Search results for: fungal microflora
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 391

Search results for: fungal microflora

241 A Laser Instrument Rapid-E+ for Real-Time Measurements of Airborne Bioaerosols Such as Bacteria, Fungi, and Pollen

Authors: Minghui Zhang, Sirine Fkaier, Sabri Fernana, Svetlana Kiseleva, Denis Kiselev

Abstract:

The real-time identification of bacteria and fungi is difficult because they emit much weaker signals than pollen. In 2020, Plair developed Rapid-E+, which extends abilities of Rapid-E to detect smaller bioaerosols such as bacteria and fungal spores with diameters down to 0.3 µm, while keeping the similar or even better capability for measurements of large bioaerosols like pollen. Rapid-E+ enables simultaneous measurements of (1) time-resolved, polarization and angle dependent Mie scattering patterns, (2) fluorescence spectra resolved in 16 channels, and (3) fluorescence lifetime of individual particles. Moreover, (4) it provides 2D Mie scattering images which give the full information on particle morphology. The parameters of every single bioaerosol aspired into the instrument are subsequently analysed by machine learning. Firstly, pure species of microbes, e.g., Bacillus subtilis (a species of bacteria), and Penicillium chrysogenum (a species of fungal spores), were aerosolized in a bioaerosol chamber for Rapid-E+ training. Afterwards, we tested microbes under different concentrations. We used several steps of data analysis to classify and identify microbes. All single particles were analysed by the parameters of light scattering and fluorescence in the following steps. (1) They were treated with a smart filter block to get rid of non-microbes. (2) By classification algorithm, we verified the filtered particles were microbes based on the calibration data. (3) The probability threshold (defined by the user) step provides the probability of being microbes ranging from 0 to 100%. We demonstrate how Rapid-E+ identified simultaneously microbes based on the results of Bacillus subtilis (bacteria) and Penicillium chrysogenum (fungal spores). By using machine learning, Rapid-E+ achieved identification precision of 99% against the background. The further classification suggests the precision of 87% and 89% for Bacillus subtilis and Penicillium chrysogenum, respectively. The developed algorithm was subsequently used to evaluate the performance of microbe classification and quantification in real-time. The bacteria and fungi were aerosolized again in the chamber with different concentrations. Rapid-E+ can classify different types of microbes and then quantify them in real-time. Rapid-E+ enables classifying different types of microbes and quantifying them in real-time. Rapid-E+ can identify pollen down to species with similar or even better performance than the previous version (Rapid-E). Therefore, Rapid-E+ is an all-in-one instrument which classifies and quantifies not only pollen, but also bacteria and fungi. Based on the machine learning platform, the user can further develop proprietary algorithms for specific microbes (e.g., virus aerosols) and other aerosols (e.g., combustion-related particles that contain polycyclic aromatic hydrocarbons).

Keywords: bioaerosols, laser-induced fluorescence, Mie-scattering, microorganisms

Procedia PDF Downloads 64
240 Controlling Olive Anthracnose with Antifungal Metabolites from Bacillus Species: A Biological Approach

Authors: Hafiz Husnain Nawaz

Abstract:

Anthracnose disease in olive, caused by the fungal pathogen Colletotrichum acutatum, is considered one of the most critical issues in olive orchards in Pakistan. This disease poses a significant threat as it results in infections that can lead to the complete damage of olive plants, affecting leaves, stems, and fruits in the field. Controlling this disease is particularly challenging due to the absence of an effective fungicide that does not pose risks to farmer health and the environment. To address this challenge, our study aimed to evaluate the antagonistic activity of a biosurfactant produced by the Bacillus subtilis PE-07 strain against the anthracnose-causing agent in olive plants. This strain was selected after screening sixty rhizobacteria strains. Additionally, we assessed the heat stability, pH range, and toxicity of the biosurfactant produced by strain PE-07. Our results revealed that the biosurfactant exhibited maximum antifungal activity against C. acutatum. In vitro studies indicated that the biosurfactant could reduce fungal activity by inhibiting the spore germination of C. acutatum. Furthermore, the biosurfactant demonstrated a wide pH and temperature range, displaying antifungal activity at pH levels ranging from 5 to 10 and a temperature range from room temperature to 110°C. To evaluate the biosurfactant's safety, we conducted toxicity tests on zebra fish (Danio rerio). The results showed that the biosurfactant had minimal harmful effects, even at maximum concentrations. In conclusion, our study confirmed that the biosurfactant produced by B. subtilis exhibited high pH and heat stability with minimal harmful effects. Therefore, it presents a promising alternative to chemical pesticides for effectively controlling olive anthracnose in Pakistan.

Keywords: biological control, heat stability and PH range, toxicity, Danio rerio

Procedia PDF Downloads 24
239 Bacterial Flora of the Anopheles Fluviatilis S. L. in an Endemic Malaria Area in Southeastern Iran for Candidate Paraterasgenesis Strains

Authors: Seyed Hassan Moosa-kazemi, Jalal Mohammadi Soleimani, Hassan Vatandoost, Mohammad Hassan Shirazi, Sara Hajikhani, Roonak Bakhtiari, Morteza Akbari, Siamak Hydarzadeh

Abstract:

Malaria is an infectious disease and considered most important health problems in the southeast of Iran. Iran is elimination malaria phase and new tool need to vector control. Paraterasgenesis is a new way to cut of life cycle of the malaria parasite. In this study, the microflora of the surface and gut of various stages of Anopheles fluviatilis James as one of the important malaria vector was studied using biochemical and molecular techniques during 2013-2014. Twelve bacteria species were found including; Providencia rettgeri, Morganella morganii, Enterobacter aerogenes, Pseudomonas oryzihabitans, Citrobacter braakii، Citrobacter freundii، Aeromonas hydrophila، Klebsiella oxytoca, Citrobacter koseri, Serratia fonticola، Enterobacter sakazakii and Yersinia pseudotuberculosis. The species of Alcaligenes faecalis, Providencia vermicola and Enterobacter hormaechei were identified in various stages of the vector and confirmed by biochemical and molecular techniques. We found Providencia rettgeri proper candidate for paratransgenesis.

Keywords: Anopheles fluviatilis, bacteria, malaria, Paraterasgenesis, Southern Iran

Procedia PDF Downloads 447
238 Optimization and Kinetic Analysis of the Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunch To Xylose Using Crude Xylanase from Trichoderma Viride ITB CC L.67

Authors: Efri Mardawati, Ronny Purwadi, Made Tri Ari Penia Kresnowati, Tjandra Setiadi

Abstract:

EFB are mainly composed of cellulose (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). The palm oil empty fruit bunches (EFB) is the lignosellulosic waste from crude palm oil industries mainly compose of (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). Xylan, a polymer made of pentose sugar xylose and the most abundant component of hemicellulose in plant cell wall. Further xylose can be used as a raw material for production of a wide variety of chemicals such as xylitol, which is extensively used in food, pharmaceutical and thin coating applications. Currently, xylose is mostly produced from xylan via chemical hydrolysis processes. However, these processes are normally conducted at a high temperature and pressure, which is costly, and the required downstream processes are relatively complex. As an alternative method, enzymatic hydrolysis of xylan to xylose offers an environmentally friendly biotechnological process, which is performed at ambient temperature and pressure with high specificity and at low cost. This process is catalysed by xylanolytic enzymes that can be produced by some fungal species such as Aspergillus niger, Penicillium crysogenum, Tricoderma reseei, etc. Fungal that will be used to produce crude xylanase enzyme in this study is T. Viride ITB CC L.67. It is the purposes of this research to study the influence of pretreatment of EFB for the enzymatic hydrolysis process, optimation of temperature and pH of the hydrolysis process, the influence of substrate and enzyme concentration to the enzymatic hydrolysis process, the dynamics of hydrolysis process and followingly to study the kinetics of this process. Xylose as the product of enzymatic hydrolysis process analyzed by HPLC. The results show that the thermal pretreatment of EFB enhance the enzymatic hydrolysis process. The enzymatic hydrolysis can be well approached by the Michaelis Menten kinetic model, and kinetic parameters are obtained from experimental data.

Keywords: oil palm empty fruit bunches (EFB), xylose, enzymatic hydrolysis, kinetic modelling

Procedia PDF Downloads 362
237 Production of Bacillus Lipopeptides for Biocontrol of Postharvest Crops

Authors: Vivek Rangarajan, Kim G. Klarke

Abstract:

With overpopulation threatening the world’s ability to feed itself, food production and protection has become a major issue, especially in developing countries. Almost one-third of the food produced for human consumption, around 1.3 billion tonnes, is either wasted or lost annually. Postharvest decay in particular constitutes a major cause of crop loss with about 20% of fruits and vegetables produced lost during postharvest storage, mainly due to fungal disease. Some of the major phytopathogenic fungi affecting postharvest fruit crops in South Africa include Aspergillus, Botrytis, Penicillium, Alternaria and Sclerotinia spp. To date control of fungal phytopathogens has primarily been dependent on synthetic chemical fungicides, but these chemicals pose a significant threat to the environment, mainly due to their xenobiotic properties and tendency to generate resistance in the phytopathogens. Here, an environmentally benign alternative approach to control postharvest fungal phytopathogens in perishable fruit crops has been presented, namely the application of a bio-fungicide in the form of lipopeptide molecules. Lipopeptides are biosurfactants produced by Bacillus spp. which have been established as green, nontoxic and biodegradable molecules with antimicrobial properties. However, since the Bacillus are capable of producing a large number of lipopeptide homologues with differing efficacies against distinct target organisms, the lipopeptide production conditions and strategy are critical to produce the maximum lipopeptide concentration with homologue ratios to specification for optimum bio-fungicide efficacy. Process conditions, and their impact on Bacillus lipopeptide production, were evaluated in fully instrumented laboratory scale bioreactors under well-regulated controlled and defined environments. Factors such as the oxygen availability and trace element and nitrate concentrations had profound influences on lipopeptide yield, productivity and selectivity. Lipopeptide yield and homologue selectivity were enhanced in cultures where the oxygen in the sparge gas was increased from 21 to 30 mole%. The addition of trace elements, particularly Fe2+, increased the total concentration of lipopeptides and a nitrate concentration equivalent to 8 g/L ammonium nitrate resulted in optimum lipopeptide yield and homologue selectivity. Efficacy studies of the culture supernatant containing the crude lipopeptide mixture were conducted using phytopathogens isolated from fruit in the field, identified using genetic sequencing. The supernatant exhibited antifungal activity against all the test-isolates, namely Lewia, Botrytis, Penicillium, Alternaria and Sclerotinia spp., even in this crude form. Thus the lipopeptide product efficacy has been confirmed to control the main diseases, even in the basic crude form. Future studies will be directed towards purification of the lipopeptide product and enhancement of efficacy.

Keywords: antifungal efficacy, biocontrol, lipopeptide production, perishable crops

Procedia PDF Downloads 384
236 Diversity of Dermatophytes and Keratinophilic Fungi from Inernational Tourist Spots, City of Taj Mahal

Authors: Harison Masih, Jyotsna Kiran Peter, Sundara Singh, Geetha Singh

Abstract:

The present investigation deals with diversity of dermatophytes and keratinophilic fungi from different tourist spots such as Agra Fort, Akbar tomb, It-Mat-Ud-Daulah, Mariam tomb, Radha Swami Bagh, and Taj Mahal of Agra City. These fungi are medically important which causes various infections and diseases in humans and animals. The main reservoir of these pathogens are the keratinous substances that increases due to birds and animal activities in the vicinity of monuments, where thousands (5413266) annual visitors from all over the world are visiting. The soil samples were subjected to isolate the pathogenic fungi through bait technique (buffalo skin, chicken feathers, human hair and goat tail hair). Baits were spread over the soil samples and incubated at room temperature for 30-35 days and pure culture isolates were maintained in SDA medium, stored at 4°C. Highest number of visitors were (3906453) from Taj Mahal, minimum 10785 at Mariam tomb annually, the total 271 isolates were encountered from soil samples out of these 18 genera and 38 species were found in different season. Highest incidence was 4.79% frequency shown by Chrysosporium keratinophilum while least 738% frequency occurrence by Trichophyton simii in soil samples. From the present study it was concluded that the incidence of pathogenic fungal isolates were the common in tourists soil that are etiological agents of superficial mycosis. Thus, both human and animal activity seemed to play an important role in occurrence and distribution of keratinophilic and related dermatophytes at various tourist places of Agra city.

Keywords: dermatophytic fungal diversity, bait technique, visitors at tourist spots, human and animal activities, soil samples

Procedia PDF Downloads 453
235 Oral Microflora and the Risk of Dental Caries in Portuguese Children

Authors: Sara Sousa, Veronique Gomes, Nélio Veiga, Maria José Correia

Abstract:

Objectives: To assess the presence or absence of Streptococcus mutans, Streptococcus gordonii and Streptococcus salivarius in the oral biofilm of children in an elementary school of Viseu, Portugal, and verify the relationship between Streptococcus gordonii and Streptococcus salivarius and the absence of dental caries. Methods: A cross-sectional study was designed with a final sample of 40 children aged 6-11 years old. Oral examination was accomplished with the identification of their oral health status and oral biofilm collection. Analysis of biological samples by molecular techniques of DNA isolation and identification of three Streptococci bacteria by Polimerase Chain Reaction (PCR) was made. Results: We identified Streptococcus salivarius and Streptococcus gordoni only in the lower interincisal region. These species were also present mainly in the first permanent non-decayed molars. On the contrary, Streptococcus mutans was found mostly in decayed first permanent molars. Conclusion: This preliminary study establishes a possible association between the absence of dental caries and the presence of Streptococcus gordonii and Streptococcus salivarius. Since these two species are described as alkali producers, it is suggested that their presence somehow confers protection against caries. These results support new dental caries prevention strategies based on oral biofilm modulation by enrichment with alkalinogenic species.

Keywords: dental caries, oral biofilm, Streptococcus gordonii, Streptococcus salivarius

Procedia PDF Downloads 252
234 Control of Spoilage Fungi by Lactobacilli

Authors: Laref Nora, Guessas Bettache

Abstract:

Lactic acid bacteria (LAB) have a major potential to be used in biopreservation methods because they are safe to consume (GRAS: generally regarded as safe) and they naturally occurring microflora of many foods. The preservative action of LAB is due to several antimicrobial metabolites, including lactic acid, acetic acid, hydrogen peroxide, bacteriocins, carbon dioxide, diacetyl, and reuterin. Several studies have focused on the antifungal activity compounds from natural sources for biopreservation in alternatives to chemical use. LAB has an antifungal activity which may inhibit food spoilage fungi. Lactobacillus strains isolated from silage prepared in our laboratory by fermentation of grass in anaerobic condition were screened for antifungal activity with overlay assay against Aspergillus spp. The antifungal compounds were originated from organic acids; inhibitory activity did not change after treatment with proteolytic enzymes. Lactobacillus strains were able also to inhibit Trichoderma spp, Penicillium spp, Fusarium roseum, and Stemphylim spp by confrontation assay. The inhibitory activity could be detected against the mould Aspergillus spp in the apricot juice but not in a bakery product. These antifungal compounds have the potential to be used as food biopreservation to inhibit conidia germination, and mycelia growth of spoilage fungi depending on food type, pH of food especially in heat, and cold processed foods.

Keywords: lactic acid bacteria, Lactobacillus, Aspergillus, antifungal activity

Procedia PDF Downloads 297
233 Neuromingeal Cryptococcosis Revealing IgA-λ Multiple Myeloma

Authors: L. Mtibaa, N. Baccouchi, S. Hannechi, R. Abid, R. Battikh, B. Jemli

Abstract:

Cryptococcosis is an opportunistic fungal infection which is commonly associated with an immune-compomised state, especially HIV infection. Rare cases of cryptococcosis have been reported in patients with multiple myeloma (MM), and they are all at a late stage of the disease. However, the inaugural character of cryptococcosis revealing the MM at an early stage has never been reported to our best knowledge. We presented here a case of neuromeningeal cryptococcosis in a patient without any apparent underlying conditions, who has revealed IgA-λ MM. Early detection and treatment of cryptococcosis are essential to reduce morbidity and for a better outcome.

Keywords: Cryptococcosis, Cryptococcus, hematologic, malignancy

Procedia PDF Downloads 134
232 Pathogenic Candida Biofilms Producers Involved in Healthcare Associated Infections

Authors: Ouassila Bekkal Brikci Benhabib, Zahia Boucherit Otmani, Kebir Boucherit, A. Seghir

Abstract:

The establishment of intravenous catheters in hospitalized patient is an act common in many clinical situations. These therapeutic tools, from their insertion in the body, represent gateways including fungal germs prone. The latter can generate the growth of biofilms, which can be the cause of fungal infection. Faced with this problem, we conducted a study at the University Hospital of Tlemcen in the neurosurgery unit and aims to isolate and identify Candida yeasts from intravenous catheters. Then test their ability to form biofilms. Materials and methods: 256 patient hospitalized in surgery of the hospital in west Algeria were submitted to this study. All samples were taken from peripheral venous catheters implanted for 72 hours or more days. A total of 31 isolates of Candida species were isolated. MIC and SMIC are determined at 80% inhibition by the test XTT tetrazolium measured at 490 nm. The final concentrations of antifungal agent being between 0.03 and 16 mg / ml for amphotericin B and from 0.015 to 8 mg / mL caspofungin. Results: 31 Candida species isolates from catheters including 14 Candida albicans and 17 Candida non albicans . 21 strains of all the isolates were able to form biofilms. In their form of Planktonic cells, all isolates are 100% susceptible to antifungal agents tested. However, in their state of biofilms, more isolates have become tolerant to the tested antifungals. Conclusion: Candida yeasts isolated from intravascular catheters are considered an important virulence factor in the pathogenesis of infections. Their involvement in catheter-related infections can be disastrous for their potential to generate biofilms. They survive high concentrations of antifungal where treatment failure. Pending the development of a therapeutic approach antibiofilm related to catheters, their mastery is going through: -The risk of infection prevention based on the training and awareness of medical staff, -Strict hygiene and maximum asepsis, and -The choice of material limiting microbial colonization.

Keywords: candida, biofilm, hospital, infection, amphotericin B, caspofungin

Procedia PDF Downloads 295
231 Dynamic of an Invasive Insect Gut Microbiome When Facing to Abiotic Stress

Authors: Judith Mogouong, Philippe Constant, Robert Lavallee, Claude Guertin

Abstract:

The emerald ash borer (EAB) is an exotic wood borer insect native from China, which is associated with important environmental and economic damages in North America. Beetles are known to be vectors of microbial communities related to their adaptive capacities. It is now established that environmental stress factors may induce physiological events on the host trees, such as phytochemical changes. Consequently, that may affect the establishment comportment of herbivorous insect. Considering the number of insects collected on ash trees (insects’ density) as an abiotic factor related to stress damage, the aim of our study was to explore the dynamic of EAB gut microbial community genome (microbiome) when facing that factor and to monitor its diversity. Insects were trapped using specific green Lindgren© traps. A gradient of the captured insect population along the St. Lawrence River was used to create three levels of insects’ density (low, intermediate, and high). After dissection, total DNA extracted from insect guts of each level has been sent for amplicon sequencing of bacterial 16S rRNA gene and fungal ITS2 region. The composition of microbial communities among sample appeared largely diversified with the Simpson index significantly different across the three levels of density for bacteria. Add to that; bacteria were represented by seven phyla and twelve classes, whereas fungi were represented by two phyla and seven known classes. Using principal coordinate analysis (PCoA) based on Bray Curtis distances of 16S rRNA sequences, we observed a significant variation between the structure of the bacterial communities depending on insects’ density. Moreover, the analysis showed significant correlations between some bacterial taxa and the three classes of insects’ density. This study is the first to present a complete overview of the bacterial and fungal communities associated with the gut of EAB base on culture-independent methods, and to correlate those communities with a potential stress factor of the host trees.

Keywords: gut microbiome, DNA, 16S rRNA sequences, emerald ash borer

Procedia PDF Downloads 370
230 Extraction, Characterization, and Applicability of Rich β-Glucan Fractions from Fungal Biomass

Authors: Zaida Perez-Bassart, Berta Polanco-Estibalez, Maria Jose Fabra, Amparo Lopez-Rubio, Antonio Martinez-Abad

Abstract:

Mushroom production has enormously increased in recent years, not only as food products but also for applications in pharmaceuticals, nutraceuticals, and cosmetics. Consequently, interest in its chemical composition, nutritional value, and therapeutic properties has also increased. Fungi are rich in bioactive compounds such as polysaccharides, polyphenols, glycopeptides, and ergosterol, of great medicinal value, but within polysaccharides, β-glucans are the most prominent molecules. They are formed by D-glucose monomers, linked by β-glucosidic bonds β-(1,3) with side chains linked by β-(1,6) bonds. The number and position of the β-(1,6) branches strongly influence the arrangement of the tertiary structure, which, together with the molecular weight, determine the different attributed bioactivities (immunostimulating, anticancer, antimicrobial, prebiotic, etc.) and physico-chemical properties (solubility, bioaccessibility, viscosity or emulsifying). On the other hand, there is a growing interest in the study of fungi as an alternative source of chitin obtained from the by-products of the fungal industry. In this work, a cascade extraction process using aqueous neutral and alkaline treatments was carried out for Grifola frondosa and Lentinula edodes, and the compositional analysis and functional properties of each fraction were characterized. Interestingly, the first fraction obtained by using aqueous treatment at room temperature was the richest in polysaccharides, proteins, and polyphenols, thus obtaining a greater antioxidant capacity than in the other fractions. In contrast, the fractions obtained by alkaline treatments showed a higher degree of β-glucans purification compared to aqueous extractions but a lower extraction yield. Results revealed the different structural recalcitrance of β-glucans, preferentially linked to proteins or chitin depending on the fungus type, which had a direct impact on the functionalities and bioactivities of each fraction.

Keywords: fungi, mushroom, β-glucans, chitin

Procedia PDF Downloads 113
229 The Retinoprotective Effects and Mechanisms of Fungal Ingredient 3,4-Dihydroxybenzalacetone through Inhibition of Retinal Müller and Microglial Activation

Authors: Yu-Wen Cheng, Jau-Der Ho, Liang-Huan Wu, Fan-Li Lin, Li-Huei Chen, Hung-Ming Chang, Yueh-Hsiung Kuo, George Hsiao

Abstract:

Retina glial activation and neuroinflammation have been confirmed to cause devastating responses in retinodegenerative diseases. The expression and activation of matrix metalloproteinase (MMP)-9 and inducible nitric oxide synthase (iNOS) could be exerted as the crucial pathological factors in glaucoma- and blue light-induced retinal injuries. The present study aimed to investigate the retinoprotective effects and mechanisms of fungal ingredient 3,4-dihydroxybenzalacetone (DBL) isolated from Phellinus linteus in the retinal glial activation and retinodegenerative animal models. According to the cellular studies, DBL significantly and concentration-dependently abrogated MMP-9 activation and expression in TNFα-stimulated retinal Müller (rMC-1) cells. We found the inhibitory activities of DBL were strongly through the STAT- and ERK-dependent pathways. Furthermore, DBL dramatically attenuated MMP-9 activation in the stimulated Müller cells exposed to conditioned media from LPS-stimulated microglia BV-2 cells. On the other hand, DBL strongly suppressed LPS-induced production of NO and ROS and expression of iNOS in microglia BV-2 cells. Consistently, the phosphorylation of STAT was substantially blocked by DBL in LPS-stimulated microglia BV-2 cells. In the evaluation of retinoprotective functions, the high IOP-induced scotopic electroretinographic (ERG) deficit and blue light-induced abnormal pupillary light response (PLR) were assessed. The deficit scotopic ERG responses markedly recovered by DBL in a rat model of glaucoma-like ischemia/reperfusion (I/R)-injury. DBL also reduced the aqueous gelatinolytic activity and retinal MMP-9 expression in high IOP-injured conditions. Additionally, DBL could restore the abnormal PLR and reduce retinal MMP-9 activation. In summary, DBL could ameliorate retinal neuroinflammation and MMP-9 activation by predominantly inhibiting STAT3 activation in the retinal Müller cells and microglia, which exhibits therapeutic potential for glaucoma and other retinal degenerative diseases.

Keywords: glaucoma, blue light, DBL, retinal Müller cell, MMP-9, STAT, Microglia, iNOS, ERG, PLR

Procedia PDF Downloads 109
228 Exploitation of Endophytes for the Management of Plant Pathogens

Authors: N. P. Eswara Reddy, S. Thahir Basha

Abstract:

Here, we report the success stories of potential leaf, seed and root endophytes against soil borne as well as foliar plant pathogens which are nutritionally adequate and safe for consumption. Endophytes are the microorganisms that reside asymptomatically in the tissues of higher plants are a robust source of potential biocontrol agents and it is presumed that the survival ability of endophytes may be better when compared to phylloplane microflora. Of all the 68 putative leaf endophytes, the endophytes viz., EB9 (100%), and EB35 (100%) which were superior in controlling Colletotrichum gloeosporioides causing mango anthracnose were identified as Brevundimonas bullata (EB09) and Bacillus thuringiensis (EB35) and further delayed in ripening of mango fruits up to 21 days. As a part, the seed endophyte GSE-4 was identified as Archoromobacter spp. against Sclerotium rolfsii causing stem rot of groundnut and the root endophyte REB-8 against Rhizoctonia bataticola causing dry root rot of chickpea was identified as Bacillus subtilis. Both recorded least percent disease incidence (PDI) and increased plant growth promotion, respectively. Further, the novel Bacillus subtilis (SEB-2) against Macrophomina pahseolina causing charcoal rot of sunflower provides an ample scope for exploring the endophytes at large scale. The talc-based formulations of these endophytes developed can be commercialized after toxicological studies. At the bottom line these unexplored endophytes are the need of the hour against aggressive plant pathogens and to maintain the quality and abundance of food and feed and also to fetch marginal economy to the farmers will be discussed.

Keywords: endophytes, plant pathogens, commercialization, abundance of food

Procedia PDF Downloads 390
227 Post Harvest Fungi Diversity and Level of Aflatoxin Contamination in Stored Maize: Cases of Kitui, Nakuru and Trans-Nzoia Counties in Kenya

Authors: Gachara Grace, Kebira Anthony, Harvey Jagger, Wainaina James

Abstract:

Aflatoxin contamination of maize in Africa poses a major threat to food security and the health of many African people. In Kenya, aflatoxin contamination of maize is high due to the environmental, agricultural and socio-economic factors. Many studies have been conducted to understand the scope of the problem, especially at pre-harvest level. This research was carried out to gather scientific information on the fungi population, diversity and aflatoxin level during the post-harvest period. The study was conducted in three geographical locations of; Kitui, Kitale and Nakuru. Samples were collected from storage structures of farmers and transported to the Biosciences eastern and central Africa (BecA), International Livestock and Research Institute (ILRI) hub laboratories. Mycoflora was recovered using the direct plating method. A total of five fungal genera (Aspergillus, Penicillium, Fusarium, Rhizopus and Bssyochlamys spp.) were isolated from the stored maize samples. The most common fungal species that were isolated from the three study sites included A. flavus at 82.03% followed by A.niger and F.solani at 49% and 26% respectively. The aflatoxin producing fungi A. flavus was recovered in 82.03% of the samples. Aflatoxin levels were analysed on both the maize samples and in vitro. Most of the A. flavus isolates recorded a high level of aflatoxin when they were analysed for presence of aflatoxin B1 using ELISA. In Kitui, all the samples (100%) had aflatoxin levels above 10ppb with a total aflatoxin mean of 219.2ppb. In Kitale, only 3 samples (n=39) had their aflatoxin levels less than 10ppb while in Nakuru, the total aflatoxin mean level of this region was 239.7ppb. When individual samples were analysed using Vicam fluorometer method, aflatoxin analysis revealed that most of the samples (58.4%) had been contaminated. The means were significantly different (p=0.00<0.05) in all the three locations. Genetic relationships of A. flavus isolates were determined using 13 Simple Sequence Repeats (SSRs) markers. The results were used to generate a phylogenetic tree using DARwin5 software program. A total of 5 distinct clusters were revealed among the genotypes. The isolates appeared to cluster separately according to the geographical locations. Principal Coordinates Analysis (PCoA) of the genetic distances among the 91 A. flavus isolates explained over 50.3% of the total variation when two coordinates were used to cluster the isolates. Analysis of Molecular Variance (AMOVA) showed a high variation of 87% within populations and 13% among populations. This research has shown that A. flavus is the main fungal species infecting maize grains in Kenya. The influence of aflatoxins on human populations in Kenya demonstrates a clear need for tools to manage contamination of locally produced maize. Food basket surveys for aflatoxin contamination should be conducted on a regular basis. This would assist in obtaining reliable data on aflatoxin incidence in different food crops. This would go a long way in defining control strategies for this menace.

Keywords: aflatoxin, Aspergillus flavus, genotyping, Kenya

Procedia PDF Downloads 251
226 Preparation and in vivo Assessment of Nystatin-Loaded Solid Lipid Nanoparticles for Topical Delivery against Cutaneous Candidiasis

Authors: Rawia M. Khalil, Ahmed A. Abd El Rahman, Mahfouz A. Kassem, Mohamed S. El Ridi, Mona M. Abou Samra, Ghada E. A. Awad, Soheir S. Mansy

Abstract:

Solid lipid nanoparticles (SLNs) have gained great attention for the topical treatment of skin associated fungal infection as they facilitate the skin penetration of loaded drugs. Our work deals with the preparation of nystatin loaded solid lipid nanoparticles (NystSLNs) using the hot homogenization and ultrasonication method. The prepared NystSLNs were characterized in terms of entrapment efficiency, particle size, zeta potential, transmission electron microscopy, differential scanning calorimetry, rheological behavior and in vitro drug release. A stability study for 6 months was performed. A microbiological study was conducted in male rats infected with Candida albicans, by counting the colonies and examining the histopathological changes induced on the skin of infected rats. The results showed that SLNs dispersions are spherical in shape with particle size ranging from 83.26±11.33 to 955.04±1.09 nm. The entrapment efficiencies are ranging from 19.73±1.21 to 72.46±0.66% with zeta potential ranging from -18.9 to -38.8 mV and shear-thinning rheological Behavior. The stability studies done for 6 months showed that nystatin (Nyst) is a good candidate for topical SLN formulations. A least number of colony forming unit/ ml (cfu/ml) was recorded for the selected NystSLN compared to the drug solution and the commercial Nystatin® cream present in the market. It can be fulfilled from this work that SLNs provide a good skin targeting effect and may represent promising carrier for topical delivery of Nyst offering the sustained release and maintaining the localized effect, resulting in an effective treatment of cutaneous fungal infection.

Keywords: candida infections, hot homogenization, nystatin, solid lipid nanoparticles, stability, topical delivery

Procedia PDF Downloads 360
225 Direct Fed Microbes: A Better Approach to Maximize Utilization of Roughages in Tropical Ruminants

Authors: Muhammad Adeel Arshad, Shaukat Ali Bhatti, Faiz-ul Hassan

Abstract:

Manipulating microbial ecosystem in the rumen is considered as an important strategy to optimize production efficiency in ruminants. In the past, antibiotics and synthetic chemical compounds have been used for the manipulation of rumen fermentation. However, since the non-therapeutic use of antibiotics has been banned, efforts are being focused to search out safe alternative products. In tropics, crop residues and forage grazing are major dietary sources for ruminants. Poor digestibility and utilization of these feedstuffs by animals is a limiting factor to exploit the full potential of ruminants in this area. Hence, there is a need to enhance the utilization of these available feeding resources. One of the potential strategies in this regard is the use of direct-fed microbes. Bacteria and fungi are mostly used as direct-fed microbes to improve animal health and productivity. Commonly used bacterial species include lactic acid-producing and utilizing bacteria (Lactobacillus, Streptococcus, Enterococcus, Bifidobacterium, and Bacillus) and fungal species of yeast are Saccharomyces and Aspergillus. Direct-fed microbes modulate microbial balance in the gastrointestinal tract through the competitive exclusion of pathogenic species and favoring beneficial microbes. Improvement in weight gain and feed efficiency has been observed as a result of feeding direct-fed bacteria. The use of fungi as a direct-fed microbe may prevent excessive production of lactate and harmful oxygen in the rumen leading to better feed digestibility. However, the mechanistic mode of action for bacterial or fungal direct-fed microbes has not been established yet. Various reports have confirmed an increase in dry matter intake, milk yield, and milk contents in response to the administration of direct-fed microbes. However, the application of a direct-fed microbe has shown variable responses mainly attributed to dosages and strains of microbes. Nonetheless, it is concluded that the inclusion of direct-fed microbes may mediate the rumen ecosystem to manage lactic acid production and utilization in both clinical and sub-acute rumen acidosis.

Keywords: microbes, roughages, rumen, feed efficiency, production, fermentation

Procedia PDF Downloads 101
224 Isolation, Identification and Screening of Marine Fungi for Potential Tyrosinase Inhibitor, Antibacterial and Antioxidant for Future Cosmeceuticals

Authors: Shivankar Agrawal, Sunil Kumar Deshmukh, Colin Barrow, Alok Adholeya

Abstract:

A variety of genetic and environmental factors cause various cosmetics and dermatological problems. There are already claimed drugs available in market for treating these problems. However, the challenge remains in finding more potent, environmental friendly, causing minimal side effects and economical cosmeceuticals. This leads to an increased demand for natural cosmeceutical products in the last few decades. Plant derived ingredients are limited because plants either contain toxic metabolites, grow too slow or seasonal harvesting is a problem. To identify new bioactive cosmetics ingredients of marine microbial bioresource, we screened 35 marine fungi isolated from marine samples collected from Andaman Island and west coast of India. Fungal crude extracts were investigated for their antityrosinase, antioxidant and antibacterial activities for the purpose of identifying anti-aging, skin-whitening and anti-acne biomolecule with the potential in cosmetics. In the tyrosinase inhibition and 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assays, two fungal extracts, including “P2”, Talaromyces stipitatus and “D4”, Aspergillus terreus showed high inhibitory activity at 1mg/mL for tyrosinase inhibition and 0.5mg/mL for DPPH scavenging. The in vitro antimicrobial activity was investigated by the agar well diffusion method. In the tyrosinase inhibition assay, 8 extracts showed significant antibacterial activity against bacteria causing skin and wound infection in humans. In the course of systematic screening program for bioactive marine fungi, strain “D5” was found to be most potent strain with MIC value of 1mg/mL, which was morphologically identified as Simplicillium lamellicola. The effects of the most active crude extracts against their susceptible test microorganisms were also investigated by SEM analysis. Further investigations will focus on purification and characterization major active components responsible for these activities.

Keywords: antioxidant, antimicrobial activity, tyrosinase, cosmeceuticals, marine fungi

Procedia PDF Downloads 256
223 Biological Control of Fusarium Crown and Root and Tomato (Solanum lycopersicum L.) Growth Promotion Using Endophytic Fungi from Withania somnifera L.

Authors: Nefzi Ahlem, Aydi Ben Abdallah Rania, Jabnoun-Khiareddine Hayfa, Ammar Nawaim, Mejda Daami-Remadi

Abstract:

Fusarium Crown and Root Rot (FCRR) caused by Fusarium oxysporum f. sp. radicis-lycopersici (FORL) is a serious tomato (Solanum lycopersicum L.) disease in Tunisia. Its management is very difficult due to the long survival of its resting structures and to the luck of genetic resistance. In this work, we explored the wild Solanaceae species Withania somnifera, growing in the Tunisian Centre-East, as a potential source of biocontrol agents effective in FCRR suppression and tomato growth promotion. Seven fungal isolates were shown able to colonize tomato roots, crowns, and stems. Used as conidial suspensions or cell-free culture filtrates, all tested fungal treatments significantly enhanced tomato growth parameters by 21.5-90.3% over FORL-free control and by 27.6-93.5% over pathogen-inoculated control. All treatments significantly decreased the leaf and root damage index by 28.5-92.8 and the vascular browning extent 9.7-86.4% over FORL-inoculated and untreated control. The highest disease suppression ability (decrease by 86.4-92.8% in FCRR severity) over pathogen-inoculated control and by 81.3-88.8 over hymexazol-treated control) was expressed by I6 based treatments. This endophytic fungus was morphologically characterized and identified using rDNA sequencing gene as Fusarium sp. I6 (MG835371). This fungus was shown able to reduce FORL radial growth by 58.5–83.2% using its conidial suspension or cell-free culture filtrate. Fusarium sp. I6 showed chitinolytic, proteolytic and amylase activities. The current study clearly demonstrated that Fusarium sp. (I6) is a promising biocontrol candidate for suppressing FCRR severity and promoting tomato growth. Further investigations are required for elucidating its mechanism of action involved in disease suppression and plant growth promotion.

Keywords: antifungal activity, associated fungi, Fusarium oxysporum f. sp. radicis-lycopersici, Withania somnifera, tomato growth

Procedia PDF Downloads 121
222 Epidemiological and Clinical Profile of Patients with Chorioamnionitis

Authors: Isabel Cristina Ortiz Trujillo, Lina Maria Martinez Sanchez, Felipe Hernández Restrepo, Daniel Gallego Gonzalez, Natalia Vargas Grisales, Camilo Andrés Agudelo Vélez

Abstract:

Chorioamnionitis, is a pregnancy infection, causes different fetal and maternal symptoms. Streptococcus agalactiae present in the normal vaginal microflora of some women, favouring its abnormal multiplication during pregnancy, causing perinatal morbidity and mortality. Objective. Describe the clinical and epidemiological profile of the patients with diagnosis of clinical chorioanmionitis. Methodology. Descriptive, cross-sectional study. The population was patients with diagnosis of clinical chorioanmionitis. The information was taken from the medical records. The research was approved by the Ethics Committee. We used the program SPSS ® version 17.0 (SPSS Inc; Chicago, Illinois, USA) for the information analysis, descriptive statistics were used. Results. 78 patients in total with clinical chorioamnionitis, with a mean age of 26.3 ±5, 8 years old, the 69.2% primigravid women. 2.6% of women had positive culture for Streptococcus agalactiae in urine sample during current pregnancy and 30.7% had received some kind of antibiotics during current pregnancy. The 57.7% had 37 to 40 weeks of gestation in the current pregnancy it was calculated more frequently by ultrasound (66.7% in first quarter, 11.5% in the second and 1.9% in the third). In a 60.3% way of termination of pregnancy was vaginal and a 35.9 percent were caesarean section. Among the women in the study, a 30.8% had premature rupture of membranes. Conclusion. The chorioamnionitis continues to be an important cause of antibiotic use during pregnancy or labour and the decision to do a caesarean, with highest percentage in pregnancies-preterm and preterm premature rupture of membranes.

Keywords: chorioamnionitis, Streptococcus agalactiae, pregnancy complications, infectious

Procedia PDF Downloads 392
221 Microbiological Examination and Antimicrobial Susceptibility of Microorganisms Isolated from Salt Mining Site in Ebonyi State

Authors: Anyimc, C. J. Aneke, J. O. Orji, O. Nworie, U. C. C. Egbule

Abstract:

The microbial examination and antimicrobial susceptibility profile of microorganism isolated from the salt mining site in Ebonyi state were evaluated in the present study using a standard microbiological technique. A total of 300 samples were randomly collected in three sample groups (A, B, and C) of 100 each. Isolation, Identification and characterization of organization present on the soil samples were determined by culturing, gram-staining and biochemical technique. The result showed the following organisms were isolated with their frequency as follow: Bacillus species (37.3%) and Staphylococcus species(23.5%) had the highest frequency in the whole Sample group A and B while Klebsiella specie (15.7%), Pseudomonas species(13.7%), and Erwinia species (9.8%) had the least. Rhizopus species (42.0%) and Aspergillus species (26.0%) were the highest fungi isolated, followed by Penicillum species (20.0%) while Mucor species (4.0%), and Fusarium species (8.0%) recorded the least. Sample group C showed high microbial population of all the microbial isolates when compared to sample group A and B. Disc diffusion method was used to determine the susceptibility of isolated bacteria to various antibiotics (oxfloxacin, pefloxacin, ciprorex, augumentin, gentamycin, ciproflox, septrin, ampicillin), while agar well diffusion method was used to determine the susceptibility of isolated fungi to some antifungal drugs (metronidazole, ketoconazole, itraconazole fluconazole). The antibacterial activity of the antibiotics used showed that ciproflux has the best inhibitory effect on all the test bacteria. Ketoconazole showed the highest inhibitory effect on the fungal isolates, followed by itraconazole, while metronidazole and fluconazole showed the least inhibitory effect on the entire test fungal isolates. Hence, the multiple drug resistance of most isolates to appropriate drugs of choice are of great public health concern and cells for periodic monitoring of antibiograms to detect possible changing patterns. Microbes isolated in the salt mining site can also be used as a source of gene(s) that can increase salt tolerance in different crop species through genetic engineering.

Keywords: microorganisms, antibacterial, antifungal, resistance, salt mining site, Ebonyi State

Procedia PDF Downloads 275
220 Beta-Cyclodextrin Inclusion Complexes for Antifungal Food Packaging Applications

Authors: Cristina Munoz-Shuguli, Francisco Rodriguez, Julio Bruna, M. Jose Galotto, Abel Guarda

Abstract:

The microbial contamination in fruits due to the presence of fungal is the most important cause of their deterioration and loss. The development of active food packaging materials with antifungal properties has been proposed as an innovative strategy in order to prevent this problem. In this way, natural compounds as the essential oils or their derivatives, also called volatile compounds (VC), can be incorporated in the food packaging materials to control the fungal growth during fruit packaging. However, if the VC is incorporated directly in the packaging material, it is released very fast due to VC high volatility. For this reason, the formation of inclusion complexes through the encapsulation of VC into beta-cyclodextrin (β-CD) and their incorporation in package materials is an alternative to maintain an antifungal atmosphere around the packaged fruits for longer times. In this context, the aim of this work was to develop inclusion complexes based in β-CD and VC (β-CD:VC) for further application in the antifungal food packaging materials development. β-CD:VC inclusion complexes were obtained with two different molar ratios 2:1 and 1:1, through co-precipitation method. The entrapment efficiency of β-CD:VC as well the release of antifungal compound from inclusion complexes exposed to different relative humidity (25, 50, and 97 %) to headspace were determined by gaseous chromatography (GC). Also, thermal and antimicrobial properties of β-CD:VC were determined through thermogravimetric analysis (TGA) and antifungal assays against Botrytis cinerea, respectively. GC results showed that β-CD:VC 2:1 had a higher entrapment efficiency than β-CD:VC 1:1, with values of 75.5 ± 3.71 % and 59.6 ± 1.51 %, respectively. It was probably because during the synthesis of β-CD:VC 1:1, there was less molecular space to the movement of VC molecules. Furthermore, the release of VC from β-CD:VC was directly related with the relative humidity. High amount of VC was released when the inclusion complexes were exposed to high humidity, possibly due to the interactions between the water molecules and the β-CD hydrophilic wall. On the other hand, a better thermal stability of VC in inclusion complexes allowed to verify its effective encapsulation into β-CD. Finally, antimicrobial assays showed that the inclusion complexes had a high antifungal activity at very low concentrations. Therefore, the results obtained in this work allow suggesting the β-CD:VC inclusion complexes as potential candidates to the development of fruit antifungal packaging materials, which activity is relative humidity dependent.

Keywords: Botrytis cinerea, fruit packaging, headspace release, volatile compounds

Procedia PDF Downloads 91
219 Salicylic Acid Signalling in Relation to Root Colonization in Rice

Authors: Seema Garcha, Sheetal Chopra, Navraj Sarao

Abstract:

Plant hormones play a role in internal colonization by beneficial microbes and also systemic acquired resistance. They define qualitative and quantitative nature of root microbiome and also influence dynamics of root rhizospheric soil. The present study is an attempt to relate salicylic acid (signal molecule) content and qualitative nature of root endophytes at various stages in the growth of rice varieties of commercial value- Parmal 121 and Basmati 1121. Root seedlings of these varieties were raised using tissue culture techniques and then they were transplanted in the fields. Cultivation was done using conventional methods in agriculture. Field soil contained 0.39% N, 75.12 Kg/hectare of phosphorus and 163.0 Kg/hectare of potassium. Microfloral profiling of the root tissue was done using the selective microbiological medium. The salicylic acid content was estimated using HPLC-Agilent 1100 HPLC Series. Salicylic acid level of Basmati 1121 remained relatively low at the time of transplant and 90 days after transplant. It increased marginally at 60 days. A similar trend was observed with Parmal 121 as well. However, Parmal variety recorded 0.935 ug/g of salicylic acid at 60 days after transplant. Salicylic acid content decreased after 90 days as both the rice varieties remained disease free. The endophytic root microflora was established by 60 days after transplant in both the varieties after which their population became constant. Rhizobium spp dominated over Azotobacter spp. Genetic profiling of endophytes for nitrogen-fixing ability is underway.

Keywords: plant-microbe interaction, rice, root microbiome, salicylic acid

Procedia PDF Downloads 169
218 Isolation, Identification and Screening of Pectinase Producing Fungi Isolated from Apple (Malus Domestica)

Authors: Shameel Pervez, Saad Aziz Durrani, Ibatsam Khokhar

Abstract:

Pectinase is an enzyme that breaks down pectin, a compound responsible for structural integrity of the plant. Pectin is difficult to break down mechanically and the cost is very high, that is why many industries including food industries use pectinase enzyme produced by microbes for pectin breakdown. Apple (Malus domestica) is an important fruit in terms of market value. Every year, millions of apples are wasted due to post-harvest rot caused by fungi. Fungi are natural decomposers of our ecosystem and are infamous for post-harvest rot of apple fruit but at the same time they are prized for their high production of valuable extracellular enzymes such as pectinase. In this study, fungi belonging to different genus were isolated from rotten apples. Rotten samples of apple were picked from different markets of Lahore. After surface sterilization, the rotten parts were cut into small pieces and placed onto MEA media plates for three days. Afterwards, distinct colonies were picked and purified by sub-culturing. The isolates were identified to genus level through the study of basic colony morphology and microscopic features. The isolates were then subjected to screening for pectinase activity on MS media to compare pectinase production and were then subsequently tested for pathogenic activity through wound suspension method to evaluate the pathogenic activity of isolates in comparison with their pectinolytic activity. A total of twelve fungal strains were isolates from rotten apples. They were belonging to genus Penicillium, Alternaria, Paecilomyces and Rhizopus. Upon screening for pectinolytic activity, isolates Pen 1, Pen 4, and Rz showed high pectinolytic activity and were further subjected to DNA isolation and partial sequencing for species identification. The results of partial sequencing were combined with in-depth study of morphological features revealing Pen 1 as Penicillium janthinellum, Pen 4 as Penicillium griseofulvum, and Rz as Rhizopus microsporus. Pathogenic activity of all twelve isolates was evaluated. Penicillium spp. were highly pathogenic and destructive and same was the case with Paecilomyces sp. and Rhizopus sp. However, Alternaria spp. were found to be more consistent in their pathogenic activity, on all types of apples.

Keywords: apple, pectinase, fungal pathogens, penicillium, rhizopus

Procedia PDF Downloads 28
217 The Effect of Salinity on Symbiotic Nitrogen Fixation in Alfalfa and Faba Bean

Authors: Mouffok Ahlem, Belhamra Mohamed, Mouffok Sihem

Abstract:

The use of nitrogen fertilizers inevitable consequence, the increase in the nitrate content of water, which may contribute to the production of nitrite and the formation of carcinogenic nitrosamines. The nitrogen fertilizer may also affect the structure and function of the microbial community. And the fight against eutrophication of aquatic environments represents a cost to the student statements. The agronomic, ecological and economic legumes such as faba beans and alfalfa are not demonstrated, especially in the case of semi-arid and arid areas. Osmotic stress due to drought and / or salinity deficit, nutritional deficiencies is the major factors limiting symbiotic nitrogen fixation and productivity of pulses. To study the symbiotic nitrogen fixation in faba bean (Vicia faba L.) and alfalfa (Medicago sativa L.) in the region of Biskra, we used soil samples collected from 30 locations. This work has identified several issues of ecological and agronomic interest. Evaluation of symbiotic potential of soils in the region of Biskra; by trapping technique, show different levels of susceptibility to rhizobial microflora. The effectiveness of the rhizobial symbiosis in both legumes indicates that air dry biomass and the amount of nitrogen accumulated in the aerial part, depends mainly on the rate of nodulation and regardless of the species and locality. The correlation between symbiotic nitrogen fixation and some physico-chemical properties of soils shows that symbiotic nitrogen fixation in both legumes is strongly related to soil conditions of the soil. Salinity disrupts the physiological process of growth, development and more particularly that of the symbiotic fixation of atmospheric nitrogen. Against by phosphorus promotes rhizobial symbiosis.

Keywords: rhizobia, faba bean, alfalfa, salinity

Procedia PDF Downloads 427
216 Extremophilic Amylases of Mycelial Fungi Strains Isolated in South Caucasus for Starch Processing

Authors: T. Urushadze, R. Khvedelidze, L. Kutateladze, M. Jobava, T. Burduli, T. Alexidze

Abstract:

There is an increasing interest in reliable, wasteless, ecologically friendly technologies. About 40% of enzymes produced all over the world are used for production of syrups with high concentration of glucose-fructose. One of such technologies complies obtaining fermentable sugar glucose from raw materials containing starch by means of amylases. In modern alcohol-producing factories this process is running in two steps, involving two enzymes of different origin: bacterial α-amylase and fungal glucoamylase, as generally fungal amylases are less thermostable as compared to bacterial amylases. Selection of stable and operable at 700С and higher temperatures enzyme preparation with both α- and glucoamylase activities will allow conducting this process in one step. S. Durmishidze Institute of Biochemistry and Biotechnology owns unique collection of mycelial fungi, isolated from different ecological niches of Caucasus. As a result of screening our collection 39 strains poducing amylases were revealed. Most of them belong to the genus Aspergillus. Optimum temperatures of action of selected amylases from three producers were estableshed to be within the range 67-80°C. A. niger B-6 showed higher α-amylase activity at 67°C, and glucoamylase activity at 62°C, A. niger 6-12 showed higher α-amylase activity at 72°C, and glucoamylase activity at 65°C, Aspergillus niger p8-3 showed higher activities at 82°C and 70°C, for α-amylase and glucoamylase activities, respectively. Exhaustive hydrolysis process of starch solutions of different concentrations (3, 5, 15, and 30 %) with cultural liquid and technical preparation of Aspergillus niger p8-3 enzyme was studied. In case of low concentrations exhaustive hydrolysis of starch lasts 40–60 minutes, in case of high concentrations hydrolysis takes longer time. 98, 6% yield of glucose can be reached at incubation during 12 hours with enzyme cultural liquid and 8 hours incubation with technical preparation of the enzyme at gradual increase of temperature from 50°C to 82°C during the first 20 minutes and further decrease of temperature to 70°C. Temperature setting for high yield of glucose and high hydrolysis (pasteurizing), optimal for activity of these strains is the prerequisite to be able to carry out hydrolysis of starch to glucose in one step, and consequently, using one strain, what will be economically justified.

Keywords: amylase, glucose hydrolisis, stability, starch

Procedia PDF Downloads 323
215 Effects of Probiotics on Specific Immunity in Broiler Chicken in Syria

Authors: Moussa Majed, Omar Yaser

Abstract:

The main objective of this experiment was to study the impact of Probiotic compound on the specific immunity as the case study of infectious bursal disease. Total of 8000 one-day old Ross 108 broiler were randomly divided into two experimental groups; control group (4500 birds) and experimental group (3500 birds). Birds in two groups were reared under similar environmental conditions. Birds in control group received basal diets without probiotic whereas the birds in experimental one were fed basal diets supplemented with a commercial probiotic mixture) probiotic lacting k, which contains bacteria cells beyond to lactobacillus, Streptococcus and bifidobacterium genus that are isolated from gut microflora in healthy chickens(. The commercial probiotic were used according to the manufacturer instruction. 400 blood samples for each group were collected from wing vein every 5-7 days as interval period till 42 days old. Indirect Enzyme-Linked Immunosorbent Assay (ELISA) test was performed to detect the level of infectious bursal disease virus (IBDV) antibodies. The results clearly showed that the mean of immune titers was significantly (p= 0.03) higher in trail group than control one. The coefficient of variance percentages were 55% and 39% for control and trial groups respectively, this illustrates that homogeneity of immunity titers in the trail group was much better comparing with control group. The values of geometric means of titers in the control group and trial group were reported 3820 and 8133, respectively. The crude mortality rate in the experimental group was two times lower comparing with control group (14% and 28% respectively, p = 0.005

Keywords: probiotic, broiler chicken, infectious bursal disease, immunity, ELISA test

Procedia PDF Downloads 37
214 Anecic and Epigeic Earthworms as Potential Biocontrol Agents of Fusarium graminearum, Causal Agent of Fusarium Head Blight on Wheat

Authors: Gabriella Jorge, Carlos A. Pérez, Hanna Friberg, Sara Söderlund, Jan Lagerlöf

Abstract:

Fusarium Head Blight (FHB) is one of the most important Fusarium-caused diseases, which affects cereals with serious detrimental effects on yield and grain quality worldwide. Earthworms have been suggested as an alternative to control this disease, which requires a combination of preventive methods to reduce level of damage, although it has been proven that their effect is species dependent. Our objective was to evaluate the effect of the earthworms Aporrectodea longa and Lumbricus rubellus, on the inoculum of Fusarium graminearum on wheat straw. To test this we kept earthworms in vessels with soil, and F. graminearum-inoculated straw covering the surface, under controlled conditions for 6 weeks. Two factors were evaluated with a complete factorial design: earthworms (three levels: without earthworms, A. longa, and L. rubellus), and straw (two levels: inoculated with the pathogen, and sterile). The presence of L. rubellus significantly (P<0.05) reduced the amount of inoculated straw at the soil surface 31% after 6 weeks, while the presence of A. longa, most found in quiescence, did not have any significant effect on the amount of straw when compared to the control. After incubation, F. graminearum was detected by qPCR, only in the surface straw in those treatments inoculated with the pathogen but without earthworms. None of the treatments showed presence of Fusarium in the buried straw, soil or earthworm casts. Both earthworm species decreased in body weight during incubation, most likely due to the decrease in soil water content during the experiment, from 25% to 20%, and/or inadequate food supply, since no other source of food was added. However, this reduction in weight occurred indistinctly of the presence or not of Fusarium (P<0.05). This indicates that both species, of different ecological groups, anecic and epigeic, can reduce F. graminearum inoculum present in wheat straw, while their growth is not negatively affected by this pathogen. These promising results place A. longa, and L. rubellus as potential biocontrol agents of this fungal plant pathogen responsible for Fusarium Head Blight disease in wheat, although further ongoing experiments are needed to confirm the repeatability of these results.

Keywords: Aporrectodea longa, biological control, fungal plant pathogen, Lumbricus rubellus, qPCR, wheat straw

Procedia PDF Downloads 246
213 Evaluation of Antagonistic and Aggregation Property of Probiotic Lactic Acid Bacteria Isolated from Bovine Milk

Authors: Alazar Nebyou, Sujata Pandit

Abstract:

Lactic acid bacteria (LAB) are essential ingredients in probiotic foods, intestinal microflora, and dairy products that are capable of coping up with harsh gastrointestinal tract conditions and are available in a variety of environments. The objective of this study is to evaluate the probiotic property of LAB isolated from bovine milk. Milk samples were collected from local dairy farms. Samples were obtained using sterile test tubes and transported to a laboratory in the icebox for further biochemical characterization. Preliminary physiological and biochemical identification of LAB isolates was conducted by growing on MRS agar after ten-fold serial dilution. Seven of the best isolates were selected for the evaluation of the probiotic property. The LAB isolates were checked for resistance to antibiotics and their antimicrobial activity by disc diffusion assay and agar well diffusion assay respectively. Bile salt hydrolase activity of isolates was studied by growing isolates in a BSH medium with bile salt. Cell surface property of isolates was assayed by studying their autoaggregation and coaggregation percentage with S. aerues. All isolates were found BSH positive. In addition, BCM2 and BGM1 were susceptible to all antibiotic disks except BBM1 which was resistant to all antibiotic disks. BCM1 and BGM1 had the highest autoaggregation and coaggregation potential respectively. Since all LAB isolates showed gastrointestinal tolerance and good cell surface property they could be considered as good potential probiotic candidates for treatment and probiotic starter culture preparation.

Keywords: probiotic, aggregation, lactic acid bacteria, antimicrobial activity

Procedia PDF Downloads 178
212 Study of Polycyclic Aromatic Hydrocarbons Biodegradation by Bacterial Isolated from Contaminated Soils

Authors: Z. Abdessemed, N. Messaâdia, M. Houhamdi

Abstract:

The PAH (Polycyclic Aromatic Hydrocarbons) represent a persistent source of pollution for oil field soils. Their degradation, essentially dominated by the aerobic bacterial and fungal flora, exhibits certain aspects for remediation of these soils microbial oxygenases have, as their substrates, a large range of PAH. The variety and the performance of these enzymes allow the initiation of the biodegradation of any PAH through many different metabolic pathways. These pathways are very important for the recycling of the PAH in the biosphere, where substances supposed indigestible by living organisms are rapidly transformed into simples compounds, directly assimilated by the intermediate metabolism of other microorganisms.

Keywords: polycyclic aromatic hydrocarbons, microbial oxygenases, biodegradation, metabolic pathways

Procedia PDF Downloads 252