Search results for: gamma ray
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 434

Search results for: gamma ray

344 Deep Groundwater Potential and Chemical Analysis Based on Well Logging Analysis at Kapuk-Cengkareng, West Jakarta, DKI Jakarta, Indonesia

Authors: Josua Sihotang

Abstract:

Jakarta Capital Special Region is the province that densely populated with rapidly growing infrastructure but less attention for the environmental condition. This makes some social problem happened like lack of clean water supply. Shallow groundwater and river water condition that has contaminated make the layer of deep water carrier (aquifer) should be done. This research aims to provide the people insight about deep groundwater potential and to determine the depth, location, and quality where the aquifer can be found in Jakarta’s area, particularly Kapuk-Cengkareng’s people. This research was conducted by geophysical method namely Well Logging Analysis. Well Logging is the geophysical method to know the subsurface lithology with the physical characteristic. The observation in this research area was conducted with several well devices that is Spontaneous Potential Log (SP Log), Resistivity Log, and Gamma Ray Log (GR Log). The first devices well is SP log which is work by comprising the electrical potential difference between the electrodes on the surface with the electrodes that is contained in the borehole and rock formations. The second is Resistivity Log, used to determine both the hydrocarbon and water zone based on their porosity and permeability properties. The last is GR Log, work by identifying radioactivity levels of rocks which is containing elements of thorium, uranium, or potassium. The observation result is curve-shaped which describes the type of lithological coating in subsurface. The result from the research can be interpreted that there are four of the deep groundwater layer zone with different quality. The good groundwater layer can be found in layers with good porosity and permeability. By analyzing the curves, it can be known that most of the layers which were found in this wellbore are clay stone with low resistivity and high gamma radiation. The resistivity value of the clay stone layers is about 2-4 ohm-meter with 65-80 Cps gamma radiation. There are several layers with high resistivity value and low gamma radiation (sand stone) that can be potential for being an aquifer. This is reinforced by the sand layer with a right-leaning SP log curve proving that this layer is permeable. These layers have 4-9 ohm-meter resistivity value with 40-65 Cps gamma radiation. These are mostly found as fresh water aquifer.

Keywords: aquifer, deep groundwater potential, well devices, well logging analysis

Procedia PDF Downloads 207
343 Survey of Indoor Radon/Thoron Concentrations in High Lung Cancer Incidence Area in India

Authors: Zoliana Bawitlung, P. C. Rohmingliana, L. Z. Chhangte, Remlal Siama, Hming Chungnunga, Vanram Lawma, L. Hnamte, B. K. Sahoo, B. K. Sapra, J. Malsawma

Abstract:

Mizoram state has the highest lung cancer incidence rate in India due to its high-level consumption of tobacco and its products which is supplemented by the food habits. While smoking is mainly responsible for this incidence, the effect of inhalation of indoor radon gas cannot be discarded as the hazardous nature of this radioactive gas and its progenies on human population have been well-established worldwide where the radiation damage to bronchial cells eventually can be the second leading cause of lung cancer next to smoking. It is also known that the effect of radiation, however, small may be the concentration, cannot be neglected as they can bring about the risk of cancer incidence. Hence, estimation of indoor radon concentration is important to give a useful reference against radiation effects as well as establishing its safety measures and to create a baseline for further case-control studies. The indoor radon/thoron concentrations in Mizoram had been measured in 41 dwellings selected on the basis of spot gamma background radiation and construction type of the houses during 2015-2016. The dwellings were monitored for one year, in 4 months cycles to indicate seasonal variations, for the indoor concentration of radon gas and its progenies, outdoor gamma dose, and indoor gamma dose respectively. A time-integrated method using Solid State Nuclear Track Detector (SSNTD) based single entry pin-hole dosimeters were used for measurement of indoor Radon/Thoron concentration. Gamma dose measurements for indoor as well as outdoor were carried out using Geiger Muller survey meters. Seasonal variation of indoor radon/ thoron concentration was monitored. The results show that the annual average radon concentrations varied from 54.07 – 144.72 Bq/m³ with an average of 90.20 Bq/m³ and the annual average thoron concentration varied from 17.39 – 54.19 Bq/m³ with an average of 35.91 Bq/m³ which are below the permissible limit. The spot survey of gamma background radiation level varies between 9 to 24 µR/h inside and outside the dwellings throughout Mizoram which are all within acceptable limits. From the above results, there is no direct indication that radon/thoron is responsible for the high lung cancer incidence in the area. In order to find epidemiological evidence of natural radiations to high cancer incidence in the area, one may need to conduct a case-control study which is beyond this scope. However, the derived data of measurement will provide baseline data for further studies.

Keywords: background gamma radiation, indoor radon/thoron, lung cancer, seasonal variation

Procedia PDF Downloads 115
342 Effect of Probiotics and Vitamin B on Plasma Interferon-Gamma and Interleukin-6 Levels in Active Pulmonary Tuberculosis

Authors: Yulistiani Yulistiani, Zamrotul Izzah, Lintang Bismantara, Wenny Putri Nilamsari, Arif Bachtiar, Budi Suprapti

Abstract:

Interferon-gamma (IFN-γ) and interleukin-6 (IL-6) are pro-inflammatory cytokines, which have the protective immune response against Tuberculosis (TB). Indeed, pro-inflammatory cytokines Mycobacterium tuberculosis antigen-specific CD4+ and CD8+ T cells and NK cells increase the level of production of IFN-γ, a cytokine critical for augmenting the microbicidal activity of phagocytes. On the other hand, M. tuberculosis reduces the effects of IFN-γ by inhibiting the transcription of IFN-γ- responsive genes and by inducing the secretion of IL-6, which inhibits IFN-γ signaling. Probiotics Lactobacillus sp. and Bifidobacterium sp. were known to increase IFN-γ production in vivo, while vitamin B1, B6, and B12 worked on macrophages and releasing cytokines. Therefore, the present study was to evaluate the effect of probiotics and vitamin B supplement on changes of plasma cytokine levels in active pulmonary TB. From October to November 2016, twelve M. tuberculosis-infected patients starting anti-TB drugs were recruited, then divided into two groups. Seven patients were given a combination of probiotics and vitamin B, while five patients were in the control group. Plasma IFN-γ and IL-6 levels were measured by the ELISA kit before and a month after treatment. IFN-γ levels raised in four patients receiving the supplement (P = 0.743), while IL-6 increased in three patients in this group until day 30 of treatment (P = 0.298). Taken together, these results show the promising effect of probiotics and vitamin B on stimulation of IFN-γ and IL-6 production during intensive therapy of TB.

Keywords: interferon-gamma, interleukin-6, probiotic, tuberculosis

Procedia PDF Downloads 322
341 Slugging Frequency Correlation for High Viscosity Oil-Gas Flow in Horizontal Pipeline

Authors: B. Y. Danjuma, A. Archibong-Eso, Aliyu M. Aliyu, H. Yeung

Abstract:

In this experimental investigation, a new data for slugging frequency for high viscosity oil-gas flow are reported. Scale experiments were carried out using a mixture of air and mineral oil as the liquid phase in a 17 m long horizontal pipe with 0.0762 ID. The data set was acquired using two high-speed Gamma Densitometers at a data acquisition frequency of 250 Hz over a time interval of 30 seconds. For the range of flow conditions investigated, increase in liquid oil viscosity was observed to strongly influence the slug frequency. A comparison of the present data with prediction models available in the literature revealed huge discrepancies. A new correlation incorporating the effect of viscosity on slug frequency has been proposed for the horizontal flow, which represents the main contribution of this work.

Keywords: gamma densitometer, flow pattern, pressure gradient, slug frequency

Procedia PDF Downloads 379
340 Required SNR for PPM in Downlink Gamma-Gamma Turbulence Channel

Authors: Selami Şahin

Abstract:

In this paper, in order to achieve sufficient bit error rate (BER) according to zenith angle of the satellite to ground station, SNR requirement is investigated utilizing pulse position modulation (PPM). To realize explicit results, all parameters such as link distance, Rytov variance, scintillation index, wavelength, aperture diameter of the receiver, Fried's parameter and zenith angle have been taken into account. Results indicate that after some parameters are determined since the constraints of the system, to achieve desired BER, required SNR values are in wide range while zenith angle changes from small to large values. Therefore, in order not to utilize high link margin, either SNR should adjust according to zenith angle or link should establish with predetermined intervals of the zenith angle.

Keywords: Free-space optical communication, optical downlink channel, atmospheric turbulence, wireless optical communication

Procedia PDF Downloads 369
339 Investigation of Fumaric Acid Radiolysis Using Gamma Irradiation

Authors: Wafa Jahouach-Rabai, Khouloud Ouerghi, Zohra Azzouz-Berriche, Faouzi Hosni

Abstract:

Widely used organic products in the pharmaceutical industry have been detected in environmental systems, essentially carboxylic acids. In this purpose, the degradation efficiency of these contaminants was evaluated using an advanced oxidation process (AOP), namely ionization process as an alternative to conventional water treatment technologies. This process permitted the generation of radical reactions to directly degrade organic pollutants in wastewater. In fact, gamma irradiation of aqueous solutions produces several reactive radicals, essentially hydroxyl radical (OH), to destroy recalcitrant pollutants. Different concentrations of aqueous solutions of Fumaric acid (FA) were considered in this study (0.1-1 mmol/L), which were treated by irradiation doses from 1 to 15 kGy with 6.1 kGy/h rate by ionizing system in pilot scale (⁶⁰Co irradiator). Variations of main parameters influencing degradation efficiency versus absorbed doses were released in the aim to optimize total mineralization of considered pollutants. Preliminary degradation pathway until complete mineralization into CO₂ has been suggested based on detection of residual degradation derivatives using different techniques, namely high performance liquid chromatography (HPLC) and electron paramagnetic resonance spectroscopy (EPR). Results revealed total destruction of treated compound, which improve the efficiency of this process in water remediation. We investigated the reactivity of hydroxyl radicals generated by irradiation on dicarboxylic acid (FA) in aqueous solutions, leading to its degradation into other smaller molecules. In fact, gamma irradiation of FA leads to the formation of hydroxylated intermediates such as hydroxycarbonyl radical which were identified by EPR spectroscopy. Finally, pilot plant irradiation facilities improved the applicability of radiation technology on large scale.

Keywords: AOP, radiolysis, fumaric acid, gamma irradiation, hydroxyl radical, EPR, HPLC

Procedia PDF Downloads 141
338 The Effect of Gamma-Aminobutyric Acid on Mechanical Properties, Water Vapor Permeability and Solubility of Pectin Films

Authors: Jitrawadee Meerasri, Rungsinee Sothornvit

Abstract:

Pectin is a structural polysaccharide from plant cell walls and can be used as a stabilizer, gelling and film-forming agents to improve many food products. Moreover, pectin film as a natural biopolymer can be a carrier of several active ingredients such as antioxidant and antimicrobial to provide an active or functional film. Gamma-aminobutyric acid (GABA) is a well-known agent to reduce neuronal excitability throughout the nervous system and it is interesting to investigate the GABA effect as a substitute of normal plasticizer (glycerol) on edible film properties. Therefore, the objective of this study was to determine the effect of GABA concentrations (5-15% of pectin) on film mechanical properties, moisture content, water vapor permeability, and solubility compared with those from glycerol (10% of pectin) plasticized pectin film including a control film (pectin film without any plasticizer). It was found that an increase in GABA concentrations decreased film tensile strength, modulus, solubility and water vapor permeability, but elongation was increased without a change in the moisture content. The smaller amount of GABA showed the equivalent film properties as using a higher amount of glycerol. Consequently, GABA can act as an alternative plasticizer substitute of glycerol at the lower amount used. Moreover, GABA provides the nutritional high value in the food products when the edible packaging material is consumed with products.

Keywords: gamma-aminobutyric acid, pectin, plasticizer, edible film

Procedia PDF Downloads 107
337 Investigation of the Effects of Gamma Radiation on the Electrically Active Defects in InAs/InGaAs Quantum Dots Laser Structures Grown by Molecular Beam Epitaxy on GaAs Substrates Using Deep Level Transient Spectroscopy

Authors: M. Al Huwayz, A. Salhi, S. Alhassan, S. Alotaibi, A. Almalki, M.Almunyif, A. Alhassni, M. Henini

Abstract:

Recently, there has been much research carried out to investigate quantum dots (QDs) lasers with the aim to increase the gain of quantum well lasers. However, one of the difficulties with these structures is that electrically active defects can lead to serious issues in the performance of these devices. It is therefore essential to fully understand the types of defects introduced during the growth and/or the fabrication process. In this study, the effects of Gamma radiation on the electrically active defects in p-i-n InAs/InGaAsQDs laser structures grown by Molecular Beam Epitaxy (MBE) technique on GaAs substrates were investigated. Deep Level Transient Spectroscopy (DLTS), current-voltage (I-V), and capacitance-voltage (C-V) measurements were performed to explore these effects on the electrical properties of these QDs lasers. I-V measurements showed that as-grown sample had better electrical properties than the irradiated sample. However, DLTS and Laplace DLTS measurements at different reverse biases revealed that the defects in the-region of the p-i-n structures were decreased in the irradiated sample. In both samples, a trap with an activation energy of ~ 0.21 eV was assigned to the well-known defect M1 in GaAs layers

Keywords: quantum dots laser structures, gamma radiation, DLTS, defects, nAs/IngaAs

Procedia PDF Downloads 156
336 Effect of Radioprotectors on DNA Repair Enzyme and Survival of Gamma-Irradiated Cell Division Cycle Mutants of Saccharomyces pombe

Authors: Purva Nemavarkar, Badri Narain Pandey, Jitendra Kumar

Abstract:

Introduction: The objective was to understand the effect of various radioprotectors on DNA damage repair enzyme and survival in gamma-irradiated wild and cdc mutants of S. pombe (fission yeast) cultured under permissive and restrictive conditions. DNA repair process, as influenced by radioprotectors, was measured by activity of DNA polymerase in the cells. The use of single cell gel electrophoresis assay (SCGE) or Comet Assay to follow gamma-irradiation induced DNA damage and effect of radioprotectors was employed. In addition, studying the effect of caffeine at different concentrations on S-phase of cell cycle was also delineated. Materials and Methods: S. pombe cells grown at permissive temperature (250C) and/or restrictive temperature (360C) were followed by gamma-radiation. Percentage survival and activity of DNA Polymerase (yPol II) were determined after post-irradiation incubation (5 h) with radioprotectors such as Caffeine, Curcumin, Disulphiram, and Ellagic acid (the dose depending on individual D 37 values). The gamma-irradiated yeast cells (with and without the radioprotectors) were spheroplasted by enzyme glusulase and subjected to electrophoresis. Radio-resistant cells were obtained by arresting cells in S-phase using transient treatment of hydroxyurea (HU) and studying the effect of caffeine at different concentrations on S-phase of cell cycle. Results: The mutants of S. pombe showed insignificant difference in survival when grown under permissive conditions. However, growth of these cells under restrictive temperature leads to arrest in specific phases of cell cycle in different cdc mutants (cdc10: G1 arrest, cdc22: early S arrest, cdc17: late S arrest, cdc25: G2 arrest). All the cdc mutants showed decrease in survival after gamma radiation when grown at permissive and restrictive temperatures. Inclusion of the radioprotectors at respective concentrations during post irradiation incubation showed increase in survival of cells. Activity of DNA polymerase enzyme (yPol II) was increased significantly in cdc mutant cells exposed to gamma-radiation. Following SCGE, a linear relationship was observed between doses of irradiation and the tail moments of comets. The radioprotection of the fission yeast by radioprotectors can be seen by the reduced tail moments of the yeast comets. Caffeine also exhibited its radio-protective ability in radio-resistant S-phase cells obtained after HU treatment. Conclusions: The radioprotectors offered notable radioprotection in cdc mutants when added during irradiation. The present study showed activation of DNA damage repair enzyme (yPol II) and an increase in survival after treatment of radioprotectors in gamma irradiated wild type and cdc mutants of S. pombe cells. Results presented here showed feasibility of applying SCGE in fission yeast to follow DNA damage and radioprotection at high doses, which are not feasible with other eukaryotes. Inclusion of caffeine at 1mM concentration to S phase cells offered protection and did not decrease the cell viability. It can be proved that at minimal concentration, caffeine offered marked radioprotection.

Keywords: radiation protection, cell cycle, fission yeast, comet assay, s-phase, DNA repair, radioprotectors, caffeine, curcumin, SCGE

Procedia PDF Downloads 70
335 Development of Zero-Cement Binder Activated by Carbonation

Authors: Young Cheol Choi, Eun-Jin Moon, Sung-Won Yoo, Sang-Hwa Jung, In-Hwan Yang

Abstract:

Stainless steel slag (STS) is a by-product generated from the stainless steel refining process. The recycling of STS produced in Korea for construction applications is limited due to its poor hydraulic properties. On the other hand, STS has high carbonation reactivity to CO2 as it contains gamma-C2S content. This material is ideal for mineral carbonation which is one of the techniques proposed for carbon emission reduction. The objective of this study is to investigate the feasibility of developing a zero-cement STS binder activated by carbonation as alternative cementitious material. The quantitative analyses for CO2 uptake of STS powder and STS blended cement were investigated using thermogravimetric analysis (TGA), X-ray diffraction (XRD). In addition, the compressive strength and microstructure of STS pastes after CO2 curing were evaluated. Test results showed that STS can be activated by carbonation to gain a sufficient strength as alternative cementitious material.

Keywords: gamma-C2S, CO2 uptake, carbonation, stainless steel slag

Procedia PDF Downloads 442
334 Qualitative and Quantitative Analysis of Uranium in Ceramic Tiles Using Laser-Induced Breakdown Spectroscopy and Gamma-Ray Spectroscopy

Authors: Reem M. Altuwirqi, Mohja S. Summan, Entesar A. Ganash, Safia H. Hamidalddin, Tamer E. Youssef, Mohammed A. Gondal

Abstract:

Laser-Induced Breakdown Spectroscopy (LIBS) technique using 1064 nm Nd: YAG laser was optimized and applied for investigating the existence of radioactive elements (uranium) in twenty-six different ceramic tiles. These tiles were collected from the local Saudi market. Qualitative and quantitative analysis for trace radioactive elements like uranium in these samples was achieved using LIBS. The plasma parameters such as temperature and electron density were calculated to confirm that the plasma generated by the tile samples under laser irradiation can be related to analyte concentrations. In order to perform a quantitative analysis, calibration curves were constructed for two uranium lines (U II (424.166 nm) and U II (424.437 nm)). The Uranium activity concentration in Bq/kg for each sample was measured. Cross-validation of LIBS results with a conventional technique such as Gamma-Ray spectroscopy was also carried out for five ceramic samples. The results show that the LIBS method is an effective way of determining radioactive elements such as uranium in ceramic tiles. Moreover, the uranium concentrations of the investigated samples were below the permissible safe limit for building materials in the majority of samples. Such LIBS system could be applied to determine the presence of natural radioactive elements in ceramic tiles and their radioactivity level rapidly to ensure that they are under the safe allowed limit.

Keywords: laser-induced breakdown spectroscopy, gamma-ray spectroscopy, natural radioactivity, uranium, ceramic tiles

Procedia PDF Downloads 139
333 Quality Assurance Comparison of Map Check 2, Epid, and Gafchromic® EBT3 Film for IMRT Treatment Planning

Authors: Khalid Iqbal, Saima Altaf, M. Akram, Muhammad Abdur Rafaye, Saeed Ahmad Buzdar

Abstract:

Objective: Verification of patient-specific intensity modulated radiation therapy (IMRT) plans using different 2-D detectors has become increasingly popular due to their ease of use and immediate readout of the results. The purpose of this study was to test and compare various 2-D detectors for dosimetric quality assurance (QA) of intensity-modulated radiotherapy (IMRT) with the vision to find alternative QA methods. Material and Methods: Twenty IMRT patients (12 of brain and 8 of the prostate) were planned on Eclipse treatment planning system using Varian Clinac DHX on both energies 6MV and 15MV. Verification plans of all such patients were also made and delivered to Map check2, EPID (Electronic portal imaging device) and Gafchromic EBT3. Gamma index analyses were performed using different criteria to evaluate and compare the dosimetric results. Results: Statistical analysis shows the passing rate of 99.55%, 97.23% and 92.9% for 6MV and 99.53%, 98.3% and 94.85% for 15 MV energy using a criteria of ±5% of 3mm, ±3% of 3mm and ±3% of 2mm respectively for brain, whereas using ±5% of 3mm and ±3% of 3mm gamma evaluation criteria, the passing rate is 94.55% and 90.45% for 6MV and 95.25%9 and 95% for 15 MV energy for the case of prostate using EBT3 film. Map check 2 results shows the passing rates of 98.17%, 97.68% and 86.78% for 6MV energy and 94.87%,97.46% and 88.31% for 15 MV energy respectively for brain using a criteria of ±5% of 3mm, ±3% of 3mm and ±3% of 2mm, whereas using ±5% of 3mm and ±3% of 3mm gamma evaluation criteria gives the passing rate of 97.7% and 96.4% for 6MV and 98.75%9 and 98.05% for 15 MV energy for the case of prostate. EPID 6 MV and gamma analysis shows the passing rate of 99.56%, 98.63% and 98.4% for the brain, 100% and 99.9% for prostate using the same criteria as for map check 2 and EBT 3 film. Conclusion: The results demonstrate excellent passing rates were obtained for all dosimeter when compared with the planar dose distributions for 6 MV IMRT fields as well as for 15 MV. EPID results are better than EBT3 films and map check 2 because it is likely that part of this difference is real, and part is due to manhandling and different treatment set up verification which contributes dose distribution difference. Overall all three dosimeter exhibits results within limits according to AAPM report.120.

Keywords: gafchromic EBT3, radiochromic film dosimetry, IMRT verification, EPID

Procedia PDF Downloads 400
332 Heat and Radiation Influence on Granite-Galena Concrete for Nuclear Shielding Applications

Authors: Mohamed A. Safan, Walid Khalil, Amro Fathalla

Abstract:

Advances in concrete technology and implementation of new materials made it possible to produce special types of concrete for different structural applications. In this research, granite and galena were incorporated in different concrete mixes to obtain high performance concrete for shielding against gamma radiations in nuclear facilities. Chemically prepared industrial galena was used to replace different volume fractions of the fine aggregate. The test specimens were exposed to different conditions of heating cycles and irradiation. The exposed specimens and counterpart unexposed specimens were tested to evaluate the density, the compressive strength and the attenuation coefficient. The proposed mixes incorporating galena showed better performance in terms of compressive strength and gamma attenuation capacity, especially after the exposure to different heating cycles.

Keywords: concrete, galena, shielding, attenuation, radiation

Procedia PDF Downloads 432
331 Radiation Dosimetry Using Sintered Pellets of Yellow Beryl (Heliodor) Crystals

Authors: Lucas Sátiro Do Carmo, Betzabel Noemi Silva Carrera, Shigueo Watanabe, J. F. D. Chubaci

Abstract:

Beryl is a silicate with chemical formula Be₃Al₂(SiO₃)₆ commonly found in Brazil. It has a few colored variations used as jewelry, like Aquamarine (blueish), Emerald (green) and Heliodor (yellow). The color of each variation depends on the dopant that is naturally present in the crystal lattice. In this work, Heliodor pellets of 5 mm diameter and 1 mm thickness have been produced and investigated using thermoluminescence (TL) to evaluate its potential for use as gamma ray’s dosimeter. The results show that the pellets exhibited a prominent TL peak at 205 °C that grows linearly with dose when irradiated from 1 Gy to 1000 Gy. A comparison has been made between powdered and sintered dosimeters. The results show that sintered pellets have higher sensitivity than powder dosimeter. The TL response of this mineral is satisfactory for radiation dosimetry applications in the studied dose range.

Keywords: dosimetry, beryl, gamma rays, sintered pellets, new material

Procedia PDF Downloads 65
330 Optimization of Gastro-Retentive Matrix Formulation and Its Gamma Scintigraphic Evaluation

Authors: Swapnila V. Shinde, Hemant P. Joshi, Sumit R. Dhas, Dhananjaysingh B. Rajput

Abstract:

The objective of the present study is to develop hydro-dynamically balanced system for atenolol, β-blocker as a single unit floating tablet. Atenolol shows pH dependent solubility resulting into a bioavailability of 36%. Thus, site specific oral controlled release floating drug delivery system was developed. Formulation includes novice use of rate controlling polymer such as locust bean gum (LBG) in combination of HPMC K4M and gas generating agent sodium bicarbonate. Tablet was prepared by direct compression method and evaluated for physico-mechanical properties. The statistical method was utilized to optimize the effect of independent variables, namely amount of HPMC K4M, LBG and three dependent responses such as cumulative drug release, floating lag time, floating time. Graphical and mathematical analysis of the results allowed the identification and quantification of the formulation variables influencing the selected responses. To study the gastrointestinal transit of the optimized gastro-retentive formulation, in vivo gamma scintigraphy was carried out in six healthy rabbits, after radio labeling the formulation with 99mTc. The transit profiles demonstrated that the dosage form was retained in the stomach for more than 5 hrs. The study signifies the potential of the developed system for stomach targeted delivery of atenolol with improved bioavailability.

Keywords: floating tablet, factorial design, gamma scintigraphy, antihypertensive model drug, HPMC, locust bean gum

Procedia PDF Downloads 248
329 A Study of High Viscosity Oil-Gas Slug Flow Using Gamma Densitometer

Authors: Y. Baba, A. Archibong-Eso, H. Yeung

Abstract:

Experimental study of high viscosity oil-gas flows in horizontal pipelines published in literature has indicated that hydrodynamic slug flow is the dominant flow pattern observed. Investigations have shown that hydrodynamic slugging brings about high instabilities in pressure that can damage production facilities thereby making it inherent to study high viscous slug flow regime so as to improve the understanding of its flow dynamics. Most slug flow models used in the petroleum industry for the design of pipelines together with their closure relationships were formulated based on observations of low viscosity liquid-gas flows. New experimental investigations and data are therefore required to validate these models. In cases where these models underperform, improving upon or building new predictive models and correlations will also depend on the new experimental dataset and further understanding of the flow dynamics in high viscous oil-gas flows. In this study conducted at the Flow laboratory, Oil and Gas Engineering Centre of Cranfield University, slug flow variables such as pressure gradient, mean liquid holdup, frequency and slug length for oil viscosity ranging from 1..0 – 5.5 Pa.s are experimentally investigated and analysed. The study was carried out in a 0.076m ID pipe, two fast sampling gamma densitometer and pressure transducers (differential and point) were used to obtain experimental measurements. Comparison of the measured slug flow parameters to the existing slug flow prediction models available in the literature showed disagreement with high viscosity experimental data thus highlighting the importance of building new predictive models and correlations.

Keywords: gamma densitometer, mean liquid holdup, pressure gradient, slug frequency and slug length

Procedia PDF Downloads 301
328 Developing Well-Being Indicators and Measurement Methods as Illustrated by Projects Aimed at Preventing Obesity in Children

Authors: E. Grochowska-Niedworok, K. Brukało, M. Hadasik, M. Kardas

Abstract:

Consumption of vegetables by school children and adolescents is essential for their normal growth, development and health, but a significant minority of the world's population consumes the right amount of these products. The aim of the study was to evaluate the preferences and frequency of consumption of vegetables by school children and adolescents. It has been assumed that effectively implemented nutrition education programs should have an impact on increasing the frequency of vegetable consumption among the recipients. The study covered 514 students of five schools in the Opole Voivodeship aged 9 years to 22 years. The research tool was an author's questionnaire, which consisted of closed questions on the frequency of vegetable consumption and the use of 10 ways to treat them. Preferences and frequencies are shown in percentages, while correlations were estimated on the basis of Cramer`s V and gamma coefficients. In each of the examined age groups, the relationship between sex and vegetable consumption (the Cramer`s V coefficient value was 0.06 to 0.38) was determined and the various methods of culinary processing were used (V Craméra was 0.08 to 0.34). For both sexes, the relationship between age and frequency of vegetable consumption was shown (gamma values ranged from ~ 0.00 to 0.39) and different cooking methods (gamma values were 0.01 to 0.22). The most important determinant of nutritional choices is the taste and availability of products. The fact that they have a positive effect on their health is only in third position. As has been shown, obesity prevention programs can not only address nutrition education but also teach about new flavors and increase the availability of healthy foods. In addition, the frequency of vegetable consumption can be a good indicator reflecting the healthy behaviors of children and adolescents.

Keywords: children and adolescents, frequency, welfare rate, vegetables

Procedia PDF Downloads 175
327 In-Situ Determination of Radioactivity Levels and Radiological Hazards in and around the Gold Mine Tailings of the West Rand Area, South Africa

Authors: Paballo M. Moshupya, Tamiru A. Abiye, Ian Korir

Abstract:

Mining and processing of naturally occurring radioactive materials could result in elevated levels of natural radionuclides in the environment. The aim of this study was to evaluate the radioactivity levels on a large scale in the West Rand District in South Africa, which is dominated by abandoned gold mine tailings and the consequential radiological exposures to members of the public. The activity concentrations of ²³⁸U, ²³²Th and 40K in mine tailings, soil and rocks were assessed using the BGO Super-Spec (RS-230) gamma spectrometer. The measured activity concentrations for ²³⁸U, ²³²Th and 40K in the studied mine tailings were found to range from 209.95 to 2578.68 Bq/kg, 19.49 to 108.00 Bq/kg and 31.30 to 626.00 Bq/kg, respectively. In surface soils, the overall average activity concentrations were found to be 59.15 Bq/kg, 34.91 and 245.64 Bq/kg for 238U, ²³²Th and 40K, respectively. For the rock samples analyzed, the mean activity concentrations were 32.97 Bq/kg, 32.26 Bq/kg and 351.52 Bg/kg for ²³⁸U, ²³²Th and 40K, respectively. High radioactivity levels were found in mine tailings, with ²³⁸U contributing significantly to the overall activity concentration. The external gamma radiation received from surface soil in the area is generally low, with an average of 0.07 mSv/y. The highest annual effective doses were estimated from the tailings dams and the levels varied between 0.14 mSv/y and 1.09 mSv/y, with an average of 0.51 mSv/y. In certain locations, the recommended dose constraint of 0.25 mSv/y from a single source to the average member of the public within the exposed population was exceeded, indicating the need for further monitoring and regulatory control measures specific to these areas to ensure the protection of resident members of the public.

Keywords: activity concentration, gold mine tailings, in-situ gamma spectrometry, radiological exposures

Procedia PDF Downloads 101
326 The Use of Image Processing Responses Tools Applied to Analysing Bouguer Gravity Anomaly Map (Tangier-Tetuan's Area-Morocco)

Authors: Saad Bakkali

Abstract:

Image processing is a powerful tool for the enhancement of edges in images used in the interpretation of geophysical potential field data. Arial and terrestrial gravimetric surveys were carried out in the region of Tangier-Tetuan. From the observed and measured data of gravity Bouguer gravity anomalies map was prepared. This paper reports the results and interpretations of the transformed maps of Bouguer gravity anomaly of the Tangier-Tetuan area using image processing. Filtering analysis based on classical image process was applied. Operator image process like logarithmic and gamma correction are used. This paper also present the results obtained from this image processing analysis of the enhancement edges of the Bouguer gravity anomaly map of the Tangier-Tetuan zone.

Keywords: bouguer, tangier, filtering, gamma correction, logarithmic enhancement edges

Procedia PDF Downloads 398
325 Peculiarities of Internal Friction and Shear Modulus in 60Co γ-Rays Irradiated Monocrystalline SiGe Alloys

Authors: I. Kurashvili, G. Darsavelidze, T. Kimeridze, G. Chubinidze, I. Tabatadze

Abstract:

At present, a number of modern semiconductor devices based on SiGe alloys have been created in which the latest achievements of high technologies are used. These devices might cause significant changes to networking, computing, and space technology. In the nearest future new materials based on SiGe will be able to restrict the A3B5 and Si technologies and firmly establish themselves in medium frequency electronics. Effective realization of these prospects requires the solution of prediction and controlling of structural state and dynamical physical –mechanical properties of new SiGe materials. Based on these circumstances, a complex investigation of structural defects and structural-sensitive dynamic mechanical characteristics of SiGe alloys under different external impacts (deformation, radiation, thermal cycling) acquires great importance. Internal friction (IF) and shear modulus temperature and amplitude dependences of the monocrystalline boron-doped Si1-xGex(x≤0.05) alloys grown by Czochralski technique is studied in initial and 60Co gamma-irradiated states. In the initial samples, a set of dislocation origin relaxation processes and accompanying modulus defects are revealed in a temperature interval of 400-800 ⁰C. It is shown that after gamma-irradiation intensity of relaxation internal friction in the vicinity of 280 ⁰C increases and simultaneously activation parameters of high temperature relaxation processes reveal clear rising. It is proposed that these changes of dynamical mechanical characteristics might be caused by a decrease of the dislocation mobility in the Cottrell atmosphere enriched by the radiation defects.

Keywords: internal friction, shear modulus, gamma-irradiation, SiGe alloys

Procedia PDF Downloads 111
324 Status of the European Atlas of Natural Radiation

Authors: G. Cinelli, T. Tollefsen, P. Bossew, V. Gruber, R. Braga, M. A. Hernández-Ceballos, M. De Cort

Abstract:

In 2006, the Joint Research Centre (JRC) of the European Commission started the project of the 'European Atlas of Natural Radiation'. The Atlas aims at preparing a collection of maps of Europe displaying the levels of natural radioactivity caused by different sources (indoor and outdoor radon, cosmic radiation, terrestrial radionuclides, terrestrial gamma radiation, etc). The overall goal of the project is to estimate, in geographical resolution, the annual dose that the public may receive from natural radioactivity, combining all the information from the different radiation components. The first map which has been developed is the European map of indoor radon (Rn) since in most cases Rn is the most important contribution to exposure. New versions of the map are realised when new countries join the project or when already participating countries send new data. We show the latest status of this map which currently includes 25 European countries. Second, the JRC has undertaken to map a variable which measures 'what earth delivers' in terms of Rn. The corresponding quantity is called geogenic radon potential (RP). Due to the heterogeneity of data sources across the Europe there is need to develop a harmonized quantity which at the one hand adequately measures or classifies the RP, and on the other hand is suited to accommodate the variety of input data used to estimate this target quantity. Candidates for input quantities which may serve as predictors of the RP, and for which data are available across Europe, to different extent, are Uranium (U) concentration in rocks and soils, soil gas radon and soil permeability, terrestrial gamma dose rate, geological information and indoor data from ground floor. The European Geogenic Radon Map gives the possibility to characterize areas, on European geographical scale, for radon hazard where indoor radon measurements are not available. Parallel to ongoing work on the European Indoor Radon, Geogenic Radon and Cosmic Radiation Maps, we made progress in the development of maps of terrestrial gamma radiation and U, Th and K concentrations in soil and bedrock. We show the first, preliminary map of the terrestrial gamma dose rate, estimated using the data of ambient dose equivalent rate available from the EURDEP system (about 5000 fixed monitoring stations across Europe). Also, the first maps of U, Th, and K concentrations in soil and bedrock are shown in the present work.

Keywords: Europe, natural radiation, mapping, indoor radon

Procedia PDF Downloads 269
323 Stochastic Modelling for Mixed Mode Fatigue Delamination Growth of Wind Turbine Composite Blades

Authors: Chi Zhang, Hua-Peng Chen

Abstract:

With the increasingly demanding resources in the word, renewable and clean energy has been considered as an alternative way to replace traditional ones. Thus, one of practical examples for using wind energy is wind turbine, which has gained more attentions in recent research. Like most offshore structures, the blades, which is the most critical components of the wind turbine, will be subjected to millions of loading cycles during service life. To operate safely in marine environments, the blades are typically made from fibre reinforced composite materials to resist fatigue delamination and harsh environment. The fatigue crack development of blades is uncertain because of indeterminate mechanical properties for composite and uncertainties under offshore environment like wave loads, wind loads, and humid environments. There are three main delamination failure modes for composite blades, and the most common failure type in practices is subjected to mixed mode loading, typically a range of opening (mode 1) and shear (mode 2). However, the fatigue crack development for mixed mode cannot be predicted as deterministic values because of various uncertainties in realistic practical situation. Therefore, selecting an effective stochastic model to evaluate the mixed mode behaviour of wind turbine blades is a critical issue. In previous studies, gamma process has been considered as an appropriate stochastic approach, which simulates the stochastic deterioration process to proceed in one direction such as realistic situation for fatigue damage failure of wind turbine blades. On the basis of existing studies, various Paris Law equations are discussed to simulate the propagation of the fatigue crack growth. This paper develops a Paris model with the stochastic deterioration modelling according to gamma process for predicting fatigue crack performance in design service life. A numerical example of wind turbine composite materials is investigated to predict the mixed mode crack depth by Paris law and the probability of fatigue failure by gamma process. The probability of failure curves under different situations are obtained from the stochastic deterioration model for comparisons. Compared with the results from experiments, the gamma process can take the uncertain values into consideration for crack propagation of mixed mode, and the stochastic deterioration process shows a better agree well with realistic crack process for composite blades. Finally, according to the predicted results from gamma stochastic model, assessment strategies for composite blades are developed to reduce total lifecycle costs and increase resistance for fatigue crack growth.

Keywords: Reinforced fibre composite, Wind turbine blades, Fatigue delamination, Mixed failure mode, Stochastic process.

Procedia PDF Downloads 382
322 Investigation of Poly P-Dioxanone as Promising Biodegradable Polymer for Short-Term Medical Application

Authors: Stefanie Ficht, Lukas Schübel, Magdalena Kleybolte, Markus Eblenkamp, Jana Steger, Dirk Wilhelm, Petra Mela

Abstract:

Although 3D printing as transformative technology has become of increasing interest in the medical field and the demand for biodegradable polymers has developed to a considerable extent, there are only a few additively manufactured, biodegradable implants on the market. Additionally, the sterilization of such implants and its side effects on degradation have still not been sufficiently studied. Within this work, thermosensitive poly p-dioxanone (PPDO) samples were printed with fused filament fabrication (FFF) and investigated. Subsequently, H₂O₂ plasma and gamma radiation were used as low-temperature sterilization techniques and compared among each other and the control group (no sterilization). In order to assess the effect of different sterilization on the degradation behavior of PPDO, the samples were immersed in phosphate-buffered solution (PBS) over 28 days, and surface morphology, thermal properties, molecular weight, inherent viscosity, and mechanical properties were examined at regular time intervals. The study demonstrates that PPDO was printed with great success and that thermal properties, molecular weight (Mw), and inherent viscosity (IV) were not significantly affected by the printing process itself. H₂O₂ plasma sterilization did not significantly harm the thermosensitive polymer, while gamma radiation lowered IV and Mw statistically significantly compared to the control group (p < 0.001). During immersion in PBS, a decrease in Mw and mechanical strength occurred for all samples. However, gamma sterilized samples were affected to a much higher extent compared to the two other sample groups both in final values and timeline. This was confirmed by scanning electron microscopy showing no changes of surface morphology of (non-sterilized) control samples, first microcracks appearing on plasma sterilized samples after two weeks while being present on gamma sterilized samples already immediately after radiation to then further deteriorate over immersion duration. To conclude, we demonstrated that FFF and H₂O₂ plasma sterilization are well suited for processing thermosensitive, biodegradable polymers used for the development of innovative short-term medical applications.

Keywords: additive manufacturing, sterilization, biodegradable, thermosensitive, medical application

Procedia PDF Downloads 98
321 Method Development for the Determination of Gamma-Aminobutyric Acid in Rice Products by Lc-Ms-Ms

Authors: Cher Rong Matthew Kong, Edmund Tian, Seng Poon Ong, Chee Sian Gan

Abstract:

Gamma-aminobutyric acid (GABA) is a non-protein amino acid that is a functional constituent of certain rice varieties. When consumed, it decreases blood pressure and reduces the risk of hypertension-related diseases. This has led to more research dedicated towards the development of functional food products (e.g. germinated brown rice) with enhanced GABA content, and the development of these functional food products has led to increased demand for instrument-based methods that can efficiently and effectively determine GABA content. Current analytical methods require analyte derivatisation, and have significant disadvantages such as being labour intensive and time-consuming, and being subject to analyte loss due to the increased complexity of the sample preparation process. To address this, an LC-MS-MS method for the determination of GABA in rice products has been developed and validated. This developed method involves a relatively simple sample preparation process before analysis using HILIC LC-MS-MS. This method eliminates the need for derivatisation, thereby significantly reducing the labour and time associated with such an analysis. Using LC-MS-MS also allows for better differentiation of GABA from any potential co-eluting compounds in the sample matrix. Results obtained from the developed method demonstrated high linearity, accuracy, and precision for the determination of GABA (1ng/L to 8ng/L) in a variety of brown rice products. The method can significantly simplify sample preparation steps, improve the accuracy of quantitation, and increase the throughput of analyses, thereby providing a quick but effective alternative to established instrumental analysis methods for GABA in rice.

Keywords: functional food, gamma-aminobutyric acid, germinated brown rice, method development

Procedia PDF Downloads 232
320 Evaluation of Radio Protective Potential of Indian Bamboo Leaves

Authors: Mansi Patel, Priti Mehta

Abstract:

Background: Ionizing radiations have detrimental effects on humans, and the growing technological encroachment has increased human exposure to it enormously. So, the safety issues have emphasized researchers to develop radioprotector from natural resources having minimal toxicity. A substance having anti-inflammatory, antioxidant, and immunomodulatory activity can be a potential candidate for radioprotection. One such plant with immense potential i.e. Bamboo was selected for the present study. Purpose: The study aims to evaluate the potential of Indian bamboo leaves for protection against the clastogenic effect of gamma radiation. Methods: The protective effect of bamboo leaf extract against gamma radiation-induced genetic damage in human peripheral blood lymphocytes (HPBLs) was evaluated in vitro using Cytokinesis blocked micronuclei assay (CBMN). The blood samples were pretreated with varying concentration of extract 30 min before the radiation exposure (4Gy & 6Gy). The reduction in the frequency of micronuclei was observed for the irradiated and control groups. The effect of various concentration of bamboo leaf extract (400,600,800 mg/kg) on the development of radiation induced sickness and altered mortality in mice exposed to 8 Gy of whole-body gamma radiation was studied. The developed symptoms were clinically scored by multiple endpoints for 30 days. Results: Treatment of HPBLs with varying concentration of extract before exposure to a different dose of γ- radiation resulted in significant (P < 0.0001) decline of radiation induced micronuclei. It showed dose dependent and concentration driven activity. The maximum protection ~ 70% was achieved at nine µg/ml concentration. Extract treated whole body irradiated mice showed 50%, 83.3% and 100% survival for 400, 600, and 800mg/kg with 1.05, 0.43 and 0 clinical score respectively when compared to Irradiated mice having 6.03 clinical score and 0% survival. Conclusion: Our findings indicate bamboo leaf extract reduced the radiation induced cytogenetic damage. It has also increased the survival ratio and reduced the radiation induced sickness and mortality when exposed to a lethal dose of gamma radiation.

Keywords: bamboo leaf extract, Cytokinesis blocked micronuclei (CBMN) assay, ionizing radiation, radio protector

Procedia PDF Downloads 115
319 Impact of Tuberculosis Co-infection on Cytokine Expression in HIV-Infected Individuals

Authors: M. Nosik, I. Rymanova, N. Adamovich, S. Sevostyanihin, K. Ryzhov, Y. Kuimova, A. Kravtchenko, N. Sergeeva, A. Sobkin

Abstract:

HIV and Tuberculosis (TB) infections each speed the other's progress. HIV-infection increases the risk of TB disease. At the same time, TB infection is associated with clinical progression of HIV-infection. HIV+TB co-infected patients are also at higher risk of acquiring new opportunistic infections. An important feature of disease progression and clinical outcome is the innate and acquired immune responses. HIV and TB, however, have a spectrum of dysfunctions of the immune response. As cytokines play a crucial role in the immunopathology of both infections, it is important to study immune interactions in patients with dual infection HIV+TB. Plasma levels of proinflammatory cytokines IL-2, IFN-γ and immunoregulating cytokines IL-4, IL-10 were evaluated in 75 patients with dual infection HIV+TB, 58 patients with HIV monoinfection and 50 patients with TB monoinfection who were previously naïve for HAART. The decreased levels of IL-2, IFN-γ, IL-4 and IL-10 were observed in patients with dual infection HIV+TB in comparison with patients who had only HIV or TB which means the profound suppression of Th1 and Th2 cytokine secretion. Thus, those cytokines could possibly serve as immunological markers of progression of HIV-infection in patients with TB.

Keywords: HIV, tuberculosis (TB), HIV associated with TB, Th1/ Th2 cytokine expression

Procedia PDF Downloads 331
318 Chitin Crystalline Phase Transition Promoted by Deep Eutectic Solvent

Authors: Diana G. Ramirez-Wong, Marius Ramirez, Regina Sanchez-Leija, Adriana Rugerio, R. Araceli Mauricio-Sanchez, Martin A. Hernandez-Landaverde, Arturo Carranza, John A. Pojman, Josue D. Mota-Morales, Gabriel Luna-Barcenas

Abstract:

Chitin films were prepared using alpha-chitin from shrimp shells as raw material and a simple method of precipitation-evaporation. Choline chloride: urea Deep Eutectic Solvent (DES) was used to disperse chitin and compared against hexafluoroisopropanol (HFIP). A careful analysis of the chemical and crystalline structure was followed along the synthesis of the films, revealing crystalline-phase transitions. The full conversion of alpha- to beta-, or alpha- to gamma-chitin structure were detected by XRD and NMR on the films. The synthesis of highly crystalline monophasic gamma-chitin films was achieved using a DES; whereas HFIP helps to promote the beta-phase. These results are encouraging to continue in the study of DES as good processing media to control the final properties of chitin based materials.

Keywords: chitin, deep eutectic solvent, polymorph, phase transformation

Procedia PDF Downloads 505
317 The Effect of Gibberellic Acid on Gamma-Aminobutyric Acid (GABA) Metabolism in Phaseolus Vulgaris L. Plant Exposed to Drought and Salt Stresses

Authors: Fazilet Özlem Çekiç, Seyda Yılmaz

Abstract:

Salinity and drought are important environmental problems in the world and have negative effects on plant metabolism. Gamma-aminobutyric acid (GABA), four-carbon non-protein amino acid, is a significant component of the free amino acid pool. GABA is widely distributed in prokaryotic and eukaryotic organisms. Environmental stress factors increase GABA accumulation in plants. Our aim was to evaluate the effect of gibberellic acid (GA) on GABA metabolism system during drought and salt stress factors in Phaseolus vulgaris L. plants. GABA, Glutamate dehydrogenase (GDH) activity, chlorophyll, and lipid peroxidation (MDA) analyses were determined. According to our results we can suggest that GA play a role in GABA metabolism during salt and drought stresses in bean plants. Also GABA shunt is an important metabolic pathway and key signaling allowing to adapt to drought and salt stresses.

Keywords: gibberellic acid, GABA, Phaseolus vulgaris L., salinity, drought

Procedia PDF Downloads 389
316 Comparison of an Anthropomorphic PRESAGE® Dosimeter and Radiochromic Film with a Commercial Radiation Treatment Planning System for Breast IMRT: A Feasibility Study

Authors: Khalid Iqbal

Abstract:

This work presents a comparison of an anthropomorphic PRESAGE® dosimeter and radiochromic film measurements with a commercial treatment planning system to determine the feasibility of PRESAGE® for 3D dosimetry in breast IMRT. An anthropomorphic PRESAGE® phantom was created in the shape of a breast phantom. A five-field IMRT plan was generated with a commercially available treatment planning system and delivered to the PRESAGE® phantom. The anthropomorphic PRESAGE® was scanned with the Duke midsized optical CT scanner (DMOS-RPC) and the OD distribution was converted to dose. Comparisons were performed between the dose distribution calculated with the Pinnacle3 treatment planning system, PRESAGE®, and EBT2 film measurements. DVHs, gamma maps, and line profiles were used to evaluate the agreement. Gamma map comparisons showed that Pinnacle3 agreed with PRESAGE® as greater than 95% of comparison points for the PTV passed a ± 3%/± 3 mm criterion when the outer 8 mm of phantom data were discluded. Edge artifacts were observed in the optical CT reconstruction, from the surface to approximately 8 mm depth. These artifacts resulted in dose differences between Pinnacle3 and PRESAGE® of up to 5% between the surface and a depth of 8 mm and decreased with increasing depth in the phantom. Line profile comparisons between all three independent measurements yielded a maximum difference of 2% within the central 80% of the field width. For the breast IMRT plan studied, the Pinnacle3 calculations agreed with PRESAGE® measurements to within the ±3%/± 3 mm gamma criterion. This work demonstrates the feasibility of the PRESAGE® to be fashioned into anthropomorphic shape, and establishes the accuracy of Pinnacle3 for breast IMRT. Furthermore, these data have established the groundwork for future investigations into 3D dosimetry with more complex anthropomorphic phantoms.

Keywords: 3D dosimetry, PRESAGE®, IMRT, QA, EBT2 GAFCHROMIC film

Procedia PDF Downloads 376
315 Radiation Usage Impact of on Anti-Nutritional Compounds (Antitrypsin and Phytic Acid) of Livestock and Poultry Foods

Authors: Mohammad Khosravi, Ali Kiani, Behroz Dastar, Parvin Showrang

Abstract:

Review was carried out on important anti-nutritional compounds of livestock and poultry foods and the effect of radiation usage. Nowadays, with advancement in technology, different methods have been considered for the optimum usage of nutrients in livestock and poultry foods. Steaming, extruding, pelleting, and the use of chemicals are the most common and popular methods in food processing. Use of radiation in food processing researches in the livestock and poultry industry is currently highly regarded. Ionizing (electrons, gamma) and non-ionizing beams (microwave and infrared) are the most useable rays in animal food processing. In recent researches, these beams have been used to remove and reduce the anti-nutritional factors and microbial contamination and improve the digestibility of nutrients in poultry and livestock food. The evidence presented will help researchers to recognize techniques of relevance to them. Simplification of some of these techniques, especially in developing countries, must be addressed so that they can be used more widely.

Keywords: antitrypsin, gamma anti-nutritional components, phytic acid, radiation

Procedia PDF Downloads 322