buildings and human casualties.

Keywords: high seismic zones, urban planning regulations, special standards for planing, minimizing the human casualties

Procedia PDF Downloads 41
625 Effects of the Coagulation Bath and Reduction Process on SO2 Adsorption Capacity of Graphene Oxide Fiber

Authors: Özge Alptoğa, Nuray Uçar, Nilgün Karatepe Yavuz, Ayşen Önen

Abstract:

Sulfur dioxide (SO2) is a very toxic air pollutant gas and it causes the greenhouse effect, photochemical smog, and acid rain, which threaten human health severely. Thus, the capture of SO2 gas is very important for the environment. Graphene which is two-dimensional material has excellent mechanical, chemical, thermal properties, and many application areas such as energy storage devices, gas adsorption, sensing devices, and optical electronics. Further, graphene oxide (GO) is examined as a good adsorbent because of its important features such as functional groups (epoxy, carboxyl and hydroxyl) on the surface and layered structure. The SO2 adsorption properties of the fibers are usually investigated on carbon fibers. In this study, potential adsorption capacity of GO fibers was researched. GO dispersion was first obtained with Hummers’ method from graphite, and then GO fibers were obtained via wet spinning process. These fibers were converted into a disc shape, dried, and then subjected to SO2 gas adsorption test. The SO2 gas adsorption capacity of GO fiber discs was investigated in the fields of utilization of different coagulation baths and reduction by hydrazine hydrate. As coagulation baths, single and triple baths were used. In single bath, only ethanol and CaCl2 (calcium chloride) salt were added. In triple bath, each bath has a different concentration of water/ethanol and CaCl2 salt, and the disc obtained from triple bath has been called as reference disk. The fibers which were produced with single bath were flexible and rough, and the analyses show that they had higher SO2 adsorption capacity than triple bath fibers (reference disk). However, the reduction process did not increase the adsorption capacity, because the SEM images showed that the layers and uniform structure in the fiber form were damaged, and reduction decreased the functional groups which SO2 will be attached. Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) analyzes were performed on the fibers and discs, and the effects on the results were interpreted. In the future applications of the study, it is aimed that subjects such as pH and additives will be examined.

Keywords: coagulation bath, graphene oxide fiber, reduction, SO2 gas adsorption

Procedia PDF Downloads 336
624 Latitudinal Impact on Spatial and Temporal Variability of 7Be Activity Concentrations in Surface Air along Europe

Authors: M. A. Hernández-Ceballos, M. Marín-Ferrer, G. Cinelli, L. De Felice, T. Tollefsen, E. Nweke, P. V. Tognoli, S. Vanzo, M. De Cort

Abstract:

This study analyses the latitudinal impact of the spatial and temporal distribution on the cosmogenic isotope 7Be in surface air along Europe. The long-term database of the 6 sampling sites (Ivalo, Helsinki, Berlin, Freiburg, Sevilla and La Laguna), that regularly provide data to the Radioactivity Environmental Monitoring (REM) network managed by the Joint Research Centre (JRC) in Ispra, were used. The selection of the stations was performed attending to different factors, such as 1) heterogeneity in terms of latitude and altitude, and 2) long database coverage. The combination of these two parameters ensures a high degree of representativeness of the results. In the later, the temporal coverage varies between stations, being used in the present study sampling stations with a database more or less continuously from 1984 to 2011. The mean values of 7Be activity concentration presented a spatial distribution value ranging from 2.0 ± 0.9 mBq/m3 (Ivalo, north) to 4.8 ± 1.5 mBq/m3 (La Laguna, south). An increasing gradient with latitude was observed from the north to the south, 0.06 mBq/m3. However, there was no correlation with altitude, since all stations are sited within the atmospheric boundary layer. The analyses of the data indicated a dynamic range of 7Be activity for solar cycle and phase (maximum or minimum), having been observed different impact on stations according to their location. The results indicated a significant seasonal behavior, with the maximum concentrations occurring in the summer and minimum in the winter, although with differences in the values reached and in the month registered. Due to the large heterogeneity in the temporal pattern with which the individual radionuclide analyses were performed in each station, the 7Be monthly index was calculated to normalize the measurements and perform the direct comparison of monthly evolution among stations. Different intensity and evolution of the mean monthly index were observed. The knowledge of the spatial and temporal distribution of this natural radionuclide in the atmosphere is a key parameter for modeling studies of atmospheric processes, which are important phenomena to be taken into account in the case of a nuclear accident.

Keywords: Berilium-7, latitudinal impact in Europe, seasonal and monthly variability, solar cycle

Procedia PDF Downloads 315
623 Geometric, Energetic and Topological Analysis of (Ethanol)₉-Water Heterodecamers

Authors: Jennifer Cuellar, Angie L. Parada, Kevin N. S. Chacon, Sol M. Mejia

Abstract:

The purification of bio-ethanol through distillation methods is an unresolved issue at the biofuel industry because of the ethanol-water azeotrope formation, which increases the steps of the purification process and subsequently increases the production costs. Therefore, understanding the mixture nature at the molecular level could provide new insights for improving the current methods and/or designing new and more efficient purification methods. For that reason, the present study focuses on the evaluation and analysis of (ethanol)₉-water heterodecamers, as the systems with the minimum molecular proportion that represents the azeotropic concentration (96 %m/m in ethanol). The computational modelling was carried out with B3LYP-D3/6-311++G(d,p) in Gaussian 09. Initial explorations of the potential energy surface were done through two methods: annealing simulated runs and molecular dynamics trajectories besides intuitive structures obtained from smaller (ethanol)n-water heteroclusters, n = 7, 8 and 9. The energetic order of the seven stable heterodecamers determines the most stable heterodecamer (Hdec-1) as a structure forming a bicyclic geometry with the O-H---O hydrogen bonds (HBs) where the water is a double proton donor molecule. Hdec-1 combines 1 water molecule and the same quantity of every ethanol conformer; this is, 3 trans, 3 gauche 1 and 3 gauche 2; its abundance is 89%, its decamerization energy is -80.4 kcal/mol, i.e. 13 kcal/mol most stable than the less stable heterodecamer. Besides, a way to understand why methanol does not form an azeotropic mixture with water, analogous systems ((ethanol)10, (methanol)10, and (methanol)9-water)) were optimized. Topologic analysis of the electron density reveals that Hec-1 forms 33 weak interactions in total: 11 O-H---O, 8 C-H---O, 2 C-H---C hydrogen bonds and 12 H---H interactions. The strength and abundance of the most unconventional interactions (H---H, C-H---O and C-H---O) seem to explain the preference of the ethanol for forming heteroclusters instead of clusters. Besides, O-H---O HBs present a significant covalent character according to topologic parameters as the Laplacian of electron density and the relationship between potential and kinetic energy densities evaluated at the bond critical points; obtaining negatives values and values between 1 and 2, for those two topological parameters, respectively.

Keywords: ADMP, DFT, ethanol-water azeotrope, Grimme dispersion correction, simulated annealing, weak interactions

Procedia PDF Downloads 84
622 Electrospun Fibre Networks Loaded with Hydroxyapatite and Barium Titanate as Smart Scaffolds for Tissue Regeneration

Authors: C. Busuioc, I. Stancu, A. Nicoara, A. Zamfirescu, A. Evanghelidis

Abstract:

The field of tissue engineering has expanded its potential due to the use of composite biomaterials belonging to increasingly complex systems, leading to bone substitutes with properties that are continuously improving to meet the patient's specific needs. Furthermore, the development of biomaterials based on ceramic and polymeric phases is an unlimited resource for future scientific research, with the final aim of restoring the original tissue functionality. Thus, in the first stage, composite scaffolds based on polycaprolactone (PCL) or polylactic acid (PLA) and inorganic powders were prepared by employing the electrospinning technique. The targeted powders were: commercial and laboratory synthesized hydroxyapatite (HAp), as well as barium titanate (BT). By controlling the concentration of the powder within the precursor solution, together with the processing parameters, different types of three-dimensional architectures were achieved. In the second stage, both the mineral powders and hybrid composites were investigated in terms of composition, crystalline structure, and microstructure so that to demonstrate their suitability for tissue engineering applications. Regarding the scaffolds, these were proven to be homogeneous on large areas and loaded with mineral particles in different proportions. The biological assays demonstrated that the addition of inorganic powders leads to modified responses in the presence of simulated body fluid (SBF) or cell cultures. Through SBF immersion, the biodegradability coupled with bioactivity were highlighted, with fiber fragmentation and surface degradation, as well as apatite layer formation within the testing period. Moreover, the final composites represent supports accepted by the cells, favoring implant integration. Concluding, the purposed fibrous materials based on bioresorbable polymers and mineral powders, produced by the electrospinning technique, represent candidates with considerable potential in the field of tissue engineering. Future improvements can be attained by optimizing the synthesis process or by simultaneous incorporation of multiple inorganic phases with well-defined biological action in order to fabricate multifunctional composites.

Keywords: barium titanate, electrospinning, fibre networks, hydroxyapatite, smart scaffolds

Procedia PDF Downloads 80
621 Comparison of β-Cell Regenerative Potentials of Selected Sri Lankan Medicinal Plant Extracts in Alloxan-Induced Diabetic Rats

Authors: A. P. Attanayake, K. A. P. W. Jayatilaka, L. K. B. Mudduwa, C. Pathirana

Abstract:

Triggering of β-cell regeneration is a recognized therapeutic strategy for the treatment of type 1 diabetes mellitus. One such approach to foster restoration and regeneration of β-cells is from exogenous natural extracts. The aim of the present study was to investigate and compare the β-cell regenerative potentials of the extracts of Spondias pinnata (Linn. f.) Kurz, Coccinia grandis (L.) Voigt and Gmelina arborea Roxb. in alloxan induced diabetic rats. Wistar rats were divided in to six groups (n=6); healthy untreated rats, alloxan induced diabetic untreated rats (150 mg/kg, ip), diabetic rats receiving the extracts of S. pinnata (1.0 g/kg), C. grandis (0.75 g/kg), G. arobrea (1.00 g/kg) and diabetic rats receiving glibenclamide (0.5 mg/kg) for 30 days. The assessment of selected biochemical parameters, histopathology and immunohistochemistry in the pancreatic tissue were done on the 30th day. The reduction in the percentage of HbA1C was in the decreasing order of C. grandis (35%), G. arborea (31%) and S. pinnata (29%) in alloxan induced diabetic rats (p< 0.05). The concentration of serum fructosamine, insulin and C-peptide were decreased significantly in a decreasing order of C. grandis (30%, 72%, 51%), G. arborea (25%, 44%, 44%) and S. pinnata (27%, 34%, 24%) in alloxan induced diabetic rats (p < 0.05). The extent of β-cell regeneration was in the decreasing order of C. grandis, G. arborea, S. pinnata reflected through the increased percentage of insulin secreting β-cells in alloxan induced diabetic rats. The extract of C. grandis produced the highest degree of β-cell regeneration demonstrated through an increase in the number of islets and percentage of the insulin secreting β-cells (75%) in the pancreas of diabetic rats (p < 0.05). Further the C. grandis extract produced a significant increase in mean profile diameter in small (118%), average (10%), and large (13%) islets as compared with diabetic control rats respectively. However, statistically significant increase in the islet profile diameter was shown only in average (2%) and large (5%) islets in the G. arborea extract treated rats and large islets (5%) in S. pinnata extract treated diabetic rats (p < 0.05). The β-cell regeneration potency was in the decreasing order of C. grandis (0.75 g/kg), G. arborea (1.00 g/kg) and S. pinnata (1.00 g/kg) in alloxan induced diabetic rats. The three plant extracts may be useful as natural agents of triggering the β-cell regeneration in the management of type 1 diabetes mellitus.

Keywords: alloxan-induced diabetic rats, β-cell regeneration, histopathology, immunohistochemistry

Procedia PDF Downloads 214
620 Molecular Insights into the 5α-Reductase Inhibitors: Quantitative Structure Activity Relationship, Pre-Absorption, Distribution, Metabolism, and Excretion and Docking Studies

Authors: Richa Dhingra, Monika, Manav Malhotra, Tilak Raj Bhardwaj, Neelima Dhingra

Abstract:

5-Alpha-reductases (5AR), a membrane bound, NADPH dependent enzyme and convert male hormone testosterone (T) into more potent androgen dihydrotestosterone (DHT). DHT is the required for the development and function of male sex organs, but its overproduction has been found to be associated with physiological conditions like Benign Prostatic Hyperplasia (BPH). Thus the inhibition of 5ARs could be a key target for the treatment of BPH. In present study, 2D and 3D Quantitative Structure Activity Relationship (QSAR) pharmacophore models have been generated for 5AR based on known inhibitory concentration (IC₅₀) values with extensive validations. The four featured 2D pharmacophore based PLS model correlated the topological interactions (–OH group connected with one single bond) (SsOHE-index); semi-empirical (Quadrupole2) and physicochemical descriptors (Mol. wt, Bromines Count, Chlorines Count) with 5AR inhibitory activity, and has the highest correlation coefficient (r² = 0.98, q² =0.84; F = 57.87, pred r² = 0.88). Internal and external validation was carried out using test and proposed set of compounds. The contribution plot of electrostatic field effects and steric interactions generated by 3D-QSAR showed interesting results in terms of internal and external predictability. The well validated 2D Partial Least Squares (PLS) and 3D k-nearest neighbour (kNN) models were used to search novel 5AR inhibitors with different chemical scaffold. To gain more insights into the molecular mechanism of action of these steroidal derivatives, molecular docking and in silico absorption, distribution, metabolism, and excretion (ADME) studies were also performed. Studies have revealed the hydrophobic and hydrogen bonding of the ligand with residues Alanine (ALA) 63A, Threonine (THR) 60A, and Arginine (ARG) 456A of 4AT0 protein at the hinge region. The results of QSAR, molecular docking, in silico ADME studies provide guideline and mechanistic scope for the identification of more potent 5-Alpha-reductase inhibitors (5ARI).

Keywords: 5α-reductase inhibitor, benign prostatic hyperplasia, ligands, molecular docking, QSAR

Procedia PDF Downloads 134
619 Preliminary Study of Gold Nanostars/Enhanced Filter for Keratitis Microorganism Raman Fingerprint Analysis

Authors: Chi-Chang Lin, Jian-Rong Wu, Jiun-Yan Chiu

Abstract:

Myopia, ubiquitous symptom that is necessary to correct the eyesight by optical lens struggles many people for their daily life. Recent years, younger people raise interesting on using contact lens because of its convenience and aesthetics. In clinical, the risk of eye infections increases owing to the behavior of incorrectly using contact lens unsupervised cleaning which raising the infection risk of cornea, named ocular keratitis. In order to overcome the identification needs, new detection or analysis method with rapid and more accurate identification for clinical microorganism is importantly needed. In our study, we take advantage of Raman spectroscopy having unique fingerprint for different functional groups as the distinct and fast examination tool on microorganism. As we know, Raman scatting signals are normally too weak for the detection, especially in biological field. Here, we applied special SERS enhancement substrates to generate higher Raman signals. SERS filter we designed in this article that prepared by deposition of silver nanoparticles directly onto cellulose filter surface and suspension nanoparticles - gold nanostars (AuNSs) also be introduced together to achieve better enhancement for lower concentration analyte (i.e., various bacteria). Research targets also focusing on studying the shape effect of synthetic AuNSs, needle-like surface morphology may possible creates more hot-spot for getting higher SERS enhance ability. We utilized new designed SERS technology to distinguish the bacteria from ocular keratitis under strain level, and specific Raman and SERS fingerprint were grouped under pattern recognition process. We reported a new method combined different SERS substrates can be applied for clinical microorganism detection under strain level with simple, rapid preparation and low cost. Our presenting SERS technology not only shows the great potential for clinical bacteria detection but also can be used for environmental pollution and food safety analysis.

Keywords: bacteria, gold nanostars, Raman spectroscopy surface-enhanced Raman scattering filter

Procedia PDF Downloads 136
618 A Study on Adsorption Ability of MnO2 Nanoparticles to Remove Methyl Violet Dye from Aqueous Solution

Authors: Zh. Saffari, A. Naeimi, M. S. Ekrami-Kakhki, Kh. Khandan-Barani

Abstract:

The textile industries are becoming a major source of environmental contamination because an alarming amount of dye pollutants are generated during the dyeing processes. Organic dyes are one of the largest pollutants released into wastewater from textile and other industrial processes, which have shown severe impacts on human physiology. Nano-structure compounds have gained importance in this category due their anticipated high surface area and improved reactive sites. In recent years several novel adsorbents have been reported to possess great adsorption potential due to their enhanced adsorptive capacity. Nano-MnO2 has great potential applications in environment protection field and has gained importance in this category because it has a wide variety of structure with large surface area. The diverse structures, chemical properties of manganese oxides are taken advantage of in potential applications such as adsorbents, sensor catalysis and it is also used for wide catalytic applications, such as degradation of dyes. In this study, adsorption of Methyl Violet (MV) dye from aqueous solutions onto MnO2 nanoparticles (MNP) has been investigated. The surface characterization of these nano particles was examined by Particle size analysis, Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and X-Ray Diffraction (XRD). The effects of process parameters such as initial concentration, pH, temperature and contact duration on the adsorption capacities have been evaluated, in which pH has been found to be most effective parameter among all. The data were analyzed using the Langmuir and Freundlich for explaining the equilibrium characteristics of adsorption. And kinetic models like pseudo first- order, second-order model and Elovich equation were utilized to describe the kinetic data. The experimental data were well fitted with Langmuir adsorption isotherm model and pseudo second order kinetic model. The thermodynamic parameters, such as Free energy of adsorption (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) were also determined and evaluated.

Keywords: MnO2 nanoparticles, adsorption, methyl violet, isotherm models, kinetic models, surface chemistry

Procedia PDF Downloads 232
617 Comparative Growth Kinetic Studies of Two Strains Saccharomyces cerevisiae Isolated from Dates and a Commercial Strain

Authors: Nizar Chaira

Abstract:

Dates, main products of the oases, due to their therapeutic interests, are considered highly nutritious fruit. Several studies on the valuation biotechnology and technology of dates are made, and several products are already prepared. Isolation of the yeast Saccharomyces cerevisiae, naturally presents in a scrap of date, optimization of growth in the medium based on date syrup and production biomass can potentially expand the range of secondary products of dates. To this end, this paper tries to study the suitability for processing dates technology and biotechnology to use the date pulp as a carbon source for biological transformation. Two strains of Saccharomyces cerevisiae isolated from date syrup (S1, S2) and a commercial strain have used for this study. After optimization of culture conditions, production in a fermenter on two different media (date syrup and beet molasses) was performed. This is followed by studying the kinetics of growth, protein production and consumption of sugars in crops strain 1, 2 and the commercial strain and on both media. The results obtained showed that a concentration of 2% sugar, 2.5 g/l yeast extract, pH 4.5 and a temperature between 25 and 35°C are the optimal conditions for cultivation in a bioreactor. The exponential phase of the specific growth rate of a strain on both media showed that it is about 0.3625 h-1 for the production of a medium based on date syrup and 0.3521 h-1 on beet molasses with a generation time equal to 1.912 h and on the medium based on date syrup, yeast consumes preferentially the reducing sugars. For the production of protein, we showed that this latter presents an exponential phase when the medium starts to run out of reducing sugars. For strain 2, the specific growth rate is about 0.261h-1 for the production on a medium based on date syrup and 0207 h-1 on beet molasses and the base medium syrup date of the yeast consumes preferentially reducing sugars. For the invertase and other metabolits, these increases rapidly after exhaustion of reducing sugars. The comparison of productivity between the three strains on the medium based on date syrup showed that the maximum value is obtained with the second strain: p = 1072 g/l/h as it is about of 0923 g/l/h for strain 1 and 0644 g/l/h for the commercial strain. Thus, isolates of date syrup are more competitive than the commercial strain and can give the same performance in a shorter time with energy gain.

Keywords: date palm, fermentation, molasses, Saccharomyces, syrup

Procedia PDF Downloads 288
616 Effect of Tissue Preservation Chemicals on Decomposition in Different Soil Types

Authors: Onyekachi Ogbonnaya Iroanya, Taiye Abdullahi Gegele, Frank Tochukwu Egwuatu

Abstract:

Introduction: Forensic taphonomy is a multifaceted area that incorporates decomposition, chemical and biological cadaver exposure in post-mortem event chronology and reconstruction to predict the Post Mortem Interval (PMI). The aim of this study was to evaluate the integrity of DNA extracted from the remains of embalmed decomposed Sus domesticus tissues buried in different soil types. Method: A total of 12 limbs of Sus domesticus weighing between 0.7-1.4 kg were used. Each of the samples across the groups was treated with 10% formaldehyde, absolute methanol and 50% Pine oil for 24 hours before burial except the control samples, which were buried immediately. All samples were buried in shallow simulated Clay, Sandy and Loamy soil graves for 12 months. The DNA for each sample was extracted and quantified with Nanodrop Spectrophotometer (6305 JENWAY spectrometers). The rate of decomposition was examined through the modified qualitative decomposition analysis. Extracted DNA was amplified through PCR and bands visualized via gel electrophoresis. A biochemical enzyme assay was done for each burial grave soil. Result: The limbs in all burial groups had lost weight over the burial period. There was a significant increase in the soil urease level in the samples preserved in formaldehyde across the 3 soil type groups (p≤0.01). Also, the control grave soils recorded significantly higher alkaline phosphatase, dehydrogenase and calcium carbonate values compared to experimental grave soils (p≤0.01). The experimental samples showed a significant decrease in DNA concentration and purity when compared to the control groups (p≤0.01). Obtained findings of the soil biochemical analysis showed the embalming treatment altered the relationship between organic matter decomposition and soil biochemical properties as observed in the fluctuations that were recorded in the soil biochemical parameters. The PCR amplified DNA showed no bands on the gel electrophoresis plates. Conclusion: In criminal investigations, factors such as burial grave soil, grave soil biochemical properties, antemortem exposure to embalming chemicals should be considered in post-mortem interval (PMI) determination.

Keywords: forensic taphonomy, post-mortem interval (PMI), embalmment, decomposition, grave soil

Procedia PDF Downloads 134
615 The Role of Strategic Metals in Cr-Al-Pt-V Composition of Protective Bond Coats

Authors: A. M. Pashayev, A. S. Samedov, T. B. Usubaliyev, N. Sh. Yusifov

Abstract:

Different types of coating technologies are widely used for gas turbine blades. Thermal barrier coatings, consisting of ceramic top coat, thermally grown oxide and a metallic bond coat are used in applications for thermal protection of hot section components in gas turbine engines. Operational characteristics and longevity of high-temperature turbine blades substantially depend on a right choice of composition of the protective thermal barrier coatings. At a choice of composition of a coating and content of the basic elements it is necessary to consider following factors, as minimum distinctions of coefficients of thermal expansions of elements, level of working temperatures and composition of the oxidizing environment, defining the conditions for the formation of protective layers, intensity of diffusive processes and degradation speed of protective properties of elements, extent of influence on the fatigue durability of details during operation, using of elements with high characteristics of thermal stability and satisfactory resilience of gas corrosion, density, hardness, thermal conduction and other physical characteristics. Forecasting and a choice of a thermal barrier coating composition, all above factors at the same time cannot be considered, as some of these characteristics are defined by experimental studies. The implemented studies and investigations show that one of the main failures of coatings used on gas turbine blades is related to not fully taking the physical-chemical features of elements into consideration during the determination of the composition of alloys. It leads to the formation of more difficult spatial structure, composition which also changes chaotically in some interval of concentration that doesn't promote thermal and structural firmness of a coating. For the purpose of increasing the thermal and structural resistant of gas turbine blade coatings is offered a new approach to forecasting of composition on the basis of analysis of physical-chemical characteristics of alloys taking into account the size factor, electron configuration, type of crystal lattices and Darken-Gurry method. As a result, of calculations and experimental investigations is offered the new four-component metallic bond coat on the basis of chrome for the gas turbine blades.

Keywords: gas turbine blades, thermal barrier coating, metallic bond coat, strategic metals, physical-chemical features

Procedia PDF Downloads 273
614 Status of the European Atlas of Natural Radiation

Authors: G. Cinelli, T. Tollefsen, P. Bossew, V. Gruber, R. Braga, M. A. Hernández-Ceballos, M. De Cort

Abstract:

In 2006, the Joint Research Centre (JRC) of the European Commission started the project of the 'European Atlas of Natural Radiation'. The Atlas aims at preparing a collection of maps of Europe displaying the levels of natural radioactivity caused by different sources (indoor and outdoor radon, cosmic radiation, terrestrial radionuclides, terrestrial gamma radiation, etc). The overall goal of the project is to estimate, in geographical resolution, the annual dose that the public may receive from natural radioactivity, combining all the information from the different radiation components. The first map which has been developed is the European map of indoor radon (Rn) since in most cases Rn is the most important contribution to exposure. New versions of the map are realised when new countries join the project or when already participating countries send new data. We show the latest status of this map which currently includes 25 European countries. Second, the JRC has undertaken to map a variable which measures 'what earth delivers' in terms of Rn. The corresponding quantity is called geogenic radon potential (RP). Due to the heterogeneity of data sources across the Europe there is need to develop a harmonized quantity which at the one hand adequately measures or classifies the RP, and on the other hand is suited to accommodate the variety of input data used to estimate this target quantity. Candidates for input quantities which may serve as predictors of the RP, and for which data are available across Europe, to different extent, are Uranium (U) concentration in rocks and soils, soil gas radon and soil permeability, terrestrial gamma dose rate, geological information and indoor data from ground floor. The European Geogenic Radon Map gives the possibility to characterize areas, on European geographical scale, for radon hazard where indoor radon measurements are not available. Parallel to ongoing work on the European Indoor Radon, Geogenic Radon and Cosmic Radiation Maps, we made progress in the development of maps of terrestrial gamma radiation and U, Th and K concentrations in soil and bedrock. We show the first, preliminary map of the terrestrial gamma dose rate, estimated using the data of ambient dose equivalent rate available from the EURDEP system (about 5000 fixed monitoring stations across Europe). Also, the first maps of U, Th, and K concentrations in soil and bedrock are shown in the present work.

Keywords: Europe, natural radiation, mapping, indoor radon

Procedia PDF Downloads 268
613 Passive Aeration of Wastewater: Analytical Model

Authors: Ayman M. El-Zahaby, Ahmed S. El-Gendy

Abstract:

Aeration for wastewater is essential for the proper operation of aerobic treatment units where the wastewater normally has zero dissolved oxygen. This is due to the need of oxygen by the aerobic microorganisms to grow and survive. Typical aeration units for wastewater treatment require electric energy for their operation such as mechanical aerators or diffused aerators. The passive units are units that operate without the need of electric energy such as cascade aerators, spray aerators and tray aerators. In contrary to the cascade aerators and spray aerators, tray aerators require much smaller area foot print for their installation as the treatment stages are arranged vertically. To the extent of the authors knowledge, the design of tray aerators for the aeration purpose has not been presented in the literature. The current research concerns with an analytical study for the design of tray aerators for the purpose of increasing the dissolved oxygen in wastewater treatment systems, including an investigation on different design parameters and their impact on the aeration efficiency. The studied aerator shall act as an intermediate stage between an anaerobic primary treatment unit and an aerobic treatment unit for small scale treatment systems. Different free falling flow regimes were investigated, and the thresholds for transition between regimes were obtained from the literature. The study focused on the jetting flow regime between trays. Starting from the two film theory, an equation that relates the dissolved oxygen concentration effluent from the system was derived as a function of the flow rate, number of trays, tray area, spacing between trays, number and diameter of holes and the water temperature. A MATLab ® model was developed for the derived equation. The expected aeration efficiency under different tray configurations and operating conditions were illustrated through running the model with varying the design parameters. The impact of each parameter was illustrated. The overall system efficiency was found to increase by decreasing the hole diameter. On the other side, increasing the number of trays, tray area, flow rate per hole or tray spacing had positive effect on the system efficiency.

Keywords: aeration, analytical, passive, wastewater

Procedia PDF Downloads 175
612 Expression of Human Papillomavirus Type 18 L1 Virus-Like Particles in Methylotropic Yeast, Pichia Pastoris

Authors: Hossein Rassi, Marjan Moradi Fard, Samaneh Niko

Abstract:

Human papillomavirus type 16 and 18 are closely associated with the development of human cervical carcinoma, which is one of the most common causes of cancer death in women worldwide. At present, HPV type 18 accounts for about 34 % of all HPV infections in Iran and the most promising vaccine against HPV infection is based on the L1 major capsid protein. The L1 protein of HPV18 has the capacity to self-assemble into capsomers or virus-like particles (VLPs) that are non-infectious, highly immunogenic and allowing their use in vaccine production. The methylotrophic yeast Pichia pastoris is an efficient and inexpensive expression system used to produce high levels of heterologous proteins. In this study we expressed HPV18 L1 VLPs in P. pastoris. The gene encoding the major capsid protein L1 of the high-risk HPV type 18 was isolated from Iranian patient by PCR and inserted into pTG19-T vector to obtain the recombinant expression vector pTG19-HPV18-L1. Then, the pTG19-HPV18-L1 was transformed into E. coli strain DH5α and the recombinant protein HPV18 L1 was expressed under IPTG induction in soluble form. The HPV18 L1 gene was excised from recombinant plasmid with XhoI and EcoRI enzymes and ligated into the yeast expression vector pPICZα linearized with the same enzymes, and transformed into P. pastoris. Induction and expression of HPV18 L1 protein was demonstrated by BMGY/BMMY and RT PCR. The parameters for induced cultivation for strain in P. pastoris KM71 with HPV16L1 were investigated in shaking flask cultures. After induced cultivation BMMY (pH 7.0) medium supplemented with methanol to a final concentration of 1.0% every 24 h at 37 degrees C for 96 h, the recombinant produced 78.6 mg/L of L1 protein. This work offers the possibility for the production of prophylactic vaccine for cervical carcinoma by P. pastoris for HPV-18 L1 gene. The VLP-based HPV vaccines can prevent persistent HPV18 infections and cervical cancer in Iran. The HPV-18 L1 gene was expressed successfully in E.coli, which provides necessary basis for preparing HPV-18 L1 vaccine in human. Also, HPV type 6 L1 proteins expressed in Pichia pastoris will facilitate the HPV vaccine development and structure-function study.

Keywords: Pichia pastoris, L1 virus-like particles, human papillomavirus type 18, biotechnology

Procedia PDF Downloads 379
611 Effect Of Sewage Treatment Plant's Effluent On Early Life Stages Development And Sex Determination Of Brown Trout (Salmo Trutta M. Fario)

Authors: Ning Zhang, Kateřina Grabicová, Pavel Horký, Zuzana Linhartová, Jan Turek, Martin Pšenička, Linan Gao, Roman Grabic, Tomáš Randák

Abstract:

Sewage treatment plant (STP) effluent is a significant source of pharmaceuticals and personal care products (PPCPs) in the aquatic environment. Exposure laboratory studies have a limited reporting capacity to capture the complex effect of actual pollution on exposed organisms in the aquatic environment. This study aimed to study the impact of contamination originating from the STP's effluent on early life stages development and sex determination of brown trout (Salmo trutta m. fario) – a native coldwater species with a long period of embryo-larval development – by using special floating egg incubators usually used to support native fish species within fisheries management. Brown trout eggs were placed upstream (the control group) and downstream (the exposure group) of the STP Prachatice situated on the Zivny stream. Up to 72 PPCPs were detected in at least one water sample with higher concentration downstream than upstream. Compared with the control group, the mortality of brown trout in the exposure group was significantly higher; after statistical correction of temperature, the size, growth rate, and metabolic rate of brown trout in the exposure group were significantly lower than those in the control group. After several months of natural growth in the stream, the male-to-female ratio of randomly caught brown trout in the exposure group was 1: 1.9, showing the imbalance of sex ratio. These results suggest that STP effluents can negatively affect the early growth and development of fish in watersheds, and these negative effects may further affect the population density of aquatic organisms and the balance of the whole aquatic ecosystem. The use of floating egg incubators proved to be a promising approach for studying the effect of pollution on the early developmental stages of fish in natural conditions.

Keywords: fish egg incubator, PPCPs, real exposure scenario, STP

Procedia PDF Downloads 31
610 Absorption Kinetic and Tensile Mechanical Properties of Swollen Elastomer/Carbon Black Nanocomposites using Typical Solvents

Authors: F. Elhaouzi, H. Lahlali, M. Zaghrioui, I. El Aboudi A. BelfKira, A. Mdarhri

Abstract:

The effect of physico chemical properties of solvents on the transport process and mechanical properties in elastomeric nano composite materials is reported. The investigated samples are formed by a semi-crystalline ethylene-co-butyl acrylate polymer filled with hard spherical carbon black (CB) nano particles. The swelling behavior was studied by immersion the dried samples in selected solvents at room temperature during 2 days. For this purpose, two chemical compounds methyl derivatives of aromatic hydrocarbons of benzene, i.e. toluene and xylene, are used to search for the mass and molar volume dependence on the absorption kinetics. Mass gain relative to the mass of dry material at specific times was recorded to probe the absorption kinetics. The transport of solvent molecules in these filled elastomeric composites is following a Fickian diffusion mechanism. Additionally, the swelling ratio and diffusivity coefficient deduced from the Fickian law are found to decrease with the CB concentration. These results indicate that the CB nano particles increase the effective path length for diffusion and consequently limit the absorption of the solvent by occupation free volumes in the material. According to physico chemical properties of the two used solvents, it is found that the diffusion is more important for the toluene molecules solvent due to their low values of the molecular weight and volume molar compared to those for the xylene. Differential Scanning Calorimetry (DSC) and X-ray photo electron (XPS) were also used to probe the eventual change in the chemical composition for the swollen samples. Mechanically speaking, the stress-strain curves of uniaxial tensile tests pre- and post- swelling highlight a remarkably decrease of the strength and elongation at break of the swollen samples. This behavior can be attributed to the decrease of the load transfer density between the matrix and the CB in the presence of the solvent. We believe that the results reported in this experimental investigation can be useful for some demanding applications e.g. tires, sealing rubber.

Keywords: nanocomposite, absorption kinetics, mechanical behavior, diffusion, modelling, XPS, DSC

Procedia PDF Downloads 321
609 Removal of Total Petroleum Hydrocarbons from Contaminated Soils by Electrochemical Method

Authors: D. M. Cocârță, I. A. Istrate, C. Streche, D. M. Dumitru

Abstract:

Soil contamination phenomena are a wide world issue that has received the important attention in the last decades. The main pollutants that have affected soils are especially those resulted from the oil extraction, transport and processing. This paper presents results obtained in the framework of a research project focused on the management of contaminated sites with petroleum products/ REMPET. One of the specific objectives of the REMPET project was to assess the electrochemical treatment (improved with polarity change respect to the typical approach) as a treatment option for the remediation of total petroleum hydrocarbons (TPHs) from contaminated soils. Petroleum hydrocarbon compounds attach to soil components and are difficult to remove and degrade. Electrochemical treatment is a physicochemical treatment that has gained acceptance as an alternative method, for the remediation of organic contaminated soils comparing with the traditional methods as bioremediation and chemical oxidation. This type of treatment need short time and have high removal efficiency, being usually applied in heterogeneous soils with low permeability. During the experimental tests, the following parameters were monitored: pH, redox potential, humidity, current intensity, energy consumption. The electrochemical method was applied in an experimental setup with the next dimensions: 450 mm x 150 mm x 150 mm (L x l x h). The setup length was devised in three electrochemical cells that were connected at two power supplies. The power supplies configuration was provided in such manner that each cell has a cathode and an anode without overlapping. The initial value of TPH concentration in soil was of 1420.28 mg/kgdw. The remediation method has been applied for only 21 days, when it was already noticed an average removal efficiency of 31 %, with better results in the anode area respect to the cathode one (33% respect to 27%). The energy consumption registered after the development of the experiment was 10.6 kWh for exterior power supply and 16.1 kWh for the interior one. Taking into account that at national level, the most used methods for soil remediation are bioremediation (which needs too much time to be implemented and depends on many factors) and thermal desorption (which involves high costs in order to be implemented), the study of electrochemical treatment will give an alternative to these two methods (and their limitations).

Keywords: electrochemical remediation, pollution, total petroleum hydrocarbons, soil contamination

Procedia PDF Downloads 208
608 Food Foam Characterization: Rheology, Texture and Microstructure Studies

Authors: Rutuja Upadhyay, Anurag Mehra

Abstract:

Solid food foams/cellular foods are colloidal systems which impart structure, texture and mouthfeel to many food products such as bread, cakes, ice-cream, meringues, etc. Their heterogeneous morphology makes the quantification of structure/mechanical relationships complex. The porous structure of solid food foams is highly influenced by the processing conditions, ingredient composition, and their interactions. Sensory perceptions of food foams are dependent on bubble size, shape, orientation, quantity and distribution and determines the texture of foamed foods. The state and structure of the solid matrix control the deformation behavior of the food, such as elasticity/plasticity or fracture, which in turn has an effect on the force-deformation curves. The obvious step in obtaining the relationship between the mechanical properties and the porous structure is to quantify them simultaneously. Here, we attempt to research food foams such as bread dough, baked bread and steamed rice cakes to determine the link between ingredients and the corresponding effect of each of them on the rheology, microstructure, bubble size and texture of the final product. Dynamic rheometry (SAOS), confocal laser scanning microscopy, flatbed scanning, image analysis and texture profile analysis (TPA) has been used to characterize the foods studied. In all the above systems, there was a common observation that when the mean bubble diameter is smaller, the product becomes harder as evidenced by the increase in storage and loss modulus (G′, G″), whereas when the mean bubble diameter is large the product is softer with decrease in moduli values (G′, G″). Also, the bubble size distribution affects texture of foods. It was found that bread doughs with hydrocolloids (xanthan gum, alginate) aid a more uniform bubble size distribution. Bread baking experiments were done to study the rheological changes and mechanisms involved in the structural transition of dough to crumb. Steamed rice cakes with xanthan gum (XG) addition at 0.1% concentration resulted in lower hardness with a narrower pore size distribution and larger mean pore diameter. Thus, control of bubble size could be an important parameter defining final food texture.

Keywords: food foams, rheology, microstructure, texture

Procedia PDF Downloads 308
607 Chemical, Structural and Mechanical Optimization of Zr-Based Bulk Metallic Glass for Biomedical Applications

Authors: Eliott Guérin, Remi Daudin, Georges Kalepsi, Alexis Lenain, Sebastien Gravier, Benoit Ter-Ovanessian, Damien Fabregue, Jean-Jacques Blandin

Abstract:

Due to interesting compromise between mechanical and corrosion properties, Zr-based BMGs are attractive for biomedical applications. However, the enhancement of their glass forming ability (GFA) is often achieved by addition of toxic elements like Ni or Be, which is of course a problem for such applications. Consequently, the development of Ni-free Be-free Zr-based BMGs is of great interest. We have developed a Zr-based (Ni and Be-free) amorphous metallic alloy with an elastic limit twice the one of Ti-6Al-4V. The Zr56Co28Al16 composition exhibits a yield strength close to 2 GPa and low Young’s modulus (close to 90 GPa) [1-2]. In this work, we investigated Niobium (Nb) addition through substitution of Zr up to 8 at%. Cobalt substitution has already been reported [3], but we chose Zr substitution to preserve the glass forming ability. In this case, we show that the glass forming ability for 5 mm diameters rods is maintained up to 3 at% of Nb substitution using suction casting in cooper moulds. Concerning the thermal stability, we measure a strong compositional dependence on the glass transition (Tg). Using DSC analysis (heating rate 20 K/min), we show that the Tg rises from 752 K for 0 at% of Nb to 759 K for 3 at% of Nb. Yet, the thermal range between Tg and the crystallisation temperature (Tx) remains almost unchanged from 33 K to 35 K. Uniaxial compression tests on 2 mm diameter pillars and 3 points bending (3PB) tests on 1 mm thick plates are performed to study the Nb addition on the mechanical properties and the plastic behaviour. With these tests, an optimal Nb concentration is found, improving both plasticity and fatigue resistance. Through interpretations of DSC measurements, an attempt is made to correlate the modifications of the mechanical properties with the structural changes. The optimized chemical, structural and mechanical properties through Nb addition are encouraging to develop the potential of this BMG alloy for biomedical applications. For this purpose, we performed polarisation, immersion and cytotoxicity tests. The figure illustrates the polarisation response of Zr56Co28Al16, Zr54Co28Al16Nb2 and TA6V as a reference after 2h of open circuit potential. The results show that the substitution of Zr by a small amount of Nb significantly improves the corrosion resistance of the alloy.

Keywords: metallic glasses, amorphous metal, medical, mechanical resistance, biocompatibility

Procedia PDF Downloads 122
606 Developing Environmental Engineering Alternatives for Deep Desulphurization of Transportation Fuels

Authors: Nalinee B. Suryawanshi, Vinay M. Bhandari, Laxmi Gayatri Sorokhaibam, Vivek V. Ranade

Abstract:

Deep desulphurization of transportation fuels is a major environmental concern all over the world and recently prescribed norms for the sulphur content require below 10 ppm sulphur concentrations in fuels such as diesel and gasoline. The existing technologies largely based on catalytic processes such as hydrodesulphurization, oxidation require newer catalysts and demand high cost of deep desulphurization whereas adsorption based processes have limitations due to lower capacity of sulphur removal. The present work is an attempt to provide alternatives for the existing methodologies using a newer non-catalytic process based on hydrodynamic cavitation. The developed process requires appropriate combining of organic and aqueous phases under ambient conditions and passing through a cavitating device such as orifice, venturi or vortex diode. The implosion of vapour cavities formed in the cavitating device generates (in-situ) oxidizing species which react with the sulphur moiety resulting in the removal of sulphur from the organic phase. In this work, orifice was used as a cavitating device and deep desulphurization was demonstrated for removal of thiophene as a model sulphur compound from synthetic fuel of n-octane, toluene and n-octanol. The effect of concentration of sulphur (up to 300 ppm), nature of organic phase and effect of pressure drop (0.5 to 10 bar) was discussed. A very high removal of sulphur content of more than 90% was demonstrated. The process is easy to operate, essentially works at ambient conditions and the ratio of aqueous to organic phase can be easily adjusted to maximise sulphur removal. Experimental studies were also carried out using commercial diesel as a solvent and the results substantiate similar high sulphur removal. A comparison of the two cavitating devices- one with a linear flow and one using vortex flow for effecting pressure drop and cavitation indicates similar trends in terms of sulphur removal behaviour. The developed process is expected to provide an attractive environmental engineering alternative for deep desulphurization of transportation fuels.

Keywords: cavitation, petroleum, separation, sulphur removal

Procedia PDF Downloads 341
605 Magnetic Biomaterials for Removing Organic Pollutants from Wastewater

Authors: L. Obeid, A. Bee, D. Talbot, S. Abramson, M. Welschbillig

Abstract:

The adsorption process is one of the most efficient methods to remove pollutants from wastewater provided that suitable adsorbents are used. In order to produce environmentally safe adsorbents, natural polymers have received increasing attention in recent years. Thus, alginate and chitosane are extensively used as inexpensive, non-toxic and efficient biosorbents. Alginate is an anionic polysaccharide extracted from brown seaweeds. Chitosan is an amino-polysaccharide; this cationic polymer is obtained by deacetylation of chitin the major constituent of crustaceans. Furthermore, it has been shown that the encapsulation of magnetic materials in alginate and chitosan beads facilitates their recovery from wastewater after the adsorption step, by the use of an external magnetic field gradient, obtained with a magnet or an electromagnet. In the present work, we have studied the adsorption affinity of magnetic alginate beads and magnetic chitosan beads (called magsorbents) for methyl orange (MO) (an anionic dye), methylene blue (MB) (a cationic dye) and p-nitrophenol (PNP) (a hydrophobic pollutant). The effect of different parameters (pH solution, contact time, pollutant initial concentration…) on the adsorption of pollutant on the magnetic beads was investigated. The adsorption of anionic and cationic pollutants is mainly due to electrostatic interactions. Consequently methyl orange is highly adsorbed by chitosan beads in acidic medium and methylene blue by alginate beads in basic medium. In the case of a hydrophobic pollutant, which is weakly adsorbed, we have shown that the adsorption is enhanced by adding a surfactant. Cetylpyridinium chloride (CPC), a cationic surfactant, was used to increase the adsorption of PNP by magnetic alginate beads. Adsorption of CPC by alginate beads occurs through two mechanisms: (i) electrostatic attractions between cationic head groups of CPC and negative carboxylate functions of alginate; (ii) interaction between the hydrocarbon chains of CPC. The hydrophobic pollutant is adsolubilized within the surface aggregated structures of surfactant. Figure c shows that PNP can reach up to 95% of adsorption in presence of CPC. At highest CPC concentrations, desorption occurs due to the formation of micelles in the solution. Our magsorbents appear to efficiently remove ionic and hydrophobic pollutants and we hope that this fundamental research will be helpful for the future development of magnetically assisted processes in water treatment plants.

Keywords: adsorption, alginate, chitosan, magsorbent, magnetic, organic pollutant

Procedia PDF Downloads 219
604 Formulation and Evaluation of Curcumin-Zn (II) Microparticulate Drug Delivery System for Antimalarial Activity

Authors: M. R. Aher, R. B. Laware, G. S. Asane, B. S. Kuchekar

Abstract:

Objective: Studies have shown that a new combination therapy with Artemisinin derivatives and curcumin is unique, with potential advantages over known ACTs. In present study an attempt was made to prepare microparticulate drug delivery system of Curcumin-Zn complex and evaluate it in combination with artemether for antimalarial activity. Material and method: Curcumin Zn complex was prepared and encapsulated using sodium alginate. Microparticles thus obtained are further coated with various enteric polymers at different coating thickness to control the release. Microparticles are evaluated for encapsulation efficiency, drug loading and in vitro drug release. Roentgenographic Studies was conducted in rabbits with BaSO 4 tagged formulation. Optimized formulation was screened for antimalarial activity using P. berghei-infected mice survival test and % paracetemia inhibition, alone (three oral dose of 5mg/day) and in combination with arthemether (i.p. 500, 1000 and 1500µg). Curcumin-Zn(II) was estimated in serum after oral administration to rats by using spectroflurometry. Result: Microparticles coated with Cellulose acetate phthalate showed most satisfactory and controlled release with 479 min time for 60% drug release. X-ray images taken at different time intervals confirmed the retention of formulation in GI tract. Estimation of curcumin in serum by spectroflurometry showed that drug concentration is maintained in the blood for longer time with tmax of 6 hours. The survival time (40 days post treatment) of mice infected with P. berghei was compared to survival after treatment with either Curcumin-Zn(II) microparticles artemether combination, curcumin-Zn complex and artemether. Oral administration of Curcumin-Zn(II)-artemether prolonged the survival of P.berghei-infected mice. All the mice treated with Curcumin-Zn(II) microparticles (5mg/day) artemether (1000µg) survived for more than 40 days and recovered with no detectable parasitemia. Administration of Curcumin-Zn(II) artemether combination reduced the parasitemia in mice by more than 90% compared to that in control mice for the first 3 days after treatment. Conclusion: Antimalarial activity of the curcumin Zn-artemether combination was more pronounced than mono therapy. A single dose of 1000µg of artemether in curcumin-Zn combination gives complete protection in P. berghei-infected mice. This may reduce the chances of drug resistance in malaria management.

Keywords: formulation, microparticulate drug delivery, antimalarial, pharmaceutics

Procedia PDF Downloads 368
603 Impact of Mixing Parameters on Homogenization of Borax Solution and Nucleation Rate in Dual Radial Impeller Crystallizer

Authors: A. Kaćunić, M. Ćosić, N. Kuzmanić

Abstract:

Interaction between mixing and crystallization is often ignored despite the fact that it affects almost every aspect of the operation including nucleation, growth, and maintenance of the crystal slurry. This is especially pronounced in multiple impeller systems where flow complexity is increased. By choosing proper mixing parameters, what closely depends on the knowledge of the hydrodynamics in a mixing vessel, the process of batch cooling crystallization may considerably be improved. The values that render useful information when making this choice are mixing time and power consumption. The predominant motivation for this work was to investigate the extent to which radial dual impeller configuration influences mixing time, power consumption and consequently the values of metastable zone width and nucleation rate. In this research, crystallization of borax was conducted in a 15 dm3 baffled batch cooling crystallizer with an aspect ratio (H/T) of 1.3. Mixing was performed using two straight blade turbines (4-SBT) mounted on the same shaft that generated radial fluid flow. Experiments were conducted at different values of N/NJS ratio (impeller speed/ minimum impeller speed for complete suspension), D/T ratio (impeller diameter/crystallizer diameter), c/D ratio (lower impeller off-bottom clearance/impeller diameter), and s/D ratio (spacing between impellers/impeller diameter). Mother liquor was saturated at 30°C and was cooled at the rate of 6°C/h. Its concentration was monitored in line by Na-ion selective electrode. From the values of supersaturation that was monitored continuously over process time, it was possible to determine the metastable zone width and subsequently the nucleation rate using the Mersmann’s nucleation criterion. For all applied dual impeller configurations, the mixing time was determined by potentiometric method using a pulse technique, while the power consumption was determined using a torque meter produced by Himmelstein & Co. Results obtained in this investigation show that dual impeller configuration significantly influences the values of mixing time, power consumption as well as the metastable zone width and nucleation rate. A special attention should be addressed to the impeller spacing considering the flow interaction that could be more or less pronounced depending on the spacing value.

Keywords: dual impeller crystallizer, mixing time, power consumption, metastable zone width, nucleation rate

Procedia PDF Downloads 270
602 Levels of Heavy Metals and Arsenic in Sediment and in Clarias Gariepinus, of Lake Ngami

Authors: Nashaat Mazrui, Oarabile Mogobe, Barbara Ngwenya, Ketlhatlogile Mosepele, Mangaliso Gondwe

Abstract:

Over the last several decades, the world has seen a rapid increase in activities such as deforestation, agriculture, and energy use. Subsequently, trace elements are being deposited into our water bodies, where they can accumulate to toxic levels in aquatic organisms and can be transferred to humans through fish consumption. Thus, though fish is a good source of essential minerals and omega-3 fatty acids, it can also be a source of toxic elements. Monitoring trace elements in fish is important for the proper management of aquatic systems and the protection of human health. The aim of this study was to determine concentrations of trace elements in sediment and muscle tissues of Clarias gariepinus at Lake Ngami, in the Okavango Delta in northern Botswana, during low floods. The fish were bought from local fishermen, and samples of muscle tissue were acid-digested and analyzed for iron, zinc, copper, manganese, molybdenum, nickel, chromium, cadmium, lead, and arsenic using inductively coupled plasma optical emission spectroscopy (ICP-OES). Sediment samples were also collected and analyzed for the elements and for organic matter content. Results show that in all samples, iron was found in the greatest amount while cadmium was below the detection limit. Generally, the concentrations of elements in sediment were higher than in fish except for zinc and arsenic. While the concentration of zinc was similar in the two media, arsenic was almost 3 times higher in fish than sediment. To evaluate the risk to human health from fish consumption, the target hazard quotient (THQ) and cancer risk for an average adult in Botswana, sub-Saharan Africa, and riparian communities in the Okavango Delta was calculated for each element. All elements were found to be well below regulatory limits and do not pose a threat to human health except arsenic. The results suggest that other benthic feeding fish species could potentially have high arsenic levels too. This has serious implications for human health, especially riparian households to whom fish is a key component of food and nutrition security.

Keywords: Arsenic, African sharp tooth cat fish, Okavango delta, trace elements

Procedia PDF Downloads 154
601 Plasma Technology for Hazardous Biomedical Waste Treatment

Authors: V. E. Messerle, A. L. Mosse, O. A. Lavrichshev, A. N. Nikonchuk, A. B. Ustimenko

Abstract:

One of the most serious environmental problems today is pollution by biomedical waste (BMW), which in most cases has undesirable properties such as toxicity, carcinogenicity, mutagenicity, fire. Sanitary and hygienic survey of typical solid BMW, made in Belarus, Kazakhstan, Russia and other countries shows that their risk to the environment is significantly higher than that of most chemical wastes. Utilization of toxic BMW requires use of the most universal methods to ensure disinfection and disposal of any of their components. Such technology is a plasma technology of BMW processing. To implement this technology a thermodynamic analysis of the plasma processing of BMW was fulfilled and plasma-box furnace was developed. The studies have been conducted on the example of the processing of bone. To perform thermodynamic calculations software package Terra was used. Calculations were carried out in the temperature range 300 - 3000 K and a pressure of 0.1 MPa. It is shown that the final products do not contain toxic substances. From the organic mass of BMW synthesis gas containing combustible components 77.4-84.6% was basically produced, and mineral part consists mainly of calcium oxide and contains no carbon. Degree of gasification of carbon reaches 100% by the temperature 1250 K. Specific power consumption for BMW processing increases with the temperature throughout its range and reaches 1 kWh/kg. To realize plasma processing of BMW experimental installation with DC plasma torch of 30 kW power was developed. The experiments allowed verifying the thermodynamic calculations. Wastes are packed in boxes weighing 5-7 kg. They are placed in the box furnace. Under the influence of air plasma flame average temperature in the box reaches 1800 OC, the organic part of the waste is gasified and inorganic part of the waste is melted. The resulting synthesis gas is continuously withdrawn from the unit through the cooling and cleaning system. Molten mineral part of the waste is removed from the furnace after it has been stopped. Experimental studies allowed determining operating modes of the plasma box furnace, the exhaust gases was analyzed, samples of condensed products were assembled and their chemical composition was determined. Gas at the outlet of the plasma box furnace has the following composition (vol.%): CO - 63.4, H2 - 6.2, N2 - 29.6, S - 0.8. The total concentration of synthesis gas (CO + H2) is 69.6%, which agrees well with the thermodynamic calculation. Experiments confirmed absence of the toxic substances in the final products.

Keywords: biomedical waste, box furnace, plasma torch, processing, synthesis gas

Procedia PDF Downloads 492
600 Engineering a Tumor Extracellular Matrix Towards an in vivo Mimicking 3D Tumor Microenvironment

Authors: Anna Cameron, Chunxia Zhao, Haofei Wang, Yun Liu, Guang Ze Yang

Abstract:

Since the first publication in 1775, cancer research has built a comprehensive understanding of how cellular components of the tumor niche promote disease development. However, only within the last decade has research begun to establish the impact of non-cellular components of the niche, particularly the extracellular matrix (ECM). The ECM, a three-dimensional scaffold that sustains the tumor microenvironment, plays a crucial role in disease progression. Cancer cells actively deregulate and remodel the ECM to establish a tumor-promoting environment. Recent work has highlighted the need to further our understanding of the complexity of this cancer-ECM relationship. In vitro models use hydrogels to mimic the ECM, as hydrogel matrices offer biological compatibility and stability needed for long term cell culture. However, natural hydrogels are being used in these models verbatim, without tuning their biophysical characteristics to achieve pathophysiological relevance, thus limiting their broad use within cancer research. The biophysical attributes of these gels dictate cancer cell proliferation, invasion, metastasis, and therapeutic response. Evaluating the three most widely used natural hydrogels, Matrigel, collagen, and agarose gel, the permeability, stiffness, and pore-size of each gel were measured and compared to the in vivo environment. The pore size of all three gels fell between 0.5-6 µm, which coincides with the 0.1-5 µm in vivo pore size found in the literature. However, the stiffness for hydrogels able to support cell culture ranged between 0.05 and 0.3 kPa, which falls outside the range of 0.3-20,000 kPa reported in the literature for an in vivo ECM. Permeability was ~100x greater than in vivo measurements, due in large part to the lack of cellular components which impede permeation. Though, these measurements prove important when assessing therapeutic particle delivery, as the ECM permeability decreased with increasing particle size, with 100 nm particles exhibiting a fifth of the permeability of 10 nm particles. This work explores ways of adjusting the biophysical characteristics of hydrogels by changing protein concentration and the trade-off, which occurs due to the interdependence of these factors. The global aim of this work is to produce a more pathophysiologically relevant model for each tumor type.

Keywords: cancer, extracellular matrix, hydrogel, microfluidic

Procedia PDF Downloads 64
599 The Investigation of Endogenous Intoxication and Lipid Peroxidation in Patients with Giardiasis Before and After Treatment

Authors: R. H. Begaydarova, B. Zh. Kultanov, B. T. Esilbaeva, G. E. Nasakaeva, Y. Yukhnevich, G. K. Alshynbekova, A. E. Dyusembaeva

Abstract:

Background: The level of middle molecules of peptides (MMP) allows to evaluate the severity and prognosis of the disease and is a criterion for the effectiveness of the treatment. The detection the products of lipidperoxidation cascade, such as conjugated dienes, malondialdehyde in biological material, has an important role in the development of pathogenesis, the diagnosis and prognosis in different parasitic diseases. Purpose of the study was to evaluate the state of endogenous intoxication and indicators of lipid peroxidation in patients with giardiasis before and after treatment. Materials and methods: Endogenous intoxication was evaluated in patients with giardiasis in the level of middle molecules of peptides (MMP) in the blood. The amount of MMP and products of lipid peroxidation were determined in the blood of 198 patients with giardiasis, 129 of them were women (65%), 69 were men (35%). The MMP level was detected for comparison in the blood of 84 healthy volunteers. The lipid peroxidation were determined in 40 healthy men and women without giardiasis and history of chronic diseases. Data were processed by conventional methods of variation statistics, we calculated the arithmetic mean (M) and standard dispersion (m). t-test (t) was used to assess differences. Results: The level of MMP in the blood was significantly higher in patients with giardiasis in comparison with group of healthy men and women. MMP concentration in the blood of women with Giardia was 2.5 times greater than that of the comparison groups of women. The level of MMP exceeds more than 6 times in men with giardiasis. The decrease in the intensity of endogenous intoxication was two weeks after antigiardia therapy, both men and women. According to the study, a statistically significant increase in the level of all the studied parameters lipid peroxidation cascade was observed in the blood of men with giardiasis, with the exception of the total primary production (NGN). The treatment of giardiasis helped to stabilize the level of almost all metabolites of lipid peroxidation cascade. The exception was level of malondialdehyde, it was significantly elevated to compare with the control group and after treatment. Conclusion: Thus, the MMP level was significantly higher in blood of patients with giardiasis than in comparison group. This is evidence of severe endogenous intoxication caused by giardia infection. The accumulation of primary and secondary products of lipid peroxidation was observed in the blood of men and women. These processes tend to be more active in men than in women. Antigiardiasis therapy contributed to the normalization of almost all the studied indicators of lipid peroxidation in the blood of participants, except the level malondialdehyde in the blood of men.

Keywords: enzymes of antioxidant protection, giardiasis, blood, treatment

Procedia PDF Downloads 207
598 Mechanisms of Metals Stabilization in the Soil by Biochar Material as Affected by the Low Molecular Weight Organic Acids

Authors: Md. Shoffikul Islam, Hongqing Hu

Abstract:

Immobilizing trace elements by reducing their mobility and bioavailability through amendment application, especially biochar (BC), is a cost-effective and efficient method to address their toxicity in the soil environment. However, the low molecular weight organic acids (LMWOAs) in the rhizosphere could affect BC's efficiency to immobilize trace metals as the LMWOAs could either mobilize or fix metals in the soils. Therefore, understanding the BC's and LMWOAs' interaction mechanisms on metals stabilization in the rhizosphere is crucial. The present study examined the impact of BC derived from rice husk, tartaric acid (TA), and oxalic acid (OA), and the combination of BC and TA/OA on the changes of cadmium (Cd), lead (Pb), and zinc (Zn) among their geochemical forms through incubation experiment. The changes of zeta potential and X-ray diffraction (XRD) pattern of BC and BC-amended soils to investigate the probable mechanisms of trace elements' immobilization by BC under the attacks of TA and OA were also examined. The rice husk BC at 5% (w/w) was mixed with the air-dry soil (an Anthrosols) contaminated with Cd, Pb, and Zn in the plastic pot. The TA and OA each at 2, 5, 10, and 20 mM kg-1 (w/v) were added separately into the pot. All the ingredients were mixed thoroughly with the soil. A control (CK) treatment was also prepared without BC, TA, and OA addition. After 7, 15, and 60 days of incubation with 60% (w/v) moisture level at 25 °C, the incubated soils were determined for pH and EC and were sequentially extracted to assess the metals' transformation in soil. The electronegative charges and XRD peaks of BC and BC-amended soils were also measured. The BC, low level of TA (2 mM kg-1 soil), and BC plus the low concentration of TA (BC-TA2) addition considerably declined the acid-soluble Cd, Pb, and Zn in which BC-TA2 was found to be the most effective treatment. The trends were reversed concerning the high levels of TA (>5-20 mM kg-1 soil), all levels of OA (2-20 mM kg-1 soil), and the BC plus high levels of TA/OA treatments. BC-TA2 changed the highest amounts of acid-soluble and reducible metals to the oxidizable and residual fractions with time. The most increased electronegative charges of BC-TA2 indicate its (BC-TA2) highest metals' immobilizing efficiency, probably through metals adsorption and fixation with the negative charge sites. The XRD study revealed the presence of P, O, CO32-, and Cl1- in BC, which might be responsible for the precipitation of CdCO3, pyromorphite, and hopeite concerning Cd, Pb, and Zn immobilization, respectively. The findings demonstrated that the low level of TA increased metals immobilization, while the high levels of TA and all levels of OA enhanced their mobilization. The BC-TA2 was the best treatment in stabilizing metals in soil.

Keywords: biochar, immobilization, low molecular weight organic acids, trace elements contaminated soil

Procedia PDF Downloads 49