Search results for: floating drug delivery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3625

Search results for: floating drug delivery

3295 Comparative Economic Analysis of Floating Photovoltaic Systems Using a Synthesis Approach

Authors: Ching-Feng Chen

Abstract:

The floating photovoltaic (FPV) system highlights economic benefits and energy performance to carbon dioxide (CO₂) discharges. Due to land resource scarcity and many negligent water territories, such as reservoirs, dams, and lakes in Japan and Taiwan, both countries are actively developing FPV and responding to the pricing of the emissions trading systems (ETS). This paper performs a case study through a synthesis approach to compare the economic indicators between the FPVs of Taiwan’s Agongdian Reservoir and Japan’s Yamakura Dam. The research results show that the metrics of the system capacity, installation costs, bank interest rates, and ETS and Electricity Bills affect FPV operating gains. In the post-Feed-In-Tariff (FIT) phase, investing in FPV in Japan is more profitable than in Taiwan. The former’s positive net present value (NPV), eminent internal rate of return (IRR) (11.6%), and benefit-cost ratio (BCR) above 1 (2.0) at the discount rate of 10% indicate that investing the FPV in Japan is more favorable than in Taiwan. In addition, the breakeven point is modest (about 61.3%.). The presented methodology in the study helps investors evaluate schemes’ pros and cons and determine whether a decision is beneficial while funding PV or FPV projects.

Keywords: carbon border adjustment mechanism, floating photovoltaic, emissions trading systems, net present value, internal rate of return, benefit-cost ratio

Procedia PDF Downloads 46
3294 2D and 3D Breast Cancer Cells Behave Differently to the Applied Free Palbociclib or the Palbociclib-Loaded Nanoparticles

Authors: Maryam Parsian, Pelin Mutlu, Ufuk Gunduz

Abstract:

Two-dimensional cell culture affords simplicity and low cost, but it has serious limitations; lacking cell-cell and cell-matrix interactions that are present in tissues. Cancer cells grown in 3D culture systems have distinct phenotypes of adhesion, growth, migration, invasion as well as profiles of gene and protein expression. These interactions cause the 3D-cultured cells to acquire morphological and cellular characteristics relevant to in vivo tumors. Palbociclib is a chemotherapeutic agent for the treatment of ER-positive and HER-negative metastatic breast cancer. Poly-amidoamine (PAMAM) dendrimer is a well-defined, special three-dimensional structure and has a multivalent surface and internal cavities that can play an essential role in drug delivery systems. In this study, palbociclib is loaded onto the magnetic PAMAM dendrimer. Hanging droplet method was used in order to form 3D spheroids. The possible toxic effects of both free drug and drug loaded nanoparticles were evaluated in 2D and 3D MCF-7, MD-MB-231 and SKBR-3 breast cancer cell culture models by performing MTT cell viability and Alamar Blue assays. MTT analysis was performed with six different doses from 1000 µg/ml to 25 µg/ml. Drug unloaded PAMAM dendrimer did not demonstrate significant toxicity on all breast cancer cell lines. The results showed that 3D spheroids are clearly less sensitive than 2D cell cultures to free palbociclib. Also, palbociclib loaded PAMAM dendrimers showed more toxic effect than free palbociclib in all cell lines at 2D and 3D cultures. The results suggest that the traditional cell culture method (2D) is insufficient for mimicking the actual tumor tissue. The response of the cancer cells to anticancer drugs is different in the 2D and 3D culture conditions. This study showed that breast cancer cells are more resistant to free palbociclib in 3D cultures than in 2D cultures. However, nanoparticle loaded drugs can be more cytotoxic when compared to free drug.

Keywords: 2D and 3D cell culture, breast cancer, palbociclibe, PAMAM magnetic nanoparticles

Procedia PDF Downloads 125
3293 Amphibious Architecture: A Benchmark for Mitigating Flood Risk

Authors: Lara Leite Barbosa, Marco Imperadori

Abstract:

This article aims to define strategies for applying innovative technology so that housing in regions subject to floods can be more resilient to disasters. Based on case studies of seven amphibious and floating projects, it proposes design guidelines to implement this practice. Its originality consists of transposing a technology developed for fluctuating buildings for housing types in regions affected by flood disasters. The proposal could be replicated in other contexts, endowing vulnerable households with the ability to resist rising water levels after a flood. The results of this study are design guidelines to adapt for houses in areas subject to flooding, contributing to the mitigation of this disaster.

Keywords: amphibious housing, disaster resilience, floating architecture, flood mitigation, post-disaster reconstruction

Procedia PDF Downloads 129
3292 Nanoparticles Made of Amino Acid Derived Biodegradable Polymers as Promising Drug Delivery Containers

Authors: Sophio Kobauri, Tengiz Kantaria, Temur Kantaria, David Tugushi, Nina Kulikova, Ramaz Katsarava

Abstract:

Polymeric disperse systems such as nanoparticles (NPs) are of high interest for numerous applications in contemporary medicine and nanobiotechnology to a considerable potential for treatment of many human diseases. The important technological advantages of NPs usage as drug carriers (nanocontainers) are their high stability, high carrier capacity, feasibility of encapsulation of both hydrophilic or hydrophobic substances, as well as a high variety of possible administration routes, including oral application and inhalation. NPs can also be designed to allow controlled (sustained) drug release from the matrix. These properties of NPs enable improvement of drug bioavailability and might allow drug dosage decrease. The targeted and controlled administration of drugs using NPs might also help to overcome drug resistance, which is one of the major obstacles in the control of epidemics. Various degradable and non-degradable polymers of both natural and synthetic origin have been used for NPs construction. One of the most promising for the design of NPs are amino acid-based biodegradable polymers (AABBPs) which can clear from the body after the fulfillment of their function. The AABBPs are composed of naturally occurring and non-toxic building blocks such as α-amino acids, fatty diols and dicarboxylic acids. The particles designed from these polymers are expected to have an improved bioavailability along with a high biocompatibility. The present work deals with a systematic study of the preparation of NPs by cost-effective polymer deposition/solvent displacement method using AABBPs. The influence of the nature and concentration of surfactants, concentration of organic phase (polymer solution), and the ratio organic phase/inorganic(water) phase, as well as of some other factors on the size of the fabricated NPs have been studied. It was established that depending on the used conditions the NPs size could be tuned within 40-330 nm. At the next step of this research was carried out an evaluation of biocompability and bioavailability of the synthesized NPs using a stable human cell culture line – A549. It was established that the obtained NPs are not only biocompatible but they stimulate the cell growth.

Keywords: amino acids, biodegradable polymers, bioavailability, nanoparticles

Procedia PDF Downloads 270
3291 Double Liposomes Based Dual Drug Delivery System for Effective Eradication of Helicobacter pylori

Authors: Yuvraj Singh Dangi, Brajesh Kumar Tiwari, Ashok Kumar Jain, Kamta Prasad Namdeo

Abstract:

The potential use of liposomes as drug carriers by i.v. injection is limited by their low stability in blood stream. Firstly, phospholipid exchange and transfer to lipoproteins, mainly HDL destabilizes and disintegrates liposomes with subsequent loss of content. To avoid the pain associated with injection and to obtain better patient compliance studies concerning various dosage forms, have been developed. Conventional liposomes (unilamellar and multilamellar) have certain drawbacks like low entrapment efficiency, stability and release of drug after single breach in external membrane, have led to the new type of liposomal systems. The challenge has been successfully met in the form of Double Liposomes (DL). DL is a recently developed type of liposome, consisting of smaller liposomes enveloped in lipid bilayers. The outer lipid layer of DL can protect inner liposomes against various enzymes, therefore DL was thought to be more effective than ordinary liposomes. This concept was also supported by in vitro release characteristics i.e. DL formation inhibited the release of drugs encapsulated in inner liposomes. DL consists of several small liposomes encapsulated in large liposomes, i.e., multivesicular vesicles (MVV), therefore, DL should be discriminated from ordinary classification of multilamellar vesicles (MLV), large unilamellar vesicles (LUV), small unilamellar vesicles (SUV). However, for these liposomes, the volume of inner phase is small and loading volume of water-soluble drugs is low. In the present study, the potential of phosphatidylethanolamine (PE) lipid anchored double liposomes (DL) to incorporate two drugs in a single system is exploited as a tool to augment the H. pylori eradication rate. Preparation of DL involves two steps, first formation of primary (inner) liposomes by thin film hydration method containing one drug, then addition of suspension of inner liposomes on thin film of lipid containing the other drug. The success of formation of DL was characterized by optical and transmission electron microscopy. Quantitation of DL-bacterial interaction was evaluated in terms of percent growth inhibition (%GI) on reference strain of H. pylori ATCC 26695. To confirm specific binding efficacy of DL to H. pylori PE surface receptor we performed an agglutination assay. Agglutination in DL treated H. pylori suspension suggested selectivity of DL towards the PE surface receptor of H. pylori. Monotherapy is generally not recommended for treatment of a H. pylori infection due to the danger of development of resistance and unacceptably low eradication rates. Therefore, combination therapy with amoxicillin trihydrate (AMOX) as anti-H. pylori agent and ranitidine bismuth citrate (RBC) as antisecretory agent were selected for the study with an expectation that this dual-drug delivery approach will exert acceptable anti-H. pylori activity.

Keywords: Helicobacter pylorI, amoxicillin trihydrate, Ranitidine Bismuth citrate, phosphatidylethanolamine, multi vesicular systems

Procedia PDF Downloads 177
3290 Housing Harmony: Social Integration in Singapore Public Housing

Authors: Yingjie Feng, Lei Xu, Zhenyu Cao

Abstract:

In the process of urbanization, public housing is often a powerful means to deal with large floating population. In the developed countries like the U.S, France, Singapore, and Japan, the experience on how to make use of public housing to realize social integration in aspects of race, class, religion, income is gained through years of practice. Take the example of Singapore, the article first introduces the ethnic composition background and public housing development in Singapore, and then gives a detailed explanation and analysis on social integration in public housing from the views of Ethnic quotas policy, community organization construction and design of public space. Finally, combined with the Chinese situation, the article points out that the solution for social integration in China is the organic mix of different income groups in public housing.

Keywords: floating population, public housing, Singapore, social integration, urbanization

Procedia PDF Downloads 244
3289 Formulation and Optimization of Self Nanoemulsifying Drug Delivery System of Rutin for Enhancement of Oral Bioavailability Using QbD Approach

Authors: Shrestha Sharma, Jasjeet K. Sahni, Javed Ali, Sanjula Baboota

Abstract:

Introduction: Rutin is a naturally occurring strong antioxidant molecule belonging to bioflavonoid category. Due to its free radical scavenging properties, it has been found to be beneficial in the treatment of various diseases including inflammation, cancer, diabetes, allergy, cardiovascular disorders and various types of microbial infections. Despite its beneficial effects, it suffers from the problem of low aqueous solubility which is responsible for low oral bioavailability. The aim of our study was to optimize and characterize self-nanoemulsifying drug delivery system (SNEDDS) of rutin using Box-Behnken design (BBD) combined with a desirability function. Further various antioxidant, pharmacokinetic and pharmacodynamic studies were performed for the optimized rutin SNEDDS formulation. Methodologies: Selection of oil, surfactant and co-surfactant was done on the basis of solubility/miscibility studies. Sefsol+ Vitamin E, Solutol HS 15 and Transcutol P were selected as oil phase, surfactant and co-surfactant respectively. Optimization of SNEDDS formulations was done by a three-factor, three-level (33)BBD. The independent factors were Sefsol+ Vitamin E, Solutol HS15, and Transcutol P. The dependent variables were globule size, self emulsification time (SEF), % transmittance and cumulative percentage drug released. Various response surface graphs and contour plots were constructed to understand the effect of different factor, their levels and combinations on the responses. The optimized Rutin SNEDDS formulation was characterized for various parameters such as globule size, zeta potential, viscosity, refractive index , % Transmittance and in vitro drug release. Ex vivo permeation studies and pharmacokinetic studies were performed for optimized formulation. Antioxidant activity was determined by DPPH and reducing power assays. Anti-inflammatory activity was determined by using carrageenan induced rat paw oedema method. Permeation of rutin across small intestine was assessed using confocal laser scanning microscopy (CLSM). Major findings:The optimized SNEDDS formulation consisting of Sefsol+ Vitamin E - Solutol HS15 -Transcutol HP at proportions of 25:35:17.5 (w/w) was prepared and a comparison of the predicted values and experimental values were found to be in close agreement. The globule size and PDI of optimized SNEDDS formulation was found to be 16.08 ± 0.02 nm and 0.124±0.01 respectively. Significant (p˂0.05) increase in percentage drug release was achieved in the case of optimized SNEDDS formulation (98.8 %) as compared to rutin suspension. Furthermore, pharmacokinetic study showed a 2.3-fold increase in relative oral bioavailability compared with that of the suspension. Antioxidant assay results indicated better efficacy of the developed formulation than the pure drug and it was found to be comparable with ascorbic acid. The results of anti-inflammatory studies showed 72.93 % inhibition for the SNEDDS formulation which was significantly higher than the drug suspension 46.56%. The results of CLSM indicated that the absorption of SNEDDS formulation was considerably higher than that from rutin suspension. Conclusion: Rutin SNEDDS have been successfully prepared and they can serve as an effective tool in enhancing oral bioavailability and efficacy of Rutin.

Keywords: rutin, oral bioavilability, pharamacokinetics, pharmacodynamics

Procedia PDF Downloads 475
3288 Topical Delivery of Griseofulvin via Lipid Nanoparticles

Authors: Yann Jean Tan, Hui Meng Er, Choy Sin Lee, Shew Fung Wong, Wen Huei Lim

Abstract:

Griseofulvin is a long standing fungistatic agent against dermatophytosis. Nevertheless, it has several drawbacks such as poor and highly variable bio availability, long duration of treatment, systemic side effects and drug interactions. Targeted treatment for the superficial skin infection, dermatophytosis via topical route could be beneficial. Nevertheless, griseofulvin is only available in the form of oral preparation. Hence, it generates interest in developing a topical formulation for griseofulvin, by using lipid nano particle as the vehicle. Lipid nanoparticle is a submicron colloidal carrier with a core that is solid in nature (lipid). It has combined advantages of various traditional carriers and is a promising vehicle for topical delivery. The griseofulvin loaded lipid nano particles produced using high pressure homogenization method were characterized and investigated for its skin targeting effect in vitro. It has a mean particle size of 179.8±4.9 nm with polydispersity index of 0.306±0.011. Besides, it showed higher skin permeation and better skin targeting effect compared to the griseofulvin suspension.

Keywords: lipid nanoparticles, griseofulvin, topical, dermatophytosis

Procedia PDF Downloads 427
3287 Solubility Enhancement of Poorly Soluble Anticancer Drug, Docetaxel Using a Novel Polymer, Soluplus via Solid Dispersion Technique

Authors: Adinarayana Gorajana, Venkata Srikanth Meka, Sanjay Garg, Lim Sue May

Abstract:

This study was designed to evaluate and enhance the solubility of poorly soluble drug, docetaxel through solid dispersion (SD) technique prepared using freeze drying method. Docetaxel solid dispersions were formulated with Soluplus in different weight ratios. Freeze drying method was used to prepare the solid dispersions. Solubility of the solid dispersions were evaluated respectively and the optimized of drug-solubilizers ratio systems were characterized with different analytical methods like Differential scanning calorimeter (DSC), Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to confirm the formation of complexes between drug and solubilizers. The solubility data revealed an overall improvement in solubility for all SD formulations. The ternary combination 1:5:2 gave the highest increase in solubility that is approximately 3 folds from the pure drug, suggesting the optimum drug-solubilizers ratio system. This data corresponds with the DSC and SEM analyses, which demonstrates presence of drug in amorphous state and the dispersion in the solubilizers in molecular level. The solubility of the poorly soluble drug, docetaxel was enhanced through preparation of solid dispersion formulations employing freeze drying method. Solid dispersion with multiple carrier system shows better solubility compared to single carrier system.

Keywords: docetaxel, freeze drying, soluplus, solid dispersion technique

Procedia PDF Downloads 479
3286 Adaptive Architecture and Urbanism - A Study of Coastal Cities, Climate Change Problems, Effects, Risks And Opportunities for Making Sustainable Habitat

Authors: Santosh Kumar Ketham

Abstract:

Climate change creating most dramatic and destructive consequences, the result is global warming and sea-level rise, flooding coastal cities around the world forming vulnerable situations affecting in multiple ways: environment, economy, social and political. The aim and goal of the research is to develop cities on water. Taking the problem as an opportunity to bring science, engineering, policies and design together to make a resilient and sustainable floating community on water considering existing/new technologies of floating. The quest is to make sustainable habitat on water to live, work, learn and play.  To make sustainable energy generation and storage alongside maintaining balance of land and marine to conserve Ecosystem. The research would serve as a model for sustainable neighbourhoods designed in a modular way and thus can easily extend or re-arranged, to adapt for future socioeconomic realities.  This research paper studies primarily on climate change problems, effects, risks and opportunities. It does so, through analysing existing case studies, books and writings published on coastal cities and understanding its various aspects for making sustainable habitat.

Keywords: floating cities, flexible modular typologies, rising sea levels, sustainable architecture and urbanism

Procedia PDF Downloads 106
3285 Radiofrequency and Near-Infrared Responsive Core-Shell Multifunctional Nanostructures Using Lipid Templates for Cancer Theranostics

Authors: Animesh Pan, Geoffrey D. Bothun

Abstract:

With the development of nanotechnology, research in multifunctional delivery systems has a new pace and dimension. An incipient challenge is to design an all-in-one delivery system that can be used for multiple purposes, including tumor targeting therapy, radio-frequency (RF-), near-infrared (NIR-), light-, or pH-induced controlled release, photothermal therapy (PTT), photodynamic therapy (PDT), and medical diagnosis. In this regard, various inorganic nanoparticles (NPs) are known to show great potential as the 'functional components' because of their fascinating and tunable physicochemical properties and the possibility of multiple theranostic modalities from individual NPs. Magnetic, luminescent, and plasmonic properties are the three most extensively studied and, more importantly biomedically exploitable properties of inorganic NPs. Although successful attempts of combining any two of them above mentioned functionalities have been made, integrating them in one system has remained challenge. Keeping those in mind, controlled designs of complex colloidal nanoparticle system are one of the most significant challenges in nanoscience and nanotechnology. Therefore, systematic and planned studies providing better revelation are demanded. We report a multifunctional delivery platform-based liposome loaded with drug, iron-oxide magnetic nanoparticles (MNPs), and a gold shell on the surface of liposomes, were synthesized using a lipid with polyelectrolyte (layersomes) templating technique. MNPs and the anti-cancer drug doxorubicin (DOX) were co-encapsulated inside liposomes composed by zwitterionic phophatidylcholine and anionic phosphatidylglycerol using reverse phase evaporation (REV) method. The liposomes were coated with positively charge polyelectrolyte (poly-L-lysine) to enrich the interface with gold anion, exposed to a reducing agent to form a gold nanoshell, and then capped with thio-terminated polyethylene glycol (SH-PEG2000). The core-shell nanostructures were characterized by different techniques like; UV-Vis/NIR scanning spectrophotometer, dynamic light scattering (DLS), transmission electron microscope (TEM). This multifunctional system achieves a variety of functions, such as radiofrequency (RF)-triggered release, chemo-hyperthermia, and NIR laser-triggered for photothermal therapy. Herein, we highlight some of the remaining major design challenges in combination with preliminary studies assessing therapeutic objectives. We demonstrate an efficient loading and delivery system to significant cell death of human cancer cells (A549) with therapeutic capabilities. Coupled with RF and NIR excitation to the doxorubicin-loaded core-shell nanostructure helped in securing targeted and controlled drug release to the cancer cells. The present core-shell multifunctional system with their multimodal imaging and therapeutic capabilities would be eminent candidates for cancer theranostics.

Keywords: cancer thernostics, multifunctional nanostructure, photothermal therapy, radiofrequency targeting

Procedia PDF Downloads 104
3284 A Cluster Randomised Controlled Trial Investigating the Impact of Integrating Mass Drug Administration Treating Soil Transmitted Helminths with Mass Dog Rabies Vaccination in Remote Communities in Tanzania

Authors: Felix Lankester, Alicia Davis, Safari Kinung'hi, Catherine Bunga, Shayo Alkara, Imam Mzimbiri, Jonathan Yoder, Sarah Cleaveland, Guy H. Palmer

Abstract:

Achieving the London Declaration goal of a 90% reduction in neglected tropical diseases (NTDs) by 2030 requires cost-effective strategies that attain high and comprehensive coverage. The first objective of this trial was to assess the impact on cost and coverage of employing a novel integrative One Health approach linking two NTD control programs: mass drug administration (MDA) for soil-transmitted helminths in humans (STH) and mass dog rabies vaccination (MDRV). The second objective was to compare the coverage achieved by the MDA, a community-wide deworming intervention, with that of the existing national primary school-based deworming program (NSDP), with particular focus on the proportion of primary school-age children reached and their school enrolment status. Our approach was unconventional because, in line with the One Health approach to disease control, it coupled the responsibilities and resources of the Ministries responsible for human and animal health into one program with the shared aim of preventing multiple NTDs. The trial was carried out in hard-to-reach pastoral communities comprising 24 villages of the Ngorongoro District, Tanzania, randomly allocated to either Arm A (MDA and MDRV), Arm B (MDA only) or Arm C (MDRV only). Objective one: The percentage of people in each target village that received treatment through MDA in Arms A and B was 63% and 65%, respectively (χ2 = 1, p = 0.32). The percentage of dogs vaccinated in Arm A and C was 70% and 81%, respectively (χ2 =9, p = 0.003). It took 33% less time for a single person and a dog to attend the integrated delivery than two separate events. Cost per dose (including delivery) was lower under the integrated strategy, with delivery of deworming and rabies vaccination reduced by $0.13 (54%) and $0.85 (19%) per dose, respectively. Despite a slight reduction in the proportion of village dogs vaccinated in the integrated event, both the integrated and non-integrated strategies achieved the target threshold of 70% required to eliminate rabies. Objective two: The percentages of primary school age children enrolled in school that was reached by this trial (73%) and the existing NSDP (80%) were not significantly different (F = 0.9, p = 0.36). However, of the primary school age children treated in this trial, 46% were not enrolled in school. Furthermore, 86% of the people treated would have been outside the reach of the NSDP because they were not primary school age or were primary school age children not enrolled in school. The comparable reach, the substantial reductions in cost per dose delivered and the decrease in participants’ time support this integrated One Health approach to control multiple NTDs. Further, the recorded level of non-enrolment at primary school suggests that, in remote areas, school-based delivery strategies could miss a large fraction of school-age children and that programs that focus delivery solely at the level of the primary school will miss a substantial proportion of both primary school age children as well as other individuals from the community. We have shown that these populations can be effectively reached through extramural programs.

Keywords: canine mediated human rabies, integrated health interventions, mass drug administration, neglected tropical disease, One Health, soil-transmitted helminths

Procedia PDF Downloads 143
3283 Mycobacterium tuberculosis and Molecular Epidemiology: An Overview

Authors: Asho Ali

Abstract:

Tuberculosis is a disease of grave concern which infects one-third of the global population. The high incidence of tuberculosis is further compounded by the increasing emergence of drug resistant strains including multi drug resistant (MDR). Global incidence MDR-TB is ~4%. Molecular epidemiological studies, based on the assumption that patients infected with clustered strains are epidemiologically linked, have helped understand the transmission dynamics of disease. It has also helped to investigate the basis of variation in Mycobacterium tuberculosis (MTB) strains, differences in transmission, and severity of disease or drug resistance mechanisms from across the globe. This has helped in developing strategies for the treatment and prevention of the disease including MDR.

Keywords: Mycobcaterium tuberculosis, molecular epidemiology, drug resistance, disease

Procedia PDF Downloads 368
3282 Recent Advancement in Dendrimer Based Nanotechnology for the Treatment of Brain Tumor

Authors: Nitin Dwivedi, Jigna Shah

Abstract:

Brain tumor is metastatic neoplasm of central nervous system, in most of cases it is life threatening disease with low survival rate. Despite of enormous efforts in the development of therapeutics and diagnostic tools, the treatment of brain tumors and gliomas remain a considerable challenge in the area of neuro-oncology. The most reason behind of this the presence of physiological barriers including blood brain barrier and blood brain tumor barrier, lead to insufficient reach ability of therapeutic agents at the site of tumor, result of inadequate destruction of gliomas. So there is an indeed need empowerment of brain tumor imaging for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional different generations of dendrimer offer an improved effort for potentiate drug delivery at the site of brain tumor and gliomas. So this article emphasizes the innovative dendrimer approaches in tumor targeting, tumor imaging and delivery of therapeutic agent.

Keywords: blood brain barrier, dendrimer, gliomas, nanotechnology

Procedia PDF Downloads 533
3281 Novel Electrospun Polymeric Nanofibers Loaded Different Medicaments as Drug Delivery Systems for Regenerative Endodontics

Authors: Nura Brimo, Dilek Cokeliler Serdaroglu, Tansel Uyar, Busra Uysal, Elif Bahar Cakici, Miris Dikmen, Zerrin Canturk

Abstract:

Background: A combination of antibiotics, including metronidazole (MET), ciprofloxacin (CIP), and minocycline (MINO), has been demonstrated to disinfect bacteria in necrotic teeth before regenerative processes. It has been presented clinically that antibiotic pastes may drive to possible stem cell death and difficulties in removing from the canal system, which can limit the regenerative procedure. This study was designed to (1) synthesize nanofibrous webs containing various concentrations of different medicaments (triple, double, and calcium hydroxide,Ca(OH)2), and (2) coat thiselectrospun fibrous gutta-percha (GP) cones. Methods: Poly(vinylpyrrolidone) (PVP)-based electrospun fibrous webs were processed with low medicaments concentrations. Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), and X-Ray Photoelectron Spectroscopy (XPS) were carried out to investigate fiber morphology, antibiotic incorporation, and characterized GP-coated fibrous webs, respectively. The chemical and physical properties of dentine were carried out via Fourier Transform Infrared Spectroscopy (FTIR) and Nano-SEM, respectively. The antimicrobial properties of the different fibrous webs were assessed against various bacteria by direct nanofiber/bacteria contact. Cytocompatibility was measured by applying the MTT method. Results: The mean fiber diameter of the experiment groups of medicament-containing fibers ranged in the nm scale and was significantly smaller than PVP fibers. EDX analysis confirmed the presence of medicaments in the nanofibers. XPS analysis presented a complete coating of the fibers with GPs; FTIR and Nano-SEM showed no chemical and physical configuration of intracanal medicaments on the dentine surface. Meanwhile, nanofibrous webs led to a significant reduction in the percentage of viable bacteria compared with the negative control and PVP. Conclusion: Our findings suggest that TA-NFs, DA-NFs, and Cₐ(OH)₂)-NFs coated GP cones have significant potential in eliminating intracanal bacteria, cell-friendly behavior, and clinical usage features.

Keywords: drug delivery, drug carrier, electrospinning, nano/microfibers, regenerative endodontic, morphology

Procedia PDF Downloads 71
3280 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores

Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi

Abstract:

In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.

Keywords: drug synergy, clustering, prediction, machine learning., deep learning

Procedia PDF Downloads 40
3279 European Drug Serialization: Securing the Pharmaceutical Drug Supply Chain from Counterfeiters

Authors: Vikram Chowdhary, Marek Vins

Abstract:

The profitability of the pharmaceutical drug business has attracted considerable interest, but it also faces significant challenges. Counterfeiters take advantage of the industry's vulnerabilities, which are further exacerbated by the globalization of the market, online trading, and complex supply chains. Governments and organizations worldwide are dedicated to creating a secure environment that ensures a consistent and genuine supply of pharmaceutical products. In 2019, the European authorities implemented regulation EU 2016/161 to strengthen traceability and transparency throughout the entire drug supply chain. This regulation requires the addition of enhanced security features, such as serializing items to the saleable unit level or individual packs. Despite these efforts, the incidents of pharmaceutical counterfeiting continue to rise globally, with regulated territories being particularly affected. This paper examines the effectiveness of the drug serialization system implemented by European authorities. By conducting a systematic literature review, we assess the implementation of drug serialization and explore the potential benefits of integrating emerging digital technologies, such as RFID and Blockchain, to improve traceability and management. The objective is to fortify pharmaceutical supply chains against counterfeiters and manipulators and ensure their security.

Keywords: blockchain, counterfeit drugs, EU drug serialization, pharmaceutical industry, RFID

Procedia PDF Downloads 71
3278 Estimation of Consolidating Settlement Based on a Time-Dependent Skin Friction Model Considering Column Surface Roughness

Authors: Jiang Zhenbo, Ishikura Ryohei, Yasufuku Noriyuki

Abstract:

Improvement of soft clay deposits by the combination of surface stabilization and floating type cement-treated columns is one of the most popular techniques worldwide. On the basis of one dimensional consolidation model, a time-dependent skin friction model for the column-soil interaction is proposed. The nonlinear relationship between column shaft shear stresses and effective vertical pressure of the surrounding soil can be described in this model. The influence of column-soil surface roughness can be represented using a roughness coefficient R, which plays an important role in the design of column length. Based on the homogenization method, a part of floating type improved ground will be treated as an unimproved portion, which with a length of αH1 is defined as a time-dependent equivalent skin friction length. The compression settlement of this unimproved portion can be predicted only using the soft clay parameters. Apart from calculating the settlement of this composited ground, the load transfer mechanism is discussed utilizing model tests. The proposed model is validated by comparing with calculations and laboratory results of model and ring shear tests, which indicate the suitability and accuracy of the solutions in this paper.

Keywords: floating type improved foundation, time-dependent skin friction, roughness, consolidation

Procedia PDF Downloads 446
3277 Psycho-Social Issues: Drug Use and Abuse as a Social Problem among Secondary School Youths in Urban Centres of Benue State, Nigeria

Authors: Ode Kenneth Ogbu

Abstract:

This study was designed as a survey to investigate the incidence of use and abuse of drug as a social problem among the Nigeria youths in the secondary schools in urban centres of Benue state. 500 SS 3 and fresh secondary school graduates in remedial science class of Benue State University Makurdi with mean age of 16.8 were randomly sampled for the study. An instrument called drug use and abuse perception questionnaire (DAPQ) with a reliability coefficient of 74 were administered to the students. Only 337 copies of the questionnaire were properly completed and returned which reduced the sample size of 337. The data were subjected to factor analysis. X2 statistic and frequency distribution using split half method. The result of the analysis showed that: the DAPQ yield seven baseline factors responsible for drug use and abuse; there was appreciable evidence that the study subjects used drugs (42.1%); alcohol topped the list of the drugs consumed; most students use their pocket money to buy drugs; drugs were purchased from unconventional, hidden places and 13 out of the 20 items of DAPQ were perceived as significant factors in drug use and abuse. The paper recommends proper intervention of government, parents and NGO’S among students to reduce cases of drug abuse.

Keywords: drug abuse, psychology, psychiatry, students

Procedia PDF Downloads 277
3276 Controlling the Release of Cyt C and L- Dopa from pNIPAM-AAc Nanogel Based Systems

Authors: Sulalit Bandyopadhyay, Muhammad Awais Ashfaq Alvi, Anuvansh Sharma, Wilhelm R. Glomm

Abstract:

Release of drugs from nanogels and nanogel-based systems can occur under the influence of external stimuli like temperature, pH, magnetic fields and so on. pNIPAm-AAc nanogels respond to the combined action of both temperature and pH, the former being mostly determined by hydrophilic-to-hydrophobic transitions above the volume phase transition temperature (VPTT), while the latter is controlled by the degree of protonation of the carboxylic acid groups. These nanogels based systems are promising candidates in the field of drug delivery. Combining nanogels with magneto-plasmonic nanoparticles (NPs) introduce imaging and targeting modalities along with stimuli-response in one hybrid system, thereby incorporating multifunctionality. Fe@Au core-shell NPs possess optical signature in the visible spectrum owing to localized surface plasmon resonance (LSPR) of the Au shell, and superparamagnetic properties stemming from the Fe core. Although there exist several synthesis methods to control the size and physico-chemical properties of pNIPAm-AAc nanogels, yet, there is no comprehensive study that highlights the dependence of incorporation of one or more layers of NPs to these nanogels. In addition, effective determination of volume phase transition temperature (VPTT) of the nanogels is a challenge which complicates their uses in biological applications. Here, we have modified the swelling-collapse properties of pNIPAm-AAc nanogels, by combining with Fe@Au NPs using different solution based methods. The hydrophilic-hydrophobic transition of the nanogels above the VPTT has been confirmed to be reversible. Further, an analytical method has been developed to deduce the average VPTT which is found to be 37.3°C for the nanogels and 39.3°C for nanogel coated Fe@Au NPs. An opposite swelling –collapse behaviour is observed for the latter where the Fe@Au NPs act as bridge molecules pulling together the gelling units. Thereafter, Cyt C, a model protein drug and L-Dopa, a drug used in the clinical treatment of Parkinson’s disease were loaded separately into the nanogels and nanogel coated Fe@Au NPs, using a modified breathing-in mechanism. This gave high loading and encapsulation efficiencies (L Dopa: ~9% and 70µg/mg of nanogels, Cyt C: ~30% and 10µg/mg of nanogels respectively for both the drugs. The release kinetics of L-Dopa, monitored using UV-vis spectrophotometry was observed to be rather slow (over several hours) with highest release happening under a combination of high temperature (above VPTT) and acidic conditions. However, the release of L-Dopa from nanogel coated Fe@Au NPs was the fastest, accounting for release of almost 87% of the initially loaded drug in ~30 hours. The chemical structure of the drug, drug incorporation method, location of the drug and presence of Fe@Au NPs largely alter the drug release mechanism and the kinetics of these nanogels and Fe@Au NPs coated with nanogels.

Keywords: controlled release, nanogels, volume phase transition temperature, l-dopa

Procedia PDF Downloads 305
3275 Polydopamine Nanoparticle as a Stable and Capacious Nano-Reservoir of Rifampicin

Authors: Tasnuva Tamanna, Aimin Yu

Abstract:

Application of nanoscience in biomedical field has come across as a new era. This study involves the synthesis of nano drug carrier with antibiotic loading. Based on the founding that polydopamine (PDA) nanoparticles could be formed via self-polymerization of dopamine at alkaline pH, one-step synthesis of rifampicin coupled polydopamine (PDA-R) nanoparticles was achieved by adding rifampicin into the dopamine solution. The successful yield of PDA nanoparticles with or without the presence of rifampicin during the polymerization process was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Drug loading was monitored by UV-vis spectroscopy and the loading efficiency of rifampicin was calculated to be 76%. Such highly capacious nano-reservoir was found very stable with little drug leakage at pH 3.

Keywords: drug loading, nanoparticles, polydopamine, rifampicin

Procedia PDF Downloads 449
3274 Effect of Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose Polymer on the Release Profile of Diltiazem Hydrochloride Sustained Release Pellets

Authors: Shahana Sharmin

Abstract:

In the present study, the effect of cellulose polymers Ethyl Cellulose and Hydroxy Propyl Methyl Cellulose was evaluated on the release profile of drug from sustained release pellet. Diltiazem Hydrochloride, an antihypertensive, cardio-protective agent and slow channel blocker were used as a model drug to evaluate its release characteristics from different pellets formulations. Diltiazem Hydrochloride sustained release pellets were prepared by drug loading (drug binder suspension) on neutral pellets followed by different percentages of spraying, i.e. 2%,4%, 6%, 8% and 10% coating suspension using ethyl cellulose and hydroxy-propyl methyl cellulose polymer in a fixed 85:15 ratios respectively. The in vitro dissolution studies of Diltiazem Hydrochloride from these sustained release pellets were carried out in pH 7.2 phosphate buffer for 1, 2, 3, 4, 5, 6, 7, and 8 hrs using USP-I method. Statistically, significant differences were found among the drug release profile from different formulations. Polymer content with the highest concentration of Ethyl cellulose on the pellets shows the highest release retarding rate of the drug. The retarding capacity decreases with the decreased concentration of ethyl cellulose. The release mechanism was explored and explained with zero order, first order, Higuchi and Korsmeyer’s equations. Finally, the study showed that the profile and kinetics of drug release were functions of polymer type, polymer concentration & the physico-chemical properties of the drug.

Keywords: diltiazem hydrochloride, ethyl cellulose, hydroxy propyl methyl cellulose, release kinetics, sustained release pellets

Procedia PDF Downloads 380
3273 In vitro and in vivo Anticancer Activity of Nanosize Zinc Oxide Composites of Doxorubicin

Authors: Emma R. Arakelova, Stepan G. Grigoryan, Flora G. Arsenyan, Nelli S. Babayan, Ruzanna M. Grigoryan, Natalia K. Sarkisyan

Abstract:

Novel nanosize zinc oxide composites of doxorubicin obtained by deposition of 180 nm thick zinc oxide film on the drug surface using DC-magnetron sputtering of a zinc target in the form of gels (PEO+Dox+ZnO and Starch+NaCMC+Dox+ZnO) were studied for drug delivery applications. The cancer specificity was revealed both in in vitro and in vivo models. The cytotoxicity of the test compounds was analyzed against human cancer (HeLa) and normal (MRC5) cell lines using MTT colorimetric cell viability assay. IC50 values were determined and compared to reveal the cancer specificity of the test samples. The mechanistic study of the most active compound was investigated using Flow cytometry analyzing of the DNA content after PI (propidium iodide) staining. Data were analyzed with Tree Star FlowJo software using cell cycle analysis Dean-Jett-Fox module. The in vivo anticancer activity estimation experiments were carried out on mice with inoculated ascitic Ehrlich’s carcinoma at intraperitoneal introduction of doxorubicin and its zinc oxide compositions. It was shown that the nanosize zinc oxide film deposition on the drug surface leads to the selective anticancer activity of composites at the cellular level with the range of selectivity index (SI) from 4 (Starch+NaCMC+Dox+ZnO) to 200 (PEO(gel)+Dox+ZnO) which is higher than that of free Dox (SI = 56). The significant increase in vivo antitumor activity (by a factor of 2-2.5) and decrease of general toxicity of zinc oxide compositions of doxorubicin in the form of the above mentioned gels compared to free doxorubicin were shown on the model of inoculated Ehrlich's ascitic carcinoma. Mechanistic studies of anticancer activity revealed the cytostatic effect based on the high level of DNA biosynthesis inhibition at considerable low concentrations of zinc oxide compositions of doxorubicin. The results of studies in vitro and in vivo behavior of PEO+Dox+ZnO and Starch+NaCMC+Dox+ZnO composites confirm the high potential of the nanosize zinc oxide composites as a vector delivery system for future application in cancer chemotherapy.

Keywords: anticancer activity, cancer specificity, doxorubicin, zinc oxide

Procedia PDF Downloads 378
3272 Evaluation of Sloshing in Process Equipment for Floating Cryogenic Application

Authors: Bo Jin

Abstract:

A variety of process equipment having flow in and out is widely used in industrial land-based cryogenic facilities. In some of this equipment, such as vapor-liquid separator, a liquid level is established during the steady operation. As the implementation of such industrial processes extends to off-shore floating facilities, it is important to investigate the effect of sea motion on the process equipment partially filled with liquid. One important aspect to consider is the occurrence of sloshing therein. The flow characteristics are different from the classical study of sloshing, where the fluid is enclosed inside a vessel (e.g., storage tank) with no flow in or out. Liquid inside process equipment continuously flows in and out of the system. To understand this key difference, a Computational Fluid Dynamics (CFD) model is developed to simulate the liquid motion inside a partially filled cylinder with and without continuous flow in and out. For a partially filled vertical cylinder without any continuous flow in and out, the CFD model is found to be able to capture the well-known sloshing behavior documented in the literature. For the cylinder with a continuous steady flow in and out, the CFD simulation results demonstrate that the continuous flow suppresses sloshing. Given typical cryogenic fluid has very low viscosity, an analysis based on potential flow theory is developed to explain why flow into and out of the cylinder changes the natural frequency of the system and thereby suppresses sloshing. This analysis further validates the CFD results.

Keywords: computational fluid dynamics, CFD, cryogenic process equipment, off-shore floating processes, sloshing

Procedia PDF Downloads 108
3271 Preparation, Characterisation, and Measurement of the in vitro Cytotoxicity of Mesoporous Silica Nanoparticles Loaded with Cytotoxic Pt(II) Oxadiazoline Complexes

Authors: G. Wagner, R. Herrmann

Abstract:

Cytotoxic platinum compounds play a major role in the chemotherapy of a large number of human cancers. However, due to the severe side effects for the patient and other problems associated with their use, there is a need for the development of more efficient drugs and new methods for their selective delivery to the tumours. One way to achieve the latter could be in the use of nanoparticular substrates that can adsorb or chemically bind the drug. In the cell, the drug is supposed to be slowly released, either by physical desorption or by dissolution of the particle framework. Ideally, the cytotoxic properties of the platinum drug unfold only then, in the cancer cell and over a longer period of time due to the gradual release. In this paper, we report on our first steps in this direction. The binding properties of a series of cytotoxic Pt(II) oxadiazoline compounds to mesoporous silica particles has been studied by NMR and UV/vis spectroscopy. High loadings were achieved when the Pt(II) compound was relatively polar, and has been dissolved in a relatively nonpolar solvent before the silica was added. Typically, 6-10 hours were required for complete equilibration, suggesting the adsorption did not only occur to the outer surface but also to the interior of the pores. The untreated and Pt(II) loaded particles were characterised by C, H, N combustion analysis, BET/BJH nitrogen sorption, electron microscopy (REM and TEM) and EDX. With the latter methods we were able to demonstrate the homogenous distribution of the Pt(II) compound on and in the silica particles, and no Pt(II) bulk precipitate had formed. The in vitro cytotoxicity in a human cancer cell line (HeLa) has been determined for one of the new platinum compounds adsorbed to mesoporous silica particles of different size, and compared with the corresponding compound in solution. The IC50 data are similar in all cases, suggesting that the release of the Pt(II) compound was relatively fast and possibly occurred before the particles reached the cells. Overall, the platinum drug is chemically stable on silica and retained its activity upon prolonged storage.

Keywords: cytotoxicity, mesoporous silica, nanoparticles, platinum compounds

Procedia PDF Downloads 284
3270 Feasibility of Using Bike Lanes in Conjunctions with Sidewalks for Ground Drone Applications in Last Mile Delivery for Dense Urban Areas

Authors: N. Bazyar Shourabi, K. Nyarko, C. Scott, M. Jeihnai

Abstract:

Ground drones have the potential to reduce the cost and time of making last-mile deliveries. They also have the potential to make a huge impact on human life. Despite this potential, little work has gone into developing a suitable feasibility model for ground drone delivery in dense urban areas. Today, most of the experimental ground delivery drones utilize sidewalks only, with just a few of them starting to use bike lanes, which a significant portion of some urban areas have. This study works on the feasibility of using bike lanes in conjunction with sidewalks for ground drone applications in last-mile delivery for dense urban areas. This work begins with surveying bike lanes and sidewalks within the city of Boston using Geographic Information System (GIS) software to determine the percentage of coverage currently available within the city. Then six scenarios are examined. Based on this research, a mathematical model is developed. The daily cost of delivering packages using each scenario is calculated by the mathematical model. Comparing the drone delivery scenarios with the traditional method of package delivery using trucks will provide essential information concerning the feasibility of implementing routing protocols that combine the use of sidewalks and bike lanes. The preliminary results of the model show that ground drones that can travel via sidewalks or bike lanes have the potential to significantly reduce delivery cost.

Keywords: ground drone, intelligent transportation system, last-mile delivery, sidewalk robot

Procedia PDF Downloads 108
3269 Mechanical Properties and Antibiotic Release Characteristics of Poly(methyl methacrylate)-based Bone Cement Formulated with Mesoporous Silica Nanoparticles

Authors: Kumaran Letchmanan, Shou-Cang Shen, Wai Kiong Ng

Abstract:

Postoperative implant-associated infections in soft tissues and bones remain a serious complication in orthopaedic surgery, which leads to impaired healing, re-implantation, prolong hospital stay and increase cost. Drug-loaded implants with sustained release of antibiotics at the local site are current research interest to reduce the risk of post-operative infections and osteomyelitis, thus, minimize the need for follow-up care and increase patient comfort. However, the improved drug release of the drug-loaded bone cements is usually accompanied by a loss in mechanical strength, which is critical for weight-bearing bone cement. Recently, more attempts have been undertaken to develop techniques to enhance the antibiotic elution as well as preserve the mechanical properties of the bone cements. The present study investigates the potential influence of addition of mesoporous silica nanoparticles (MSN) on the in vitro drug release kinetics of gentamicin (GTMC), along with the mechanical properties of bone cements. Simplex P was formulated with MSN and loaded with GTMC by direct impregnation. Meanwhile, Simplex P with water soluble poragen (xylitol) and high loading of GTMC as well as commercial bone cement CMW Smartset GHV were used as controls. MSN-formulated bone cements are able to increase the drug release of GTMC by 3-fold with a cumulative release of more than 46% as compared with other control groups. Furthermore, a sustained release could be achieved for two months. The loaded nano-sized MSN with uniform pore channels significantly build up an effective nano-network path in the bone cement facilitates the diffusion and extended release of GTMC. Compared with formulations using xylitol and high GTMC loading, incorporation of MSN shows no detrimental effect on biomechanical properties of the bone cements as no significant changes in the mechanical properties as compared with original bone cement. After drug release for two months, the bending modulus of MSN-formulated bone cements is 4.49 ± 0.75 GPa and the compression strength is 92.7 ± 2.1 MPa (similar to the compression strength of Simplex-P: 93.0 ± 1.2 MPa). The unaffected mechanical properties of MSN-formulated bone cements was due to the unchanged microstructures of bone cement, whereby more than 98% of MSN remains in the matrix and supports the bone cement structures. In contrast, the large portions of extra voids can be observed for the formulations using xylitol and high drug loading after the drug release study, thus caused compressive strength below the ASTM F541 and ISO 5833 minimum of 70 MPa. These results demonstrate the potential applicability of MSN-functionalized poly(methyl methacrylate)-based bone cement as a highly efficient, sustained and local drug delivery system with good mechanical properties.

Keywords: antibiotics, biomechanical properties, bone cement, sustained release

Procedia PDF Downloads 233
3268 Formulation and in vitro Evaluation of Sustained Release Matrix Tablets of Levetiracetam for Better Epileptic Treatment

Authors: Nagasamy Venkatesh Dhandapani

Abstract:

The objective of the present study was to develop sustained release oral matrix tablets of anti epileptic drug levetiracetam. The sustained release matrix tablets of levetiracetam were prepared using hydrophilic matrix hydroxypropyl methylcellulose (HPMC) as a release retarding polymer by wet granulation method. Prior to compression, FTIR studies were performed to understand the compatibility between the drug and excipients. The study revealed that there was no chemical interaction between drug and excipients used in the study. The tablets were characterized by physical and chemical parameters and results were found in acceptable limits. In vitro release study was carried out for the tablets using 0.1 N HCl for 2 hours and in phosphate buffer pH 7.4 for remaining time up to 12 hours. The effect of polymer concentration was studied. Different dissolution models were applied to drug release data in order to evaluate release mechanisms and kinetics. The drug release data fit well to zero order kinetics. Drug release mechanism was found as a complex mixture of diffusion, swelling and erosion.

Keywords: levetiracetam, sustained-release, hydrophilic matrix tablet, HPMC grade K 100 MCR, wet granulation, zero order release kinetics

Procedia PDF Downloads 288
3267 Development of the Drug Abuse Health Information System in Thai Community

Authors: Waraporn Boonchieng, Ekkarat Boonchieng, Sivaporn Aungwattana, Decha Tamdee, Wongamporn Pinyavong

Abstract:

Drug addiction represents one of the most important public health issues in both developed and developing countries. The purpose of this study was to develop a drug abuse health information in a community in Northern Thailand using developmental research design. The developmental researchers performed four phases to develop drug abuse health information, including 1) synthesizing knowledge related to drug abuse prevention and identifying the components of drug abuse health information; 2) developing the system in mobile application and website; 3) implementing drug abuse health information in the rural community; and 4) evaluating the feasibility of drug abuse health information. Data collection involved both qualitative and quantitative procedures. The qualitative data and quantitative data were analyzed using content analysis and descriptive statistics, respectively. The findings of this study showed that drug abuse health information consisted of five sections, including drug-related prevention knowledge for teens, drug-related knowledge for adults and professionals, the database for drug dependence treatment centers, self-administered questionnaires, and supportive counseling sections. First, in drug-related prevention knowledge for teens, the developmental researchers designed four infographics and animation to provide drug-related prevention knowledge, including types of illegal drugs, causes of drug abuse, consequences of drug abuse, drug abuse diagnosis and treatment, and drug abuse prevention. Second, in drug-related knowledge for adults and professionals, the developmental researchers developed many documents in a form of PDF file to provide drug-related knowledge, including types of illegal drugs, causes of drug abuse, drug abuse prevention, and relapse prevention guideline. Third, database for drug dependence treatment centers included the place, direction map, operation time, and the way for contacting all drug dependence treatment centers in Thailand. Fourth, self-administered questionnaires comprised preventive drugs behavior questionnaire, drug abuse knowledge questionnaire, the stages of change readiness and treatment eagerness to drug use scale, substance use behaviors questionnaire, tobacco use behaviors questionnaire, stress screening, and depression screening. Finally, for supportive counseling, the developmental researchers designed chatting box through which each user could write and send their concerns to counselors individually. Results from evaluation process showed that 651 participants used drug abuse health information via mobile application and website. Among all users, 48.8% were males and 51.2% were females. More than half (55.3%) were 15-20 years old and most of them (88.0%) were Buddhists. Most users reported ever getting knowledge related to drugs (86.1%), and drinking alcohol (94.2%) while some of them (6.9%) reported ever using tobacco. For satisfaction with using the drug abuse health information, more than half of users reflected that the contents of drug abuse health information were interesting (59%), up-to date (61%), and highly useful to their self-study (59%) at high level. In addition, half of them were satisfied with the design in terms of infographics (54%) and animation (51%). Thus, this drug abuse health information can be adopted to explore drug abuse situation and serves as a tool to prevent drug abuse and addiction among Thai community people.

Keywords: drug addiction, health informatics, big data, development research

Procedia PDF Downloads 84
3266 Health and the Politics of Trust: Multi-Drug-Resistant Tuberculosis in Kathmandu

Authors: Mattia Testuzza

Abstract:

Public health is a social endeavour, which involves many different actors: from extremely stratified, structured health systems to unofficial networks of people and knowledge. Health and diseases are an intertwined individual and social experiences. Both patients and health workers navigate this public space through relations of trust. Trust in healthcare goes from the personal trust between a patient and her/his doctor to the trust of both the patient and the health worker in the medical knowledge and the healthcare system. Trust it is not a given, but it is continuously negotiated, given and gained. The key to understand these essential relations of trust in health is to recognise them as a social practice, which therefore implies agency and power. In these terms, health is constantly public and made public, as trust emerges as a meaningfully political phenomenon. Trust as a power relation can be observed at play in the implementation of public health policies such as the WHO’s Directly-Observed Theraphy Short-course (DOTS), and with the increasing concern for drug-resistance that tuberculosis pose, looking at the role of trust in the healthcare delivery system and implementation of public health policies becomes significantly relevant. The ethnographic fieldwork was carried out in four months through observation of the daily practices at the National Tuberculosis Center of Nepal, and semi-structured interviews with MultiDrug-Resistant Tuberculosis (MDR-TB) patients at different stages of the treatment, their relatives, MDR-TB specialised nurses, and doctors. Throughout the research, the role which trust plays in tuberculosis treatment emerged as one fundamental ax that cuts through all the different factors intertwined with drug-resistance development, unfolding a tension between the DOTS policy, which undermines trust, and the day-to-day healthcare relations and practices which cannot function without trust. Trust also stands out as a key component of the solutions to unforeseen issues which develop from the overall uncertainty of the context - for example, political instability and extreme poverty - in which tuberculosis treatment is carried out in Nepal.

Keywords: trust, tuberculosis, drug-resistance, politics of health

Procedia PDF Downloads 218