Search results for: inductively coupled plasma-mass spectroscopy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3347

Search results for: inductively coupled plasma-mass spectroscopy

287 Corrosion Analysis of Brazed Copper-Based Conducts in Particle Accelerator Water Cooling Circuits

Authors: A. T. Perez Fontenla, S. Sgobba, A. Bartkowska, Y. Askar, M. Dalemir Celuch, A. Newborough, M. Karppinen, H. Haalien, S. Deleval, S. Larcher, C. Charvet, L. Bruno, R. Trant

Abstract:

The present study investigates the corrosion behavior of copper (Cu) based conducts predominantly brazed with Sil-Fos (self-fluxing copper-based filler with silver and phosphorus) within various cooling circuits of demineralized water across different particle accelerator components at CERN. The study covers a range of sample service time, from a few months to fifty years, and includes various accelerator components such as quadrupoles, dipoles, and bending magnets. The investigation comprises the established sample extraction procedure, examination methodology including non-destructive testing, evaluation of the corrosion phenomena, and identification of commonalities across the studied components as well as analysis of the environmental influence. The systematic analysis included computed microtomography (CT) of the joints that revealed distributed defects across all brazing interfaces. Some defects appeared to result from areas not wetted by the filler during the brazing operation, displaying round shapes, while others exhibited irregular contours and radial alignment, indicative of a network or interconnection. The subsequent dry cutting performed facilitated access to the conduct's inner surface and the brazed joints for further inspection through light and electron microscopy (SEM) and chemical analysis via Energy Dispersive X-ray spectroscopy (EDS). Brazing analysis away from affected areas identified the expected phases for a Sil-Fos alloy. In contrast, the affected locations displayed micrometric cavities propagating into the material, along with selective corrosion of the bulk Cu initiated at the conductor-braze interface. Corrosion product analysis highlighted the consistent presence of sulfur (up to 6 % in weight), whose origin and role in the corrosion initiation and extension is being further investigated. The importance of this study is paramount as it plays a crucial role in comprehending the underlying factors contributing to recently identified water leaks and evaluating the extent of the issue. Its primary objective is to provide essential insights for the repair of impacted brazed joints when accessibility permits. Moreover, the study seeks to contribute to the improvement of design and manufacturing practices for future components, ultimately enhancing the overall reliability and performance of magnet systems within CERN accelerator facilities.

Keywords: accelerator facilities, brazed copper conducts, demineralized water, magnets

Procedia PDF Downloads 20
286 Tailoring Quantum Oscillations of Excitonic Schrodinger’s Cats as Qubits

Authors: Amit Bhunia, Mohit Kumar Singh, Maryam Al Huwayz, Mohamed Henini, Shouvik Datta

Abstract:

We report [https://arxiv.org/abs/2107.13518] experimental detection and control of Schrodinger’s Cat like macroscopically large, quantum coherent state of a two-component Bose-Einstein condensate of spatially indirect electron-hole pairs or excitons using a resonant tunneling diode of III-V Semiconductors. This provides access to millions of excitons as qubits to allow efficient, fault-tolerant quantum computation. In this work, we measure phase-coherent periodic oscillations in photo-generated capacitance as a function of an applied voltage bias and light intensity over a macroscopically large area. Periodic presence and absence of splitting of excitonic peaks in the optical spectra measured by photocapacitance point towards tunneling induced variations in capacitive coupling between the quantum well and quantum dots. Observation of negative ‘quantum capacitance’ due to a screening of charge carriers by the quantum well indicates Coulomb correlations of interacting excitons in the plane of the sample. We also establish that coherent resonant tunneling in this well-dot heterostructure restricts the available momentum space of the charge carriers within this quantum well. Consequently, the electric polarization vector of the associated indirect excitons collective orients along the direction of applied bias and these excitons undergo Bose-Einstein condensation below ~100 K. Generation of interference beats in photocapacitance oscillation even with incoherent white light further confirm the presence of stable, long-range spatial correlation among these indirect excitons. We finally demonstrate collective Rabi oscillations of these macroscopically large, ‘multipartite’, two-level, coupled and uncoupled quantum states of excitonic condensate as qubits. Therefore, our study not only brings the physics and technology of Bose-Einstein condensation within the reaches of semiconductor chips but also opens up experimental investigations of the fundamentals of quantum physics using similar techniques. Operational temperatures of such two-component excitonic BEC can be raised further with a more densely packed, ordered array of QDs and/or using materials having larger excitonic binding energies. However, fabrications of single crystals of 0D-2D heterostructures using 2D materials (e.g. transition metal di-chalcogenides, oxides, perovskites etc.) having higher excitonic binding energies are still an open challenge for semiconductor optoelectronics. As of now, these 0D-2D heterostructures can already be scaled up for mass production of miniaturized, portable quantum optoelectronic devices using the existing III-V and/or Nitride based semiconductor fabrication technologies.

Keywords: exciton, Bose-Einstein condensation, quantum computation, heterostructures, semiconductor Physics, quantum fluids, Schrodinger's Cat

Procedia PDF Downloads 158
285 Combating Corruption to Enhance Learner Academic Achievement: A Qualitative Study of Zimbabwean Public Secondary Schools

Authors: Onesmus Nyaude

Abstract:

The aim of the study was to investigate participants’ views on how corruption can be combated to enhance learner academic achievement. The study was undertaken on three select public secondary institutions in Zimbabwe. This study also focuses on exploring the various views of educators; parents and the learners on the role played by corruption in perpetuating the seemingly existing learner academic achievement disparities in various educational institutions. The study further interrogates and examines the nexus between the prevalence of corruption in schools and the subsequent influence on the academic achievement of learners. Corruption is considered a form of social injustice; hence in Zimbabwe, the general consensus is that it is perceived rife to the extent that it is overtaking the traditional factors that contributed to the poor academic achievement of learners. Coupled to this, have been the issue of gross abuse of power and some malpractices emanating from concealment of essential and official transactions in the conduct of business. Through proposing robust anti-corruption mechanisms, teaching and learning resources poured in schools would be put into good use. This would prevent the unlawful diversion and misappropriation of the resources in question which has always been the culture. This study is of paramount significance to curriculum planners, teachers, parents, and learners. The study was informed by the interpretive paradigm; thus qualitative research approaches were used. Both probability and non-probability sampling techniques were adopted in ‘site and participants’ selection. A representative sample of (150) participants was used. The study found that the majority of the participants perceived corruption as a social problem and a human right threat affecting the quality of teaching and learning processes in the education sector. It was established that corruption prevalence within institutions is as a result of the perpetual weakening of ethical values and other variables linked to upholding of ‘Ubuntu’ among general citizenry. It was further established that greediness and weak systems are major causes of rampant corruption within institutions of higher learning and are manifesting through abuse of power, bribery, misappropriation and embezzlement of material and financial resources. Therefore, there is great need to collectively address the problem of corruption in educational institutions and society at large. The study additionally concludes that successful combating of corruption will promote successful moral development of students as well as safeguarding their human rights entitlements. The study recommends the adoption of principles of good corporate governance within educational institutions in order to successfully curb corruption. The study further recommends the intensification of interventionist strategies and strengthening of systems in educational institutions as well as regular audits to overcome the problem associated with rampant corruption cases.

Keywords: academic achievement, combating, corruption, good corporate governance, qualitative study

Procedia PDF Downloads 217
284 The Influence of Thermal Radiation and Chemical Reaction on MHD Micropolar Fluid in The Presence of Heat Generation/Absorption

Authors: Binyam Teferi

Abstract:

Numerical and theoretical analysis of mixed convection flow of magneto- hydrodynamics micropolar fluid with stretching capillary in the presence of thermal radiation, chemical reaction, viscous dissipation, and heat generation/ absorption have been studied. The non-linear partial differential equations of momentum, angular velocity, energy, and concentration are converted into ordinary differential equations using similarity transformations which can be solved numerically. The dimensionless governing equations are solved by using Runge Kutta fourth and fifth order along with the shooting method. The effect of physical parameters viz., micropolar parameter, unsteadiness parameter, thermal buoyancy parameter, concentration buoyancy parameter, Hartmann number, spin gradient viscosity parameter, microinertial density parameter, thermal radiation parameter, Prandtl number, Eckert number, heat generation or absorption parameter, Schmidt number and chemical reaction parameter on flow variables viz., the velocity of the micropolar fluid, microrotation, temperature, and concentration has been analyzed and discussed graphically. MATLAB code is used to analyze numerical and theoretical facts. From the simulation study, it can be concluded that an increment of micropolar parameter, Hartmann number, unsteadiness parameter, thermal and concentration buoyancy parameter results in decrement of velocity flow of micropolar fluid; microrotation of micropolar fluid decreases with an increment of micropolar parameter, unsteadiness parameter, microinertial density parameter, and spin gradient viscosity parameter; temperature profile of micropolar fluid decreases with an increment of thermal radiation parameter, Prandtl number, micropolar parameter, unsteadiness parameter, heat absorption, and viscous dissipation parameter; concentration of micropolar fluid decreases as unsteadiness parameter, Schmidt number and chemical reaction parameter increases. Furthermore, computational values of local skin friction coefficient, local wall coupled coefficient, local Nusselt number, and local Sherwood number for different values of parameters have been investigated. In this paper, the following important results are obtained; An increment of micropolar parameter and Hartmann number results in a decrement of velocity flow of micropolar fluid. Microrotation decreases with an increment of the microinertial density parameter. Temperature decreases with an increasing value of the thermal radiation parameter and viscous dissipation parameter. Concentration decreases as the values of Schmidt number and chemical reaction parameter increases. The coefficient of local skin friction is enhanced with an increase in values of both the unsteadiness parameter and micropolar parameter. Increasing values of unsteadiness parameter and micropolar parameter results in an increment of the local couple stress. An increment of values of unsteadiness parameter and thermal radiation parameter results in an increment of the rate of heat transfer. As the values of Schmidt number and unsteadiness parameter increases, Sherwood number decreases.

Keywords: thermal radiation, chemical reaction, viscous dissipation, heat absorption/ generation, similarity transformation

Procedia PDF Downloads 94
283 Comparison of the Toxicity of Silver and Gold Nanoparticles in Murine Fibroblasts

Authors: Šárka Hradilová, Aleš Panáček, Radek Zbořil

Abstract:

Nanotechnologies are considered the most promising fields with high added value, brings new possibilities in various sectors from industry to medicine. With the growing of interest in nanomaterials and their applications, increasing nanoparticle production leads to increased exposure of people and environment with ‘human made’ nanoparticles. Nanoparticles (NPs) are clusters of atoms in the size range of 1–100 nm. Metal nanoparticles represent one of the most important and frequently used types of NPs due to their unique physical, chemical and biological properties, which significantly differ from those of bulk material. Biological properties including toxicity of metal nanoparticles are generally determined by their size, size distribution, shape, surface area, surface charge, surface chemistry, stability in the environment and ability to release metal ions. Therefore, the biological behavior of NPs and their possible adverse effect cannot be derived from the bulk form of material because nanoparticles show unique properties and interactions with biological systems just due to their nanodimensions. Silver and gold NPs are intensively studied and used. Both can be used for instance in surface enhanced Raman spectroscopy, a considerable number of applications of silver NPs is associated with antibacterial effects, while gold NPs are associated with cancer treatment and bio imaging. Antibacterial effects of silver ions are known for centuries. Silver ions and silver-based compounds are highly toxic to microorganisms. Toxic properties of silver NPs are intensively studied, but the mechanism of cytoxicity is not fully understood. While silver NPs are considered toxic, gold NPs are referred to as toxic but also innocuous for eukaryotic cells. Therefore, gold NPs are used in various biological applications without a risk of cell damaging, even when we want to suppress the growth of cancer cells. Thus, gold NPs are toxic or harmless. Because most studies comparing particles of various sizes prepared in various ways, and testing is performed on different cell lines, it is very difficult to generalize. The novelty and significance of our research is focused to the complex biological effects of silver and gold NPs prepared by the same method, have the same parameters and the same stabilizer. That is why we can compare the biological effects of pure nanometals themselves based on their chemical nature without the influence of other variable. Aim of our study therefore is to compare the cytotoxic effect of two types of noble metal NPs focusing on the mechanisms that contribute to cytotoxicity. The study was conducted on murine fibroblasts by selected common used tests. Each of these tests monitors the selected area related to toxicity and together provides a comprehensive view on the issue of interactions of nanoparticles and living cells.

Keywords: cytotoxicity, gold nanoparticles, mechanism of cytotoxicity, silver nanoparticles

Procedia PDF Downloads 224
282 Solar Liquid Desiccant Regenerator for Two Stage KCOOH Based Fresh Air Dehumidifier

Authors: M. V. Rane, Tareke Tekia

Abstract:

Liquid desiccant based fresh air dehumidifiers can be gainfully deployed for air-conditioning, agro-produce drying and in many industrial processes. Regeneration of liquid desiccant can be done using direct firing, high temperature waste heat or solar energy. Solar energy is clean and available in abundance; however, it is costly to collect. A two stage liquid desiccant fresh air dehumidification system can offer Coefficient of Performance (COP), in the range of 1.6 to 2 for comfort air conditioning applications. High COP helps reduce the size and cost of collectors required. Performance tests on high temperature regenerator of a two stage liquid desiccant fresh air dehumidifier coupled with seasonally tracked flat plate like solar collector will be presented in this paper. The two stage fresh air dehumidifier has four major components: High Temperature Regenerator (HTR), Low Temperature Regenerator (LTR), High and Low Temperature Solution Heat Exchangers and Fresh Air Dehumidifier (FAD). This open system can operate at near atmospheric pressure in all the components. These systems can be simple, maintenance-free and scalable. Environmentally benign, non-corrosive, moderately priced Potassium Formate, KCOOH, is used as a liquid desiccant. Typical KCOOH concentration in the system is expected to vary between 65 and 75%. Dilute liquid desiccant at 65% concentration exiting the fresh air dehumidifier will be pumped and preheated in solution heat exchangers before entering the high temperature solar regenerator. In the solar collector, solution will be regenerated to intermediate concentration of 70%. Steam and saturated solution exiting the solar collector array will be separated. Steam at near atmospheric pressure will then be used to regenerate the intermediate concentration solution up to a concentration of 75% in a low temperature regenerator where moisture vaporized be released in to atmosphere. Condensed steam can be used as potable water after adding a pinch of salt and some nutrient. Warm concentrated liquid desiccant will be routed to solution heat exchanger to recycle its heat to preheat the weak liquid desiccant solution. Evacuated glass tube based seasonally tracked solar collector is used for regeneration of liquid desiccant at high temperature. Temperature of regeneration for KCOOH is 133°C at 70% concentration. The medium temperature collector was designed for temperature range of 100 to 150°C. Double wall polycarbonate top cover helps reduce top losses. Absorber integrated heat storage helps stabilize the temperature of liquid desiccant exiting the collectors during intermittent cloudy conditions, and extends the operation of the system by couple of hours beyond the sunshine hours. This solar collector is light in weight, 12 kg/m2 without absorber integrated heat storage material, and 27 kg/m2 with heat storage material. Cost of the collector is estimated to be 10,000 INR/m2. Theoretical modeling of the collector has shown that the optical efficiency is 62%. Performance test of regeneration of KCOOH will be reported.

Keywords: solar, liquid desiccant, dehumidification, air conditioning, regeneration

Procedia PDF Downloads 325
281 Developing Offshore Energy Grids in Norway as Capability Platforms

Authors: Vidar Hepsø

Abstract:

The energy and oil companies on the Norwegian Continental shelf come from a situation where each asset control and manage their energy supply (island mode) and move towards a situation where the assets need to collaborate and coordinate energy use with others due to increased cost and scarcity of electric energy sharing the energy that is provided. Currently, several areas are electrified either with an onshore grid cable or are receiving intermittent energy from offshore wind-parks. While the onshore grid in Norway is well regulated, the offshore grid is still in the making, with several oil and gas electrification projects and offshore wind development just started. The paper will describe the shift in the mindset that comes with operating this new offshore grid. This transition process heralds an increase in collaboration across boundaries and integration of energy management across companies, businesses, technical disciplines, and engagement with stakeholders in the larger society. This transition will be described as a function of the new challenges with increased complexity of the energy mix (wind, oil/gas, hydrogen and others) coupled with increased technical and organization complexity in energy management. Organizational complexity denotes an increasing integration across boundaries, whether these boundaries are company, vendors, professional disciplines, regulatory regimes/bodies, businesses, and across numerous societal stakeholders. New practices must be developed, made legitimate and institutionalized across these boundaries. Only parts of this complexity can be mitigated technically, e.g.: by use of batteries, mixing energy systems and simulation/ forecasting tools. Many challenges must be mitigated with legitimated societal and institutionalized governance practices on many levels. Offshore electrification supports Norway’s 2030 climate targets but is also controversial since it is exploiting the larger society’s energy resources. This means that new systems and practices must also be transparent, not only for the industry and the authorities, but must also be acceptable and just for the larger society. The paper report from ongoing work in Norway, participant observation and interviews in projects and people working with offshore grid development in Norway. One case presented is the development of an offshore floating windfarm connected to two offshore installations and the second case is an offshore grid development initiative providing six installations electric energy via an onshore cable. The development of the offshore grid is analyzed using a capability platform framework, that describes the technical, competence, work process and governance capabilities that are under development in Norway. A capability platform is a ‘stack’ with the following layers: intelligent infrastructure, information and collaboration, knowledge sharing & analytics and finally business operations. The need for better collaboration and energy forecasting tools/capabilities in this stack will be given a special attention in the two use cases that are presented.

Keywords: capability platform, electrification, carbon footprint, control rooms, energy forecsting, operational model

Procedia PDF Downloads 41
280 Continuous and Discontinuos Modeling of Wellbore Instability in Anisotropic Rocks

Authors: C. Deangeli, P. Obentaku Obenebot, O. Omwanghe

Abstract:

The study focuses on the analysis of wellbore instability in rock masses affected by weakness planes. The occurrence of failure in such a type of rocks can occur in the rock matrix and/ or along the weakness planes, in relation to the mud weight gradient. In this case the simple Kirsch solution coupled with a failure criterion cannot supply a suitable scenario for borehole instabilities. Two different numerical approaches have been used in order to investigate the onset of local failure at the wall of a borehole. For each type of approach the influence of the inclination of weakness planes has been investigates, by considering joint sets at 0°, 35° and 90° to the horizontal. The first set of models have been carried out with FLAC 2D (Fast Lagrangian Analysis of Continua) by considering the rock material as a continuous medium, with a Mohr Coulomb criterion for the rock matrix and using the ubiquitous joint model for accounting for the presence of the weakness planes. In this model yield may occur in either the solid or along the weak plane, or both, depending on the stress state, the orientation of the weak plane and the material properties of the solid and weak plane. The second set of models have been performed with PFC2D (Particle Flow code). This code is based on the Discrete Element Method and considers the rock material as an assembly of grains bonded by cement-like materials, and pore spaces. The presence of weakness planes is simulated by the degradation of the bonds between grains along given directions. In general the results of the two approaches are in agreement. However the discrete approach seems to capture more complex phenomena related to local failure in the form of grain detachment at wall of the borehole. In fact the presence of weakness planes in the discontinuous medium leads to local instability along the weak planes also in conditions not predicted from the continuous solution. In general slip failure locations and directions do not follow the conventional wellbore breakout direction but depend upon the internal friction angle and the orientation of the bedding planes. When weakness plane is at 0° and 90° the behaviour are similar to that of a continuous rock material, but borehole instability is more severe when weakness planes are inclined at an angle between 0° and 90° to the horizontal. In conclusion, the results of the numerical simulations show that the prediction of local failure at the wall of the wellbore cannot disregard the presence of weakness planes and consequently the higher mud weight required for stability for any specific inclination of the joints. Despite the discrete approach can simulate smaller areas because of the large number of particles required for the generation of the rock material, however it seems to investigate more correctly the occurrence of failure at the miscroscale and eventually the propagation of the failed zone to a large portion of rock around the wellbore.

Keywords: continuous- discontinuous, numerical modelling, weakness planes wellbore, FLAC 2D

Procedia PDF Downloads 477
279 Preparation and Chemical Characterization of Eco-Friendly Activated Carbon Produced from Apricot Stones

Authors: Sabolč Pap, Srđana Kolaković, Jelena Radonić, Ivana Mihajlović, Dragan Adamović, Mirjana Vojinović Miloradov, Maja Turk Sekulić

Abstract:

Activated carbon is one of the most used and tested adsorbents in the removal of industrial organic compounds, heavy metals, pharmaceuticals and dyes. Different types of lignocellulosic materials were used as potential precursors in the production of low cost activated carbon. There are, two different processes for the preparation and production of activated carbon: physical and chemical. Chemical activation includes impregnating the lignocellulosic raw materials with chemical agents (H3PO4, HNO3, H2SO4 and NaOH). After impregnation, the materials are carbonized and washed to eliminate the residues. The chemical activation, which was used in this study, has two important advantages when compared to the physical activation. The first advantage is the lower temperature at which the process is conducted, and the second is that the yield (mass efficiency of activation) of the chemical activation tends to be greater. Preparation of activated carbon included the following steps: apricot stones were crushed in a mill and washed with distilled water. Later, the fruit stones were impregnated with a solution of 50% H3PO4. After impregnation, the solution was filtered to remove the residual acid. Subsequently impregnated samples were air dried at room temperature. The samples were placed in a furnace and heated (10 °C/min) to the final carbonization temperature of 500 °C for 2 h without the use of nitrogen. After cooling, the adsorbent was washed with distilled water to achieve acid free conditions and its pH was monitored until the filtrate pH value exceeded 4. Chemical characterizations of the prepared activated carbon were analyzed by FTIR spectroscopy. FTIR spectra were recorded with a (Thermo Nicolet Nexus 670 FTIR) spectrometer, from 400 to 4000 cm-1 wavenumbers, identifying the functional groups on the surface of the activated carbon. The FTIR spectra of adsorbent showed a broad band at 3405.91 cm-1 due to O–H stretching vibration and a peak at 489.00 cm-1 due to O–H bending vibration. Peaks between the range of 3700 and 3200 cm−1 represent the overlapping peaks of stretching vibrations of O–H and N–H groups. The distinct absorption peaks at 2919.86 cm−1 and 2848.24 cm−1 could be assigned to -CH stretching vibrations of –CH2 and –CH3 functional groups. The adsorption peak at 1566.38 cm−1 could be characterized by primary and secondary amide bands. The sharp bond within 1164.76 – 987.86 cm−1 is attributed to the C–O groups, which confirms the lignin structure of the activated carbon. The present study has shown that the activated carbons prepared from apricot stone have a functional group on their surface, which can positively affect the adsorption characteristics with this material.

Keywords: activated carbon, FTIR, H3PO4, lignocellulosic raw materials

Procedia PDF Downloads 222
278 Photoswitchable and Polar-Dependent Fluorescence of Diarylethenes

Authors: Sofia Lazareva, Artem Smolentsev

Abstract:

Fluorescent photochromic materials collect strong interest due to their possible application in organic photonics such as optical logic systems, optical memory, visualizing sensors, as well as characterization of polymers and biological systems. In photochromic fluorescence switching systems the emission of fluorophore is modulated between ‘on’ and ‘off’ via the photoisomerization of photochromic moieties resulting in effective resonance energy transfer (FRET). In current work, we have studied both photochromic and fluorescent properties of several diarylethenes. It was found that coloured forms of these compounds are not fluorescent because of the efficient intramolecular energy transfer. Spectral and photochromic parameters of investigated substances have been measured in five solvents having different polarity. Quantum yields of photochromic transformation A↔B ΦA→B and ΦB→A as well as B isomer extinction coefficients were determined by kinetic method. It was found that the photocyclization reaction quantum yield of all compounds decreases with the increase of solvent polarity. In addition, the solvent polarity is revealed to affect fluorescence significantly. Increasing of the solvent dielectric constant was found to result in a strong shift of emission band position from 450 nm (nhexane) to 550 nm (DMSO and ethanol) for all three compounds. Moreover, the emission intensive in polar solvents becomes weak and hardly detectable in n-hexane. The only one exception in the described dependence is abnormally low fluorescence quantum yield in ethanol presumably caused by the loss of electron-donating properties of nitrogen atom due to the protonation. An effect of the protonation was also confirmed by the addition of concentrated HCl in solution resulting in a complete disappearance of the fluorescent band. Excited state dynamics were investigated by ultrafast optical spectroscopy methods. Kinetic curves of excited states absorption and fluorescence decays were measured. Lifetimes of transient states were calculated from the data measured. The mechanism of ring opening reaction was found to be polarity dependent. Comparative analysis of kinetics measured in acetonitrile and hexane reveals differences in relaxation dynamics after the laser pulse. The most important fact is the presence of two decay processes in acetonitrile, whereas only one is present in hexane. This fact supports an assumption made on the basis of steady-state preliminary experiments that in polar solvents occur stabilization of TICT state. Thus, results achieved prove the hypothesis of two channel mechanism of energy relaxation of compounds studied.

Keywords: diarylethenes, fluorescence switching, FRET, photochromism, TICT state

Procedia PDF Downloads 649
277 Removal of Problematic Organic Compounds from Water and Wastewater Using the Arvia™ Process

Authors: Akmez Nabeerasool, Michaelis Massaros, Nigel Brown, David Sanderson, David Parocki, Charlotte Thompson, Mike Lodge, Mikael Khan

Abstract:

The provision of clean and safe drinking water is of paramount importance and is a basic human need. Water scarcity coupled with tightening of regulations and the inability of current treatment technologies to deal with emerging contaminants and Pharmaceuticals and personal care products means that alternative treatment technologies that are viable and cost effective are required in order to meet demand and regulations for clean water supplies. Logistically, the application of water treatment in rural areas presents unique challenges due to the decentralisation of abstraction points arising from low population density and the resultant lack of infrastructure as well as the need to treat water at the site of use. This makes it costly to centralise treatment facilities and hence provide potable water direct to the consumer. Furthermore, across the UK there are segments of the population that rely on a private water supply which means that the owner or user(s) of these supplies, which can serve one household to hundreds, are responsible for the maintenance. The treatment of these private water supply falls on the private owners, and it is imperative that a chemical free technological solution that can operate unattended and does not produce any waste is employed. Arvia’s patented advanced oxidation technology combines the advantages of adsorption and electrochemical regeneration within a single unit; the Organics Destruction Cell (ODC). The ODC uniquely uses a combination of adsorption and electrochemical regeneration to destroy organics. Key to this innovative process is an alternative approach to adsorption. The conventional approach is to use high capacity adsorbents (e.g. activated carbons with high porosities and surface areas) that are excellent adsorbents, but require complex and costly regeneration. Arvia’s technology uses a patent protected adsorbent, Nyex™, which is a non-porous, highly conductive, graphite based adsorbent material that enables it to act as both the adsorbent and as a 3D electrode. Adsorbed organics are oxidised and the surface of the Nyex™ is regenerated in-situ for further adsorption without interruption or replacement. Treated water flows from the bottom of the cell where it can either be re-used or safely discharged. Arvia™ Technology Ltd. has trialled the application of its tertiary water treatment technology in treating reservoir water abstracted near Glasgow, Scotland, with promising results. Several other pilot plants have also been successfully deployed at various locations in the UK showing the suitability and effectiveness of the technology in removing recalcitrant organics (including pharmaceuticals, steroids and hormones), COD and colour.

Keywords: Arvia™ process, adsorption, water treatment, electrochemical oxidation

Procedia PDF Downloads 238
276 Sorghum Polyphenols Encapsulated by Spray Drying, Using Modified Starches as Wall Materials

Authors: Adriana Garcia G., Alberto A. Escobar P., Amira D. Calvo L., Gabriel Lizama U., Alejandro Zepeda P., Fernando Martínez B., Susana Rincón A.

Abstract:

Different studies have recently been focused on the use of antioxidants such as polyphenols because of to its anticarcinogenic capacity. However, these compounds are highly sensible to environmental factors such as light and heat, so lose its long-term stability, besides possess an astringent and bitter taste. Nevertheless, the polyphenols can be protected by microcapsule formulation. In this sense, a rich source of polyphenols is sorghum, besides presenting a high starch content. Due to the above, the aim of this work was to obtain modified starches from sorghum by extrusion to encapsulate polyphenols the sorghum by spray drying. Polyphenols were extracted by ethanol solution from sorghum (Pajarero/red) and determined by the method of Folin-Ciocalteu, obtaining GAE at 30 mg/g. Moreover, was extracted starch of sorghum (Sinaloense/white) through wet milling (yield 32 %). The hydrolyzed starch was modified with three treatments: acetic anhydride (2.5g/100g), sodium tripolyphosphate (4g/100g), and sodium tripolyphosphate/ acetic anhydride (2g/1.25g by each 100 g) by extrusion. Processing conditions of extrusion were as follows: barrel temperatures were of 60, 130 and 170 °C at the feeding, transition, and high-pressure extrusion zones, respectively. Analysis of Fourier Transform Infrared spectroscopy (FTIR), showed bands exhibited of acetyl groups (1735 cm-1) and phosphates (1170 cm-1, 910 cm-1 and 525 cm-1), indicating the respective modification of starch. Besides, all modified starches not developed viscosity, which is a characteristic required for use in the encapsulation of polyphenols using the spray drying technique. As result of the modification starch, was obtained a water solubility index (WSI) from 33.8 to 44.8 %, and crystallinity from 8 to 11 %, indicating the destruction of the starch granule. Afterwards, microencapsulation of polyphenols was developed by spray drying, with a blend of 10 g of modified starch, 60 ml polyphenol extract and 30 ml of distilled water. Drying conditions were as follows: inlet air temperature 150 °C ± 1, outlet air temperature 80°C ± 5. As result of the microencapsulation: were obtained yields of 56.8 to 77.4 % and an efficiency of encapsulation from 84.6 to 91.4 %. The FTIR analysis showed evidence of microcapsules loaded with polyphenols in bands 1042 cm-1, 1038 cm-1 and 1148 cm-1. Analysis Differential scanning calorimetry (DSC) showed transition temperatures from 144.1 to 173.9 °C. For the order hand, analysis of Scanning Electron Microscopy (SEM), were observed rounded surfaces with concavities, typical feature of microcapsules produced by spray drying, how result of rapid evaporation of water. Finally, the modified starches were obtained by extrusion with good characteristics for use as cover materials by spray drying, where the phosphorylated starch was the best treatment in this work, according to the encapsulation yield, efficiency, and transition temperature.

Keywords: encapsulation, extrusion, modified starch, polyphenols, spray drying

Procedia PDF Downloads 281
275 Lipid-Coated Magnetic Nanoparticles for Frequency Triggered Drug Delivery

Authors: Yogita Patil-Sen

Abstract:

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) have become increasingly important materials for separation of specific bio-molecules, drug delivery vehicle, contrast agent for MRI and magnetic hyperthermia for cancer therapy. Hyperthermia is emerging as an alternative cancer treatment to the conventional radio- and chemo-therapy, which have harmful side effects. When subjected to an alternating magnetic field, the magnetic energy of SPIONs is converted into thermal energy due to movement of particles. The ability of SPIONs to generate heat and potentially kill cancerous cells, which are more susceptible than the normal cells to temperatures higher than 41 °C forms the basis of hyerpthermia treatement. The amount of heat generated depends upon the magnetic properties of SPIONs which in turn is affected by their properties such as size and shape. One of the main problems associated with SPIONs is particle aggregation which limits their employability in in vivo drug delivery applications and hyperthermia cancer treatments. Coating the iron oxide core with thermally responsive lipid based nanostructures tend to overcome the issue of aggregation as well as improve biocompatibility and can enhance drug loading efficiency. Herein we report suitability of SPIONs and silica coated core-shell SPIONs, which are further, coated with various lipids for drug delivery and magnetic hyperthermia applications. The synthesis of nanoparticles is carried out using the established methods reported in the literature with some modifications. The nanoparticles are characterised using Infrared spectroscopy (IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM). The heating ability of nanoparticles is tested under alternating magnetic field. The efficacy of the nanoparticles as drug carrier is also investigated. The loading of an anticancer drug, Doxorubicin at 18 °C is measured up to 48 hours using UV-visible spectrophotometer. The drug release profile is obtained under thermal incubation condition at 37 °C and compared with that under the influence of alternating magnetic field. The results suggest that the nanoparticles exhibit superparamagnetic behaviour, although coating reduces the magnetic properties of the particles. Both the uncoated and coated particles show good heating ability, again it is observed that coating decreases the heating behaviour of the particles. However, coated particles show higher drug loading efficiency than the uncoated particles and the drug release is much more controlled under the alternating magnetic field. Thus, the results demonstrate that lipid coated SPIONs exhibit potential as drug delivery vehicles for magnetic hyperthermia based cancer therapy.

Keywords: drug delivery, hyperthermia, lipids, superparamagnetic iron oxide nanoparticles (SPIONS)

Procedia PDF Downloads 208
274 Characterization of a Three-Electrodes Bioelectrochemical System from Mangrove Water and Sediments for the Reduction of Chlordecone in Martinique

Authors: Malory Jonata

Abstract:

Chlordecone (CLD) is an organochlorine pesticide used between 1971 and 1993 in both Guadeloupe and Martinique for the control of banana black weevil. The bishomocubane structure which characterizes this chemical compound led to high stability in organic matter and high persistence in the environment. Recently, researchers found that CLD can be degraded by isolated bacteria consortiums and, particularly, by bacteria such as Citrobacter sp 86 and Delsulfovibrio sp 86. Actually, six transformation product families of CLD are known. Moreover, the latest discovery showed that CLD was disappearing faster than first predicted in highly contaminated soil in Guadeloupe. However, the toxicity of transformation products is still unknown, and knowledge has to be deepened on the degradation ways and chemical characteristics of chlordecone and its transformation products. Microbial fuel cells (MFC) are electrochemical systems that can convert organic matter into electricity thanks to electroactive bacteria. These bacteria can exchange electrons through their membranes to solid surfaces or molecules. MFC have proven their efficiency as bioremediation systems in water and soils. They are already used for the bioremediation of several organochlorine compounds such as perchlorate, trichlorophenol or hexachlorobenzene. In this study, a three-electrodes system, inspired by MFC, is used to try to degrade chlordecone using bacteria from a mangrove swamp in Martinique. As we know, some mangrove bacteria are electroactive. Furthermore, the CLD rate seems to decline in mangrove swamp sediments. This study aims to prove that electroactive bacteria from a mangrove swamp in Martinique can degrade CLD thanks to a three-electrodes bioelectrochemical system. To achieve this goal, the tree-electrodes assembly has been connected to a potentiostat. The substrate used is mangrove water and sediments sampled in the mangrove swamp of La Trinité, a coastal city in Martinique, where CLD contamination has already been studied. Electroactive biofilms are formed by imposing a potential relative to Saturated Calomel Electrode using chronoamperometry. Moreover, their comportment has been studied by using cyclic voltametry. Biofilms have been studied under different imposed potentials, several conditions of the substrate and with or without CLD. In order to quantify the evolution of CLD rates in the substrate’s system, gas chromatography coupled with mass spectrometry (GC-MS) was performed on pre-treated samples of water and sediments after short, medium and long-term contact with the electroactive biofilms. Results showed that between -0,8V and -0,2V, the three-electrodes system was able to reduce the chemical in the substrate solution. The first GC-MS analysis result of samples spiked with CLD seems to reveal decreased CLD concentration over time. In conclusion, the designed bioelectrochemical system can provide the necessary conditions for chlordecone degradation. However, it is necessary to improve three-electrodes control settings in order to increase degradation rates. The biological pathways are yet to enlighten by biologicals analysis of electroactive biofilms formed in this system. Moreover, the electrochemical study of mangrove substrate gives new informations on the potential use of this substrate for bioremediation. But further studies are needed to a better understanding of the electrochemical potential of this environment.

Keywords: bioelectrochemistry, bioremediation, chlordecone, mangrove swamp

Procedia PDF Downloads 44
273 Semiconductor Properties of Natural Phosphate Application to Photodegradation of Basic Dyes in Single and Binary Systems

Authors: Y. Roumila, D. Meziani, R. Bagtache, K. Abdmeziem, M. Trari

Abstract:

Heterogeneous photocatalysis over semiconductors has proved its effectiveness in the treatment of wastewaters since it works under soft conditions. It has emerged as a promising technique, giving rise to less toxic effluents and offering the opportunity of using sunlight as a sustainable and renewable source of energy. Many compounds have been used as photocatalysts. Though synthesized ones are intensively used, they remain expensive, and their synthesis involves special conditions. We thus thought of implementing a natural material, a phosphate ore, due to its low cost and great availability. Our work is devoted to the removal of hazardous organic pollutants, which cause several environmental problems and health risks. Among them, dye pollutants occupy a large place. This work relates to the study of the photodegradation of methyl violet (MV) and rhodamine B (RhB), in single and binary systems, under UV light and sunlight irradiation. Methyl violet is a triarylmethane dye, while RhB is a heteropolyaromatic dye belonging to the Xanthene family. In the first part of this work, the natural compound was characterized using several physicochemical and photo-electrochemical (PEC) techniques: X-Ray diffraction, chemical, and thermal analyses scanning electron microscopy, UV-Vis diffuse reflectance measurements, and FTIR spectroscopy. The electrochemical and photoelectrochemical studies were performed with a Voltalab PGZ 301 potentiostat/galvanostat at room temperature. The structure of the phosphate material was well characterized. The photo-electrochemical (PEC) properties are crucial for drawing the energy band diagram, in order to suggest the formation of radicals and the reactions involved in the dyes photo-oxidation mechanism. The PEC characterization of the natural phosphate was investigated in neutral solution (Na₂SO₄, 0.5 M). The study revealed the semiconducting behavior of the phosphate rock. Indeed, the thermal evolution of the electrical conductivity was well fitted by an exponential type law, and the electrical conductivity increases with raising the temperature. The Mott–Schottky plot and current-potential J(V) curves recorded in the dark and under illumination clearly indicate n-type behavior. From the results of photocatalysis, in single solutions, the changes in MV and RhB absorbance in the function of time show that practically all of the MV was removed after 240 mn irradiation. For RhB, the complete degradation was achieved after 330 mn. This is due to its complex and resistant structure. In binary systems, it is only after 120 mn that RhB begins to be slowly removed, while about 60% of MV is already degraded. Once nearly all of the content of MV in the solution has disappeared (after about 250 mn), the remaining RhB is degraded rapidly. This behaviour is different from that observed in single solutions where both dyes are degraded since the first minutes of irradiation.

Keywords: environment, organic pollutant, phosphate ore, photodegradation

Procedia PDF Downloads 106
272 The Effect of Metal-Organic Framework Pore Size to Hydrogen Generation of Ammonia Borane via Nanoconfinement

Authors: Jing-Yang Chung, Chi-Wei Liao, Jing Li, Bor Kae Chang, Cheng-Yu Wang

Abstract:

Chemical hydride ammonia borane (AB, NH3BH3) draws attentions to hydrogen energy researches for its high theoretical gravimetrical capacity (19.6 wt%). Nevertheless, the elevated AB decomposition temperatures (Td) and unwanted byproducts are main hurdles in practical application. It was reported that the byproducts and Td can be reduced with nanoconfinement technique, in which AB molecules are confined in porous materials, such as porous carbon, zeolite, metal-organic frameworks (MOFs), etc. Although nanoconfinement empirically shows effectiveness on hydrogen generation temperature reduction in AB, the theoretical mechanism is debatable. Low Td was reported in AB@IRMOF-1 (Zn4O(BDC)3, BDC = benzenedicarboxylate), where Zn atoms form closed metal clusters secondary building unit (SBU) with no exposed active sites. Other than nanosized hydride, it was also observed that catalyst addition facilitates AB decomposition in the composite of Li-catalyzed carbon CMK-3, MOF JUC-32-Y with exposed Y3+, etc. It is believed that nanosized AB is critical for lowering Td, while active sites eliminate byproducts. Nonetheless, some researchers claimed that it is the catalytic sites that are the critical factor to reduce Td, instead of the hydride size. The group physically ground AB with ZIF-8 (zeolitic imidazolate frameworks, (Zn(2-methylimidazolate)2)), and found similar reduced Td phenomenon, even though AB molecules were not ‘confined’ or forming nanoparticles by physical hand grinding. It shows the catalytic reaction, not nanoconfinement, leads to AB dehydrogenation promotion. In this research, we explored the possible criteria of hydrogen production temperature from nanoconfined AB in MOFs with different pore sizes and active sites. MOFs with metal SBU such as Zn (IRMOF), Zr (UiO), and Al (MIL-53), accompanying with various organic ligands (BDC and BPDC; BPDC = biphenyldicarboxylate) were modified with AB. Excess MOFs were used for AB size constrained in micropores estimated by revisiting Horvath-Kawazoe model. AB dissolved in methanol was added to MOFs crystalline with MOF pore volume to AB ratio 4:1, and the slurry was dried under vacuum to collect AB@MOF powders. With TPD-MS (temperature programmed desorption with mass spectroscopy), we observed Td was reduced with smaller MOF pores. For example, it was reduced from 100°C to 64°C when MOF micropore ~1 nm, while ~90°C with pore size up to 5 nm. The behavior of Td as a function of AB crystalline radius obeys thermodynamics when the Gibbs free energy of AB decomposition is zero, and no obvious correlation with metal type was observed. In conclusion, we discovered Td of AB is proportional to the reciprocal of MOF pore size, possibly stronger than the effect of active sites.

Keywords: ammonia borane, chemical hydride, metal-organic framework, nanoconfinement

Procedia PDF Downloads 159
271 Rotary Machine Sealing Oscillation Frequencies and Phase Shift Analysis

Authors: Liliia N. Butymova, Vladimir Ya Modorskii

Abstract:

To ensure the gas transmittal GCU's efficient operation, leakages through the labyrinth packings (LP) should be minimized. Leakages can be minimized by decreasing the LP gap, which in turn depends on thermal processes and possible rotor vibrations and is designed to ensure absence of mechanical contact. Vibration mitigation allows to minimize the LP gap. It is advantageous to research influence of processes in the dynamic gas-structure system on LP vibrations. This paper considers influence of rotor vibrations on LP gas dynamics and influence of the latter on the rotor structure within the FSI unidirectional dynamical coupled problem. Dependences of nonstationary parameters of gas-dynamic process in LP on rotor vibrations under various gas speeds and pressures, shaft rotation speeds and vibration amplitudes, and working medium features were studied. The programmed multi-processor ANSYS CFX was chosen as a numerical computation tool. The problem was solved using PNRPU high-capacity computer complex. Deformed shaft vibrations are replaced with an unyielding profile that moves in the fixed annulus "up-and-down" according to set harmonic rule. This solves a nonstationary gas-dynamic problem and determines time dependence of total gas-dynamic force value influencing the shaft. Pressure increase from 0.1 to 10 MPa causes growth of gas-dynamic force oscillation amplitude and frequency. The phase shift angle between gas-dynamic force oscillations and those of shaft displacement decreases from 3π/4 to π/2. Damping constant has maximum value under 1 MPa pressure in the gap. Increase of shaft oscillation frequency from 50 to 150 Hz under P=10 MPa causes growth of gas-dynamic force oscillation amplitude. Damping constant has maximum value at 50 Hz equaling 1.012. Increase of shaft vibration amplitude from 20 to 80 µm under P=10 MPa causes the rise of gas-dynamic force amplitude up to 20 times. Damping constant increases from 0.092 to 0.251. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the minimum gas-dynamic force persistent oscillating amplitude under P=0.1 MPa being observed in methane, and maximum in the air. Frequency remains almost unchanged and the phase shift in the air changes from 3π/4 to π/2. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the maximum gas-dynamic force oscillating amplitude under P=10 MPa being observed in methane, and minimum in the air. Air demonstrates surging. Increase of leakage speed from 0 to 20 m/s through LP under P=0.1 MPa causes the gas-dynamic force oscillating amplitude to decrease by 3 orders and oscillation frequency and the phase shift to increase 2 times and stabilize. Increase of leakage speed from 0 to 20 m/s in LP under P=1 MPa causes gas-dynamic force oscillating amplitude to decrease by almost 4 orders. The phase shift angle increases from π/72 to π/2. Oscillations become persistent. Flow rate proved to influence greatly on pressure oscillations amplitude and a phase shift angle. Work medium influence depends on operation conditions. At pressure growth, vibrations are mostly affected in methane (of working substances list considered), and at pressure decrease, in the air at 25 ˚С.

Keywords: aeroelasticity, labyrinth packings, oscillation phase shift, vibration

Procedia PDF Downloads 266
270 Design of an Ultra High Frequency Rectifier for Wireless Power Systems by Using Finite-Difference Time-Domain

Authors: Felipe M. de Freitas, Ícaro V. Soares, Lucas L. L. Fortes, Sandro T. M. Gonçalves, Úrsula D. C. Resende

Abstract:

There is a dispersed energy in Radio Frequencies (RF) that can be reused to power electronics circuits such as: sensors, actuators, identification devices, among other systems, without wire connections or a battery supply requirement. In this context, there are different types of energy harvesting systems, including rectennas, coil systems, graphene and new materials. A secondary step of an energy harvesting system is the rectification of the collected signal which may be carried out, for example, by the combination of one or more Schottky diodes connected in series or shunt. In the case of a rectenna-based system, for instance, the diode used must be able to receive low power signals at ultra-high frequencies. Therefore, it is required low values of series resistance, junction capacitance and potential barrier voltage. Due to this low-power condition, voltage multiplier configurations are used such as voltage doublers or modified bridge converters. Lowpass filter (LPF) at the input, DC output filter, and a resistive load are also commonly used in the rectifier design. The electronic circuits projects are commonly analyzed through simulation in SPICE (Simulation Program with Integrated Circuit Emphasis) environment. Despite the remarkable potential of SPICE-based simulators for complex circuit modeling and analysis of quasi-static electromagnetic fields interaction, i.e., at low frequency, these simulators are limited and they cannot model properly applications of microwave hybrid circuits in which there are both, lumped elements as well as distributed elements. This work proposes, therefore, the electromagnetic modelling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-high frequencies, with application in rectifiers coupled to antennas, as in energy harvesting systems, that is, in rectennas. For this purpose, the numerical method FDTD (Finite-Difference Time-Domain) is applied and SPICE computational tools are used for comparison. In the present work, initially the Ampere-Maxwell equation is applied to the equations of current density and electric field within the FDTD method and its circuital relation with the voltage drop in the modeled component for the case of lumped parameter using the FDTD (Lumped-Element Finite-Difference Time-Domain) proposed in for the passive components and the one proposed in for the diode. Next, a rectifier is built with the essential requirements for operating rectenna energy harvesting systems and the FDTD results are compared with experimental measurements.

Keywords: energy harvesting system, LE-FDTD, rectenna, rectifier, wireless power systems

Procedia PDF Downloads 103
269 Impact of Maternal Nationality on Caesarean Section Rate Variation in a High-income Country

Authors: Saheed Shittu, Lolwa Alansari, Fahed Nattouf, Tawa Olukade, Naji Abdallah, Tamara Alshdafat, Sarra Amdouni

Abstract:

Cesarean sections (CS), a highly regarded surgical intervention for improving fetal-maternal outcomes and serving as an integral part of emergency obstetric services, are not without complications. Although CS has many advantages, it poses significant risks to both mother and child and increases healthcare expenditures in the long run. The escalating global prevalence of CS, coupled with variations in rates among immigrant populations, has prompted an inquiry into the correlation between CS rates and the nationalities of women undergoing deliveries at Al-Wakra Hospital (AWH), Qatar's second-largest public maternity hospital. This inquiry is motivated by the notable CS rate of 36%, deemed high in comparison to the 34% recorded across other Hamad Medical Corporation (HMC) maternity divisions This is Qatar's first comprehensive investigation of Caesarean section rates and nationalities. A retrospective cross-sectional study was conducted, and data for all births delivered in 2019 were retrieved from the hospital's electronic medical records. The CS rate, the crude rate, and adjusted risks of Caesarean delivery for mothers from each nationality were determined. The common indications for CS were analysed based on nationality. The association between nationality and Caesarean rates was examined using binomial logistic regression analysis considering Qatari women as a standard reference group. The correlation between the CS rate in the country of nationality and the observed CS rate in Qatar was also examined using Pearson's correlation. This study included 4,816 births from 69 different nationalities. CS was performed in 1767 women, equating to 36.5%. The nationalities with the highest CS rates were Egyptian (49.6%), Lebanese (45.5%), Filipino and Indian (both 42.2%). Qatari women recorded a CS rate of 33.4%. The major indication for elective CS was previous multiple CS (39.9%) and one prior CS, where the patient declined vaginal birth after the cesarean (VBAC) option (26.8%). A distinct pattern was noticed: elective CS was predominantly performed on Arab women, whereas emergency CS was common among women of Asian and Sub-Saharan African nationalities. Moreover, a significant correlation was found between the CS rates in Qatar and the women's countries of origin. Also, a high CS rate was linked to instances of previous CS. As a result of these insights, strategic interventions were successfully implemented at the facility to mitigate unwarranted CS, resulting in a notable reduction in CS rate from 36.5% in 2019 to 34% in 2022. This proves the efficacy of the meticulously researched approach. The focus has now shifted to reducing primary CS rates and facilitating well-informed decisions regarding childbirth methods.

Keywords: maternal nationality, caesarean section rate variation, migrants, high-income country

Procedia PDF Downloads 38
268 Multimodal Analysis of News Magazines' Front-Page Portrayals of the US, Germany, China, and Russia

Authors: Alena Radina

Abstract:

On the global stage, national image is shaped by historical memory of wars and alliances, government ideology and particularly media stereotypes which represent countries in positive or negative ways. News magazine covers are a key site for national representation. The object of analysis in this paper is the portrayals of the US, Germany, China, and Russia in the front pages and cover stories of “Time”, “Der Spiegel”, “Beijing Review”, and “Expert”. Political comedy helps people learn about current affairs even if politics is not their area of interest, and thus satire indirectly sets the public agenda. Coupled with satirical messages, cover images and the linguistic messages embedded in the covers become persuasive visual and verbal factors, known to drive about 80% of magazine sales. Preliminary analysis identified satirical elements in magazine covers, which are known to influence and frame understandings and attract younger audiences. Multimodal and transnational comparative framing analyses lay the groundwork to investigate why journalists, editors and designers deploy certain frames rather than others. This research investigates to what degree frames used in covers correlate with frames within the cover stories and what these framings can tell us about media professionals’ representations of their own and other nations. The study sample includes 32 covers consisting of two covers representing each of the four chosen countries from the four magazines. The sampling framework considers two time periods to compare countries’ representation with two different presidents, and between men and women when present. The countries selected for analysis represent each category of the international news flows model: the core nations are the US and Germany; China is a semi-peripheral country; and Russia is peripheral. Examining textual and visual design elements on the covers and images in the cover stories reveals not only what editors believe visually attracts the reader’s attention to the magazine but also how the magazines frame and construct national images and national leaders. The cover is the most powerful editorial and design page in a magazine because images incorporate less intrusive framing tools. Thus, covers require less cognitive effort of audiences who may therefore be more likely to accept the visual frame without question. Analysis of design and linguistic elements in magazine covers helps to understand how media outlets shape their audience’s perceptions and how magazines frame global issues. While previous multimodal research of covers has focused mostly on lifestyle magazines or newspapers, this paper examines the power of current affairs magazines’ covers to shape audience perception of national image.

Keywords: framing analysis, magazine covers, multimodality, national image, satire

Procedia PDF Downloads 76
267 Ecosystem Modeling along the Western Bay of Bengal

Authors: A. D. Rao, Sachiko Mohanty, R. Gayathri, V. Ranga Rao

Abstract:

Modeling on coupled physical and biogeochemical processes of coastal waters is vital to identify the primary production status under different natural and anthropogenic conditions. About 7, 500 km length of Indian coastline is occupied with number of semi enclosed coastal bodies such as estuaries, inlets, bays, lagoons, and other near shore, offshore shelf waters, etc. This coastline is also rich in wide varieties of ecosystem flora and fauna. Directly/indirectly extensive domestic and industrial sewage enter into these coastal water bodies affecting the ecosystem character and create environment problems such as water quality degradation, hypoxia, anoxia, harmful algal blooms, etc. lead to decline in fishery and other related biological production. The present study is focused on the southeast coast of India, starting from Pulicat to Gulf of Mannar, which is rich in marine diversity such as lagoon, mangrove and coral ecosystem. Three dimensional Massachusetts Institute of Technology general circulation model (MITgcm) along with Darwin biogeochemical module is configured for the western Bay of Bengal (BoB) to study the biogeochemistry over this region. The biogeochemical module resolves the cycling of carbon, phosphorous, nitrogen, silica, iron and oxygen through inorganic, living, dissolved and particulate organic phases. The model domain extends from 4°N-16.5°N and 77°E-86°E with a horizontal resolution of 1 km. The bathymetry is derived from General Bathymetric Chart of the Oceans (GEBCO), which has a resolution of 30 sec. The model is initialized by using the temperature, salinity filed from the World Ocean Atlas (WOA2013) of National Oceanographic Data Centre with a resolution of 0.25°. The model is forced by the surface wind stress from ASCAT and the photosynthetically active radiation from the MODIS-Aqua satellite. Seasonal climatology of nutrients (phosphate, nitrate and silicate) for the southwest BoB region are prepared using available National Institute of Oceanography (NIO) in-situ data sets and compared with the WOA2013 seasonal climatology data. The model simulations with the two different initial conditions viz., WOA2013 and the generated NIO climatology, showed evident changes in the concentration and the evolution of the nutrients in the study region. It is observed that the availability of nutrients is more in NIO data compared to WOA in the model domain. The model simulated primary productivity is compared with the spatially distributed satellite derived chlorophyll data and at various locations with the in-situ data. The seasonal variability of the model simulated primary productivity is also studied.

Keywords: Bay of Bengal, Massachusetts Institute of Technology general circulation model, MITgcm, biogeochemistry, primary productivity

Procedia PDF Downloads 101
266 Influence of Strain on the Corrosion Behavior of Dual Phase 590 Steel

Authors: Amit Sarkar, Jayanta K. Mahato, Tushar Bhattacharya, Amrita Kundu, P. C. Chakraborti

Abstract:

With increasing the demand for safety and fuel efficiency of automobiles, automotive manufacturers are looking for light weight, high strength steel with excellent formability and corrosion resistance. Dual-phase steel is finding applications in automotive sectors, because of its high strength, good formability, and high corrosion resistance. During service automotive components suffer from environmental attack and thereby gradual degradation of the components occurs reducing the service life of the components. The objective of the present investigation is to assess the effect of deformation on corrosion behaviour of DP590 grade dual phase steel which is used in automotive industries. The material was received from TATA Steel Jamshedpur, India in the form of 1 mm thick sheet. Tensile properties of the steel at strain rate of 10-3 sec-1: 0.2 % Yield Stress is 382 MPa, Ultimate Tensile Strength is 629 MPa, Uniform Strain is 16.30% and Ductility is 29%. Rectangular strips of 100x10x1 mm were machined keeping the long axis of the strips parallel to rolling direction of the sheet. These strips were longitudinally deformed at a strain rate at 10-3 sec-1 to a different percentage of strain, e.g. 2.5, 5, 7.5,10 and 12.5%, and then slowly unloaded. Small specimens were extracted from the mid region of the unclamped portion of these deformed strips. These small specimens were metallographic polished, and corrosion behaviour has been studied by potentiodynamic polarization, electrochemical impedance spectra, and cyclic polarization and potentiostatic tests. Present results show that among three different environments, the 3.5 pct NaCl solution is most aggressive in case of DP 590 dual-phase steel. It is observed that with the increase in the amount of deformation, corrosion rate increases. With deformation, the stored energy increases and leads to enhanced corrosion rate. Cyclic polarization results revealed highly deformed specimen are more prone to pitting corrosion as compared to the condition when amount of deformation is less. It is also observed that stability of the passive layer decreases with the amount of deformation. With the increase of deformation, current density increases in a passive zone and passive zone is also decreased. From Electrochemical impedance spectroscopy study it is found that with increasing amount of deformation polarization resistance (Rp) decreases. EBSD results showed that average geometrically necessary dislocation density increases with increasing strain which in term increased galvanic corrosion as dislocation areas act as the less noble metal.

Keywords: dual phase 590 steel, prestrain, potentiodynamic polarization, cyclic polarization, electrochemical impedance spectra

Procedia PDF Downloads 402
265 Characterization of Anisotropic Deformation in Sandstones Using Micro-Computed Tomography Technique

Authors: Seyed Mehdi Seyed Alizadeh, Christoph Arns, Shane Latham

Abstract:

Geomechanical characterization of rocks in detail and its possible implications on flow properties is an important aspect of reservoir characterization workflow. In order to gain more understanding of the microstructure evolution of reservoir rocks under stress a series of axisymmetric triaxial tests were performed on two different analogue rock samples. In-situ compression tests were coupled with high resolution micro-Computed Tomography to elucidate the changes in the pore/grain network of the rocks under pressurized conditions. Two outcrop sandstones were chosen in the current study representing a various cementation status of well-consolidated and weakly-consolidated granular system respectively. High resolution images were acquired while the rocks deformed in a purpose-built compression cell. A detailed analysis of the 3D images in each series of step-wise compression tests (up to the failure point) was conducted which includes the registration of the deformed specimen images with the reference pristine dry rock image. Digital Image Correlation (DIC) technique based on the intensity of the registered 3D subsets and particle tracking are utilized to map the displacement fields in each sample. The results suggest the complex architecture of the localized shear zone in well-cemented Bentheimer sandstone whereas for the weakly-consolidated Castlegate sandstone no discernible shear band could be observed even after macroscopic failure. Post-mortem imaging a sister plug from the friable rock upon undergoing continuous compression reveals signs of a shear band pattern. This suggests that for friable sandstones at small scales loading mode may affect the pattern of deformation. Prior to mechanical failure, the continuum digital image correlation approach can reasonably capture the kinematics of deformation. As failure occurs, however, discrete image correlation (i.e. particle tracking) reveals superiority in both tracking the grains as well as quantifying their kinematics (in terms of translations/rotations) with respect to any stage of compaction. An attempt was made to quantify the displacement field in compression using continuum Digital Image Correlation which is based on the reference and secondary image intensity correlation. Such approach has only been previously applied to unconsolidated granular systems under pressure. We are applying this technique to sandstones with various degrees of consolidation. Such element of novelty will set the results of this study apart from previous attempts to characterize the deformation pattern in consolidated sands.

Keywords: deformation mechanism, displacement field, shear behavior, triaxial compression, X-ray micro-CT

Procedia PDF Downloads 159
264 Enhancing of Antibacterial Activity of Essential Oil by Rotating Magnetic Field

Authors: Tomasz Borowski, Dawid Sołoducha, Agata Markowska-Szczupak, Aneta Wesołowska, Marian Kordas, Rafał Rakoczy

Abstract:

Essential oils (EOs) are fragrant volatile oils obtained from plants. These are used for cooking (for flavor and aroma), cleaning, beauty (e.g., rosemary essential oil is used to promote hair growth), health (e.g. thyme essential oil cures arthritis, normalizes blood pressure, reduces stress on the heart, cures chest infection and cough) and in the food industry as preservatives and antioxidants. Rosemary and thyme essential oils are considered the most eminent herbs based on their history and medicinal properties. They possess a wide range of activity against different types of bacteria and fungi compared with the other oils in both in vitro and in vivo studies. However, traditional uses of EOs are limited due to rosemary and thyme oils in high concentrations can be toxic. In light of the accessible data, the following hypothesis was put forward: Low frequency rotating magnetic field (RMF) increases the antimicrobial potential of EOs. The aim of this work was to investigate the antimicrobial activity of commercial Salvia Rosmarinus L. and Thymus vulgaris L. essential oil from Polish company Avicenna-Oil under Rotating Magnetic Field (RMF) at f = 25 Hz. The self-constructed reactor (MAP) was applied for this study. The chemical composition of oils was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Minimum inhibitory concentrations (MIC) against E. coli were determined for the essential oils. Tested oils in very small concentrations were prepared (from 1 to 3 drops of essential oils per 3 mL working suspensions). From the results of disc diffusion assay and MIC tests, it can be concluded that thyme oil had the highest antibacterial activity against E. coli. Moreover, the study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of tested oils. The extended radiation exposure to RMF at the frequency f= 25 Hz beyond 160 minutes resulted in a significant increase in antibacterial potential against E. coli. Bacteria were killed within 40 minutes in thyme oil in lower tested concentration (1 drop of essential oils per 3 mL working suspension). Rapid decrease (>3 log) of bacteria number was observed with rosemary oil within 100 minutes (in concentration 3 drops of essential oils per 3 mL working suspension). Thus, a method for improving the antimicrobial performance of essential oil in low concentrations was developed. However, it still remains to be investigated how bacteria get killed by the EOs treated by an electromagnetic field. The possible mechanisms relies on alteration in the permeability of ionic channels in ionic channels in the bacterial cell walls that transport in the cells was proposed. For further studies, it is proposed to examine other types of essential oils and other antibiotic-resistant bacteria (ARB), which are causing a serious concern throughout the world.

Keywords: rotating magnetic field, rosemary, thyme, essential oils, Escherichia coli

Procedia PDF Downloads 132
263 Foreseen the Future: Human Factors Integration in European Horizon Projects

Authors: José Manuel Palma, Paula Pereira, Margarida Tomás

Abstract:

Foreseen the future: Human factors integration in European Horizon Projects The development of new technology as artificial intelligence, smart sensing, robotics, cobotics or intelligent machinery must integrate human factors to address the need to optimize systems and processes, thereby contributing to the creation of a safe and accident-free work environment. Human Factors Integration (HFI) consistently pose a challenge for organizations when applied to daily operations. AGILEHAND and FORTIS projects are grounded in the development of cutting-edge technology - industry 4.0 and 5.0. AGILEHAND aims to create advanced technologies for autonomously sort, handle, and package soft and deformable products, whereas FORTIS focuses on developing a comprehensive Human-Robot Interaction (HRI) solution. Both projects employ different approaches to explore HFI. AGILEHAND is mainly empirical, involving a comparison between the current and future work conditions reality, coupled with an understanding of best practices and the enhancement of safety aspects, primarily through management. FORTIS applies HFI throughout the project, developing a human-centric approach that includes understanding human behavior, perceiving activities, and facilitating contextual human-robot information exchange. it intervention is holistic, merging technology with the physical and social contexts, based on a total safety culture model. In AGILEHAND we will identify safety emergent risks, challenges, their causes and how to overcome them by resorting to interviews, questionnaires, literature review and case studies. Findings and results will be presented in “Strategies for Workers’ Skills Development, Health and Safety, Communication and Engagement” Handbook. The FORTIS project will implement continuous monitoring and guidance of activities, with a critical focus on early detection and elimination (or mitigation) of risks associated with the new technology, as well as guidance to adhere correctly with European Union safety and privacy regulations, ensuring HFI, thereby contributing to an optimized safe work environment. To achieve this, we will embed safety by design, and apply questionnaires, perform site visits, provide risk assessments, and closely track progress while suggesting and recommending best practices. The outcomes of these measures will be compiled in the project deliverable titled “Human Safety and Privacy Measures”. These projects received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No101092043 (AGILEHAND) and No 101135707 (FORTIS).

Keywords: human factors integration, automation, digitalization, human robot interaction, industry 4.0 and 5.0

Procedia PDF Downloads 26
262 A Sustainability Benchmarking Framework Based on the Life Cycle Sustainability Assessment: The Case of the Italian Ceramic District

Authors: A. M. Ferrari, L. Volpi, M. Pini, C. Siligardi, F. E. Garcia Muina, D. Settembre Blundo

Abstract:

A long tradition in the ceramic manufacturing since the 18th century, primarily due to the availability of raw materials and an efficient transport system, let to the birth and development of the Italian ceramic tiles district that nowadays represents a reference point for this sector even at global level. This economic growth has been coupled to attention towards environmental sustainability issues throughout various initiatives undertaken over the years at the level of the production sector, such as certification activities and sustainability policies. In this way, starting from an evaluation of the sustainability in all its aspects, the present work aims to develop a benchmarking helping both producers and consumers. In the present study, throughout the Life Cycle Sustainability Assessment (LCSA) framework, the sustainability has been assessed in all its dimensions: environmental with the Life Cycle Assessment (LCA), economic with the Life Cycle Costing (LCC) and social with the Social Life Cycle Assessment (S-LCA). The annual district production of stoneware tiles during the 2016 reference year has been taken as reference flow for all the three assessments, and the system boundaries cover the entire life cycle of the tiles, except for the LCC for which only the production costs have been considered at the moment. In addition, a preliminary method for the evaluation of local and indoor emissions has been introduced in order to assess the impact due to atmospheric emissions on both people living in the area surrounding the factories and workers. The Life Cycle Assessment results, obtained from IMPACT 2002+ modified assessment method, highlight that the manufacturing process is responsible for the main impact, especially because of atmospheric emissions at a local scale, followed by the distribution to end users, the installation and the ordinary maintenance of the tiles. With regard to the economic evaluation, both the internal and external costs have been considered. For the LCC, primary data from the analysis of the financial statements of Italian ceramic companies show that the higher cost items refer to expenses for goods and services and costs of human resources. The analysis of externalities with the EPS 2015dx method attributes the main damages to the distribution and installation of the tiles. The social dimension has been investigated with a preliminary approach by using the Social Hotspots Database, and the results indicate that the most affected damage categories are health and safety and labor rights and decent work. This study shows the potential of the LCSA framework applied to an industrial sector; in particular, it can be a useful tool for building a comprehensive benchmark for the sustainability of the ceramic industry, and it can help companies to actively integrate sustainability principles into their business models.

Keywords: benchmarking, Italian ceramic industry, life cycle sustainability assessment, porcelain stoneware tiles

Procedia PDF Downloads 97
261 Mesoporous BiVO4 Thin Films as Efficient Visible Light Driven Photocatalyst

Authors: Karolina Ordon, Sandrine Coste, Malgorzata Makowska-Janusik, Abdelhadi Kassiba

Abstract:

Photocatalytic processes play key role in the production of a new source of energy (as hydrogen), design of self-cleaning surfaces or for the environment preservation. The most challenging task deals with the purification of water distinguished by high efficiency. In the mentioned process, organic pollutants in solutions are decomposed to the simple, non-toxic compounds as H2O and CO2. The most known photocatalytic materials are ZnO, CdS and TiO2 semiconductors with a particular involvement of TiO2 as an efficient photocatalysts even with a high band gap equal to 3.2 eV which exploit only UV radiation from solar emitted spectrum. However, promising material with visible light induced photoactivity was searched through the monoclinic polytype of BiVO4 which has energy gap about 2.4 eV. As required in heterogeneous photocatalysis, the high contact surface is required. Also, BiVO4 as photocatalyst can be optimized by increasing its surface area by achieving the mesoporous structure synthesize. The main goal of the present work consists in the synthesis and characterization of BiVO4 mesoporous thin film. The synthesis method based on sol-gel was carried out using a standard surfactants such as P123 and F127. The thin film was deposited by spin and dip coating method. Then, the structural analysis of the obtained material was performed thanks to X-ray diffraction (XRD) and Raman spectroscopy. The surface of resulting structure was investigated using a scanning electron microscopy (SEM). The computer simulations based on modeling the optical and electronic properties of bulk BiVO4 by using DFT (density functional theory) methodology were carried out. The semiempirical parameterized method PM6 was used to compute the physical properties of BiVO4 nanostructures. The Raman and IR absorption spectra were also measured for synthesized mesoporous material, and the results were compared with the theoretical predictions. The simulations of nanostructured BiVO4 have pointed out the occurrence of quantum confinement for nanosized clusters leading to widening of the band gap. This result overcame the relevance of nanosized objects to harvest wide part of the solar spectrum. Also, a balance was searched experimentally through the mesoporous nature of the films devoted to enhancing the contact surface as required for heterogeneous catalysis without to lower the nanocrystallite size under some critical sizes inducing an increased band gap. The present contribution will discuss the relevant features of the mesoporous films with respect to their photocatalytic responses.

Keywords: bismuth vanadate, photocatalysis, thin film, quantum-chemical calculations

Procedia PDF Downloads 303
260 In-situ Acoustic Emission Analysis of a Polymer Electrolyte Membrane Water Electrolyser

Authors: M. Maier, I. Dedigama, J. Majasan, Y. Wu, Q. Meyer, L. Castanheira, G. Hinds, P. R. Shearing, D. J. L. Brett

Abstract:

Increasing the efficiency of electrolyser technology is commonly seen as one of the main challenges on the way to the Hydrogen Economy. There is a significant lack of understanding of the different states of operation of polymer electrolyte membrane water electrolysers (PEMWE) and how these influence the overall efficiency. This in particular means the two-phase flow through the membrane, gas diffusion layers (GDL) and flow channels. In order to increase the efficiency of PEMWE and facilitate their spread as commercial hydrogen production technology, new analytic approaches have to be found. Acoustic emission (AE) offers the possibility to analyse the processes within a PEMWE in a non-destructive, fast and cheap in-situ way. This work describes the generation and analysis of AE data coming from a PEM water electrolyser, for, to the best of our knowledge, the first time in literature. Different experiments are carried out. Each experiment is designed so that only specific physical processes occur and AE solely related to one process can be measured. Therefore, a range of experimental conditions is used to induce different flow regimes within flow channels and GDL. The resulting AE data is first separated into different events, which are defined by exceeding the noise threshold. Each acoustic event consists of a number of consequent peaks and ends when the wave diminishes under the noise threshold. For all these acoustic events the following key attributes are extracted: maximum peak amplitude, duration, number of peaks, peaks before the maximum, average intensity of a peak and time till the maximum is reached. Each event is then expressed as a vector containing the normalized values for all criteria. Principal Component Analysis is performed on the resulting data, which orders the criteria by the eigenvalues of their covariance matrix. This can be used as an easy way of determining which criteria convey the most information on the acoustic data. In the following, the data is ordered in the two- or three-dimensional space formed by the most relevant criteria axes. By finding spaces in the two- or three-dimensional space only occupied by acoustic events originating from one of the three experiments it is possible to relate physical processes to certain acoustic patterns. Due to the complex nature of the AE data modern machine learning techniques are needed to recognize these patterns in-situ. Using the AE data produced before allows to train a self-learning algorithm and develop an analytical tool to diagnose different operational states in a PEMWE. Combining this technique with the measurement of polarization curves and electrochemical impedance spectroscopy allows for in-situ optimization and recognition of suboptimal states of operation.

Keywords: acoustic emission, gas diffusion layers, in-situ diagnosis, PEM water electrolyser

Procedia PDF Downloads 130
259 Fabrication of Aluminum Nitride Thick Layers by Modified Reactive Plasma Spraying

Authors: Cécile Dufloux, Klaus Böttcher, Heike Oppermann, Jürgen Wollweber

Abstract:

Hexagonal aluminum nitride (AlN) is a promising candidate for several wide band gap semiconductor compound applications such as deep UV light emitting diodes (UVC LED) and fast power transistors (HEMTs). To date, bulk AlN single crystals are still commonly grown from the physical vapor transport (PVT). Single crystalline AlN wafers obtained from this process could offer suitable substrates for a defect-free growth of ultimately active AlGaN layers, however, these wafers still lack from small sizes, limited delivery quantities and high prices so far.Although there is already an increasing interest in the commercial availability of AlN wafers, comparatively cheap Si, SiC or sapphire are still predominantly used as substrate material for the deposition of active AlGaN layers. Nevertheless, due to a lattice mismatch up to 20%, the obtained material shows high defect densities and is, therefore, less suitable for high power devices as described above. Therefore, the use of AlN with specially adapted properties for optical and sensor applications could be promising for mass market products which seem to fulfill fewer requirements. To respond to the demand of suitable AlN target material for the growth of AlGaN layers, we have designed an innovative technology based on reactive plasma spraying. The goal is to produce coarse grained AlN boules with N-terminated columnar structure and high purity. In this process, aluminum is injected into a microwave stimulated nitrogen plasma. AlN, as the product of the reaction between aluminum powder and the plasma activated N2, is deposited onto the target. We used an aluminum filament as the initial material to minimize oxygen contamination during the process. The material was guided through the nitrogen plasma so that the mass turnover was 10g/h. To avoid any impurity contamination by an erosion of the electrodes, an electrode-less discharge was used for the plasma ignition. The pressure was maintained at 600-700 mbar, so the plasma reached a temperature high enough to vaporize the aluminum which subsequently was reacting with the surrounding plasma. The obtained products consist of thick polycrystalline AlN layers with a diameter of 2-3 cm. The crystallinity was determined by X-ray crystallography. The grain structure was systematically investigated by optical and scanning electron microscopy. Furthermore, we performed a Raman spectroscopy to provide evidence of stress in the layers. This paper will discuss the effects of process parameters such as microwave power and deposition geometry (specimen holder, radiation shields, ...) on the topography, crystallinity, and stress distribution of AlN.

Keywords: aluminum nitride, polycrystal, reactive plasma spraying, semiconductor

Procedia PDF Downloads 260
258 Diversity and Use of Agroforestry Yards of Family Farmers of Ponte Alta – Gama, Federal District, Brazil

Authors: Kever Bruno Paradelo Gomes, Rosana Carvalho Martins

Abstract:

The home gardens areas are production systems, which are located near the homes and are quite common in the tropics. They consist of agricultural and forest species and may also involve the raising of small animals to produce food for subsistence as well as income generation, with a special focus on the conservation of biodiversity. Home gardens are diverse Agroforestry systems with multiple uses, among many, food security, income aid, traditional medicine. The work was carried out on rural properties of the family farmers of the Ponte Alta Rural Nucleus, Gama Administrative Region, in the city of Brasília, Federal District- Brazil. The present research is characterized methodologically as a quantitative, exploratory and descriptive nature. The instruments used in this research were: bibliographic survey and semi-structured questionnaire. The data collection was performed through the application of a semi-structured questionnaire, containing questions that referred to the perception and behavior of the interviewed producer on the subject under analysis. In each question, the respondent explained his knowledge about sustainability, agroecological practices, environmental legislation, conservation methods, forest and medicinal species, ago social and socioeconomic characteristics, use and purpose of agroforestry and technical assistance. The sample represented 55.62% of the universe of the study. We interviewed 99 people aged 18-83 years, with a mean age of 49 years. The low level of education, coupled with the lack of training and guidance for small family farmers in the Ponte Alta Rural Nucleus, is one of the limitations to the development of practices oriented towards sustainable and agroecological agriculture in the nucleus. It is observed that 50.5% of the interviewed people landed with agroforestry yards less than 20 years ago, and only 16.17% of them are older than 35 years. In identifying agriculture as the main activity of most of the rural properties studied, attention is drawn to the cultivation of medicinal plants, fruits and crops as the most extracted products. However, it is verified that the crops in the backyards have the exclusive purpose of family consumption, which could be complemented with the marketing of the surplus, as well as with the aggregation of value to the cultivated products. Initiatives such as this may contribute to the increase in family income and to the motivation and value of the crop in agroecological gardens. We conclude that home gardens of Ponte Alta are highly diverse thus contributing to local biodiversity conservation of are managed by women to ensure food security and allows income generation. The tradition of existing knowledge on the use and management of the diversity of resources used in agroforestry yards is of paramount importance for the development of sustainable alternative practices.

Keywords: agriculture, agroforestry system, rural development, sustainability

Procedia PDF Downloads 105