Search results for: fatigue life estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9270

Search results for: fatigue life estimation

9150 Simulation of Low Cycle Fatigue Behaviour of Nickel-Based Alloy at Elevated Temperatures

Authors: Harish Ramesh Babu, Marco Böcker, Mario Raddatz, Sebastian Henkel, Horst Biermann, Uwe Gampe

Abstract:

Thermal power machines are subjected to cyclic loading conditions under elevated temperatures. At these extreme conditions, the durability of the components has a significant influence. The material mechanical behaviour has to be known in detail for a failsafe construction. For this study a nickel-based alloy is considered, the deformation and fatigue behaviour of the material is analysed under cyclic loading. A viscoplastic model is used for calculating the deformation behaviour as well as to simulate the rate-dependent and cyclic plasticity effects. Finally, the cyclic deformation results of the finite element simulations are compared with low cycle fatigue (LCF) experiments.

Keywords: complex low cycle fatigue, elevated temperature, fe-simulation, viscoplastic

Procedia PDF Downloads 199
9149 Comparative Study of Fatigue and Drowsiness in the Night-Time Passenger Transportation Industry in Japan

Authors: Hiroshi Ikeda

Abstract:

In this research, a questionnaire survey was conducted to measure nap, drowsiness and fatigue of drivers who work long shifts, to discuss about the work environment and health conditions for taxi and bus drivers who work at night time. The questionnaire sheet used for this research was organized into the following categories: tension/tiredness, drowsiness while driving, and the nap situation during night-time work. The number of taxi drivers was 127 and the number of bus drivers was 40. Concerning the results of a comparison of nap hours of taxi and bus drivers, the taxi drivers’ nap hours are overwhelmingly shorter, and also the frequency of drivers who feel drowsiness is higher. The burden on bus drivers does not change because of the system of a two-driver rotation shift. In particular, the working environment of the taxi driver may lead to greater fatigue accumulation than the bus driver’s environment.

Keywords: bus and taxi, drowsiness, fatigue, nap

Procedia PDF Downloads 299
9148 A Comparison of Double Sided Friction Stir Welding in Air and Underwater for 6mm S275 Steel Plate

Authors: Philip Baillie, Stuart W. Campbell, Alexander M. Galloway, Stephen R. Cater, Norman A. McPherson

Abstract:

This study compared the mechanical and microstructural properties produced during friction stir welding(FSW) of S275 structural steel in air and underwater. Post weld tests assessed the tensile strength, micro-hardness, distortion, Charpy impact toughness and fatigue performance in each case. The study showed that there was no significant difference in the strength, hardness or fatigue life of the air and underwater specimens. However, Charpy impact toughness was shown to decrease for the underwater specimens and was attributed to a lower degree of recrystallization caused by the higher rate of heat loss experienced when welding underwater. Reduced angular and longitudinal distortion was observed in the underwater welded plate compared to the plate welded in air.

Keywords: Charpy impact toughness, distortion, fatigue, friction stir welding(FSW), micro-hardness, underwater

Procedia PDF Downloads 368
9147 Managing Truck Drivers’ Fatigue: A Critical Review of the Literature and Recommended Remedies

Authors: Mozhgan Aliakbari, Sara Moridpour

Abstract:

In recent years, much attention has been given to truck drivers’ fatigue management. Long working hours negatively influence truck drivers’ physiology, health, and safety. However, there is little empirical research in the heavy vehicle transport sector in Australia to identify the influence of working hours’ management on drivers’ fatigue and consequently, on the risk of crashes and injuries. There is no national legislation regulating the number of hours or kilometres travelled by truck drivers. Consequently, it is almost impossible to define a standard number of hours or kilometres for truck drivers in a safety management system. This paper reviews the existing studies concerning safe system interventions such as tachographs in relation to fatigue caused by long working hours. This paper also reviews the literature to identify the influence of frequency of rest breaks on the reduction of work-related road transport accidents involving trucks. A framework is presented to manage truck drivers’ fatigue, which may result in the reduction of injuries and fatalities involving heavy vehicles.

Keywords: fatigue, time management, trucks, traffic safety

Procedia PDF Downloads 256
9146 Analysis of Nuclear Power Plant Operator Activities and Risk Factors Using an EEG System

Authors: John Gaber, Youssef Ahmed, Hossam A.Gabbar, Jing Ren

Abstract:

Nuclear Power Plant (NPP) operators have a large responsibility on their shoulders. They must allow the plant to generate a high amount of energy while inspecting and maintaining the safety of the plant. This type of occupation comes with high amounts of mental fatigue, and a small mistake can have grave consequences. Electroencephalography (EEG) is a method of gathering the electromagnetic waves emitted by a human brain. We propose a safety system by monitoring brainwaves for signs of mental fatigue. This requires an analysis of the tasks and mental models of the NPP operator, as well as risk factors on mental fatigue and attention that NPP operators face when performing their tasks. The brain waves generated from experiencing mental fatigue can then be monitored for. These factors are analyzed, developing an EEG-based monitoring system, which aims to alert NPP operators when levels of mental fatigue and attention start affecting their performance in task completion.

Keywords: EEG, power plant operator, psychology, task analysis

Procedia PDF Downloads 67
9145 Finite Element Analysis of Connecting Rod

Authors: Mohammed Mohsin Ali H., Mohamed Haneef

Abstract:

The connecting rod transmits the piston load to the crank causing the latter to turn, thus converting the reciprocating motion of the piston into a rotary motion of the crankshaft. Connecting rods are subjected to forces generated by mass and fuel combustion. This study investigates and compares the fatigue behavior of forged steel, powder forged and ASTM a 514 steel cold quenched connecting rods. The objective is to suggest for a new material with reduced weight and cost with the increased fatigue life. This has entailed performing a detailed load analysis. Therefore, this study has dealt with two subjects: first, dynamic load and stress analysis of the connecting rod, and second, optimization for material, weight and cost. In the first part of the study, the loads acting on the connecting rod as a function of time were obtained. Based on the observations of the dynamic FEA, static FEA, and the load analysis results, the load for the optimization study was selected. It is the conclusion of this study that the connecting rod can be designed and optimized under a load range comprising tensile load and compressive load. Tensile load corresponds to 360o crank angle at the maximum engine speed. The compressive load is corresponding to the peak gas pressure. Furthermore, the existing connecting rod can be replaced with a new connecting rod made of ASTM a 514 steel cold quenched that is 12% lighter and 28% cheaper.

Keywords: connecting rod, ASTM a514 cold quenched material, static analysis, fatigue analysis, stress life approach

Procedia PDF Downloads 277
9144 Simulation of 3-D Direction-of-Arrival Estimation Using MUSIC Algorithm

Authors: Duckyong Kim, Jong Kang Park, Jong Tae Kim

Abstract:

DOA (Direction of Arrival) estimation is an important method in array signal processing and has a wide range of applications such as direction finding, beam forming, and so on. In this paper, we briefly introduce the MUSIC (Multiple Signal Classification) Algorithm, one of DOA estimation methods for analyzing several targets. Then we apply the MUSIC algorithm to the two-dimensional antenna array to analyze DOA estimation in 3D space through MATLAB simulation. We also analyze the design factors that can affect the accuracy of DOA estimation through simulation, and proceed with further consideration on how to apply the system.

Keywords: DOA estimation, MUSIC algorithm, spatial spectrum, array signal processing

Procedia PDF Downloads 342
9143 A Current Problem for Steel Bridges: Fatigue Assessment of Seams´ Repair

Authors: H. Pasternak, A. Chwastek

Abstract:

The paper describes the results from a research project about repair of welds. The repair was carried out by grinding the flawed seams and re-welding them. The main task was to determine the FAT classes of original state and after repair of seams according to the assessment procedures, such as nominal, structural and effective notch stress approach. The first part shows the results of the tests, the second part encloses numerical analysis and evaluation of results to determine the fatigue strength classes according to three assessment procedures.

Keywords: cyclic loading, fatigue crack, post-weld treatment, seams’ repair

Procedia PDF Downloads 235
9142 Determination of Fatigue Limit in Post Impacted Carbon Fiber Reinforced Epoxy Polymer (CFRP) Specimens Using Self Heating Methodology

Authors: Deepika Sudevan, Patrick Rozycki, Laurent Gornet

Abstract:

This paper presents the experimental identification of the fatigue limit for pristine and impacted Carbon Fiber Reinforced Epoxy polymer (CFRP) woven composites based on the relatively new self-heating methodology for composites. CFRP composites of [0/90]8 and quasi isotropic configurations prepared using hand-layup technique are subjected to low energy impacts (20 J energy) simulating a barely visible impact damage (BVID). Runway debris strike, tool drop or hailstone impact can cause a BVID on an aircraft fuselage made of carbon composites and hence understanding the post-impact fatigue response of CFRP laminates is of immense importance to the aerospace community. The BVID zone on the specimens is characterized using X-ray Tomography technique. Both pristine and impacted specimens are subjected to several blocks of constant amplitude (CA) fatigue loading keeping R-ratio a constant but with increments in the mean loading stress after each block. The number of loading cycles in each block is a subjective parameter and it varies for pristine and impacted CFRP specimens. To monitor the temperature evolution during fatigue loading, thermocouples are pasted on the CFRP specimens at specific locations. The fatigue limit is determined by two strategies, first is by considering the stabilized temperature in every block and second is by considering the change in the temperature slope per block. The results show that both strategies can be adopted to determine the fatigue limit in both pristine and impacted CFRP composites.

Keywords: CFRP, fatigue limit, low energy impact, self-heating, WRM

Procedia PDF Downloads 205
9141 Fatigue Analysis of Spread Mooring Line

Authors: Chanhoe Kang, Changhyun Lee, Seock-Hee Jun, Yeong-Tae Oh

Abstract:

Offshore floating structure under the various environmental conditions maintains a fixed position by mooring system. Environmental conditions, vessel motions and mooring loads are applied to mooring lines as the dynamic tension. Because global responses of mooring system in deep water are specified as wave frequency and low frequency response, they should be calculated from the time-domain analysis due to non-linear dynamic characteristics. To take into account all mooring loads, environmental conditions, added mass and damping terms at each time step, a lot of computation time and capacities are required. Thus, under the premise that reliable fatigue damage could be derived through reasonable analysis method, it is necessary to reduce the analysis cases through the sensitivity studies and appropriate assumptions. In this paper, effects in fatigue are studied for spread mooring system connected with oil FPSO which is positioned in deep water of West Africa offshore. The target FPSO with two Mbbls storage has 16 spread mooring lines (4 bundles x 4 lines). The various sensitivity studies are performed for environmental loads, type of responses, vessel offsets, mooring position, loading conditions and riser behavior. Each parameter applied to the sensitivity studies is investigated from the effects of fatigue damage through fatigue analysis. Based on the sensitivity studies, the following results are presented: Wave loads are more dominant in terms of fatigue than other environment conditions. Wave frequency response causes the higher fatigue damage than low frequency response. The larger vessel offset increases the mean tension and so it results in the increased fatigue damage. The external line of each bundle shows the highest fatigue damage by the governed vessel pitch motion due to swell wave conditions. Among three kinds of loading conditions, ballast condition has the highest fatigue damage due to higher tension. The riser damping occurred by riser behavior tends to reduce the fatigue damage. The various analysis results obtained from these sensitivity studies can be used for a simplified fatigue analysis of spread mooring line as the reference.

Keywords: mooring system, fatigue analysis, time domain, non-linear dynamic characteristics

Procedia PDF Downloads 313
9140 A Self-Directed Home Yoga Program for Women with Breast Cancer during Chemotherapy

Authors: Hiroko Komatsu, Kaori Yagasaki

Abstract:

Background: Cancer-related cognitive impairment is a common problem seen in cancer patients undergoing chemotherapy. Physical activity may show beneficial effects on the cognitive function in such patients. Therefore, we have developed a self-directed home yoga program for cancer patients with cognitive symptoms during chemotherapy. This program involves a DVD presenting a combination of yoga courses based on patient preferences to be practiced at home. This study was performed to examine the feasibility of this program. In addition, we also examined changes in cognitive function and quality of life (QOL) in these patients participating in the program. Methods: This prospective feasibility study was conducted in a 500-bed general hospital in Tokyo, Japan. The study population consisted of breast cancer patients undergoing chemotherapy as the initial therapy. This feasibility study used a convenience sample with estimation of recruitment rate in a single facility with the availability of trained nurses and physicians to ensure safe yoga intervention. The aim of the intervention program was to improve cognitive function by means of both physical and mental activation via yoga, consisting of physical practice, breathing exercises, and meditation. Information on the yoga program was provided as a booklet, with an instructor-guided group yoga class during the orientation, and a self-directed home yoga program on DVD with yoga logs. Results: The recruitment rate was 44.7%, and the study population consisted of 18 women with a mean age of 43.9 years. This study showed high rates of retention, adherence, and acceptability of the yoga program. Improvements were only observed in the cognitive aspects of fatigue, and there were serious adverse events during the program. Conclusion: The self-directed home yoga program discussed here was both feasible and safe for breast cancer patients showing cognitive symptoms during chemotherapy. The patients also rated the program as useful, interesting, and satisfactory. Participation in the program was associated with improvements in cognitive fatigue but not cognitive function.

Keywords: yoga, cognition, breast cancer, chemotherapy, quality of life

Procedia PDF Downloads 238
9139 Viscoelastic Characterization of Bovine Trabecular Bone Samples

Authors: I. Ramirez D. Edgar, J. Angeles H. José, Ruiz C. Osvaldo, H. Jacobo A. Victor, Ortiz P. Armando

Abstract:

Knowledge of bone mechanical properties is important for bone substitutes design and fabrication, and more efficient prostheses development. The aim of this study is to characterize the viscoelastic behavior of bone specimens, through stress relaxation and fatigue tests performed to trabecular bone samples from bovine femoral heads. Relaxation tests consisted on preloading the samples at five different magnitudes and evaluate them for 1020 seconds, adjusting the results to a KWW mathematical model. Fatigue tests consisted of 700 load cycles and analyze their status at the end of the tests. As a conclusion we have that between relaxation stress and each preload there is linear relation and for samples with initial Young´s modulus greater than 1.5 GPa showed no effects due fatigue test loading cycles.

Keywords: bone viscoelasticity, fatigue test, stress relaxation test, trabecular bone properties

Procedia PDF Downloads 454
9138 Experimental Research on the Elastic Modulus of Bones at the Lamellar Level under Fatigue Loading

Authors: Xianjia Meng, Chuanyong Qu

Abstract:

Compact bone produces fatigue damage under the inevitable physiological load. The accumulation of fatigue damage can change the bone’s micro-structure at different scales and cause the catastrophic failure eventually. However, most tests were limited to the macroscopic modulus of bone and there is a need to assess the microscopic modulus during fatigue progress. In this paper, nano-identation was used to investigate the bone specimen subjected to four point bending. The microscopic modulus of the same area were measured at different degrees of damage including fracture. So microscopic damage can be divided into three stages: first, the modulus decreased rapidly and then They fell slowly, before fracture the decline became fast again. After fracture, the average modulus decreased by 20%. The results of inner and outer planes explained the influence of compressive and tensile loads on modulus. Both the compressive and tensile moduli decreased with the accumulation of damage. They reached the minimum at ending and increased after fracture. The modulus evolution under different strains were revealed by the side. They all fell slowly and then fast with the accumulation of damage. The fractured results indicated that the elastic modulus decreased obviously at the high strain while decreased less at the low strain. During the fatigue progress, there was a significant difference in modulus at low degree of damage. However, the dispersed modulus tended to be similar at high degree of damage, but they became different again after the failure.

Keywords: fatigue damage, fracture, microscopic modulus, bone, nano-identation

Procedia PDF Downloads 130
9137 On the Fatigue Behavior of a Triphasic Composite

Authors: G. Minak, D. Ghelli, A. Zucchelli

Abstract:

This paper presents the results of an experimental characterization of a glass fibre-epoxy composite. The behavior of the traditional two-phase composite has been compared with the one of a new three-phase composite where the epoxy matrix was modified by addition of a 3% weight fraction of montmorillonite nano-particles. Two different types of nano-clays, Cloisite® 30B and RXG7000, produced by Southern Clay Products Inc., have been considered. Three-point bending tests, both monotonic and cyclic, were carried out. A strong reduction of the ultimate flexural strength upon nano-modification has been observed in quasi-static tests. Fatigue tests yielded a smaller strength loss. In both quasi-static and fatigue tests a more pronounced tendency to delamination has been noticed in three-phase composites, especially in the case of 30B nano-clay, with respect to the standard two-phase glass fiber composite.

Keywords: bending fatigue, epoxy resin, glass fiber, montmorillonite

Procedia PDF Downloads 427
9136 Effects of Low Sleep Efficiency and Sleep Deprivation on Driver Physical Fatigue

Authors: Chen-Yu Tsai, Wen-Te Liu, Chen-Chen Lo, Kang Lo, Yin-Tzu Lin

Abstract:

Background: Driving drowsiness related to insufficient or disordered sleep accounts for a major percentage of vehicular accidents. Sleep deprivation is the primary reason related to low sleep efficiency. Nevertheless, the mechanism of sleep deprivation induces driving fatigue to remain unclear. Objective: The objective of this study is to associate the relationship between insufficient sleep efficiency and driving fatigue. Methodologies: The physical condition while driving was obtained from the questionnaires to classify the state of driving fatigue. Sleep efficiency was quantified as the polysomnography (PSG), and the sleep stages were sentenced by the reregistered Technologist during examination in a hospital in New Taipei City (Taiwan). The independent T-test was used to investigate the correlation between sleep efficiency, sleep stages ratio, and driving drowsiness. Results: There were 880 subjects recruited in this study, who had been done polysomnography for evaluating severity for obstructive sleep apnea syndrome (OSAS) as well as completed the driver condition questionnaire. Four-hundred-eighty-four subjects (55%) were classified as fatigue group, and 396 subjects (45%) were served as the control group. The ratio of stage three sleep (N3) (0.032 ± 0.056) in fatigue group were significantly lower than the control group (p < 0.01). The significantly higher value of snoring index (242.14 ± 205.51 /hours) was observed in the fatigue group (p < 0.01). Conclusion: We observe the considerable correlation between deep sleep reduce and driving drowsiness. To avoid drowsy driving, the sleep deprivation, and the snoring events during the sleeping time should be monitored and alleviated.

Keywords: driving drowsiness, sleep deprivation, stage three sleep, snoring index

Procedia PDF Downloads 121
9135 Design and Analysis of Flexible Slider Crank Mechanism

Authors: Thanh-Phong Dao, Shyh-Chour Huang

Abstract:

This study presents the optimal design and formulation of a kinematic model of a flexible slider crank mechanism. The objective of the proposed innovative design is to take extra advantage of the compliant mechanism and maximize the fatigue life by applying the Taguchi method. A formulated kinematic model is developed using a Pseudo-Rigid-Body Model (PRBM). By means of mathematic models, the kinematic behaviors of the flexible slider crank mechanism are captured using MATLAB software. Finite Element Analysis (FEA) is used to show the stress distribution. The results show that the optimal shape of the flexible hinge includes a force of 8.5N, a width of 9mm and a thickness of 1.1mm. Analysis of variance shows that the thickness of the proposed hinge is the most significant parameter, with an F test of 15.5. Finally, a prototype is manufactured to prepare for testing the kinematic and dynamic behaviors.

Keywords: kinematic behavior, fatigue life, pseudo-rigid-body model, flexible slider crank mechanism

Procedia PDF Downloads 428
9134 Damage to LCP by the Ratcheting Phenomenon Under Cyclic Motion in Oligocyclic Fatigue

Authors: Aboussalih Amira, Zarza Tahar, Fedaoui Kamel, Baroura Lazhar, Hammoudi Salah

Abstract:

316 L steel is a stainless steel frequently used in orthopedic surgery; in the design of implants (hip, knee, shoulder, ankle, etc.), in dental surgery, cardiology, ophthalmology. Before any use, it is essential to predict the macroscopic phenomenological behavior of the material, and to analyze its response. The behavior of 316 L steel in low cycle fatigue, under uniaxial cyclic loading of tension/compression, producing significant plastic deformations leading to material damage. This investigation allowed us to characterize the behavior of the 316L steel employed in the locking of the compression plates (LCP), of which they are generally used in orthopedics to stabilize the fractured bone parts. And to perceive the phenomenon of Ratcheting leading to the damage of LCP by an excess of plastic deformation under nonsymmetrical alternated imposed constraint in low cycle fatigue.

Keywords: 316L SS, locking compression plate, low cycle fatigue, ratcheting

Procedia PDF Downloads 19
9133 Frequency Offset Estimation Schemes Based on ML for OFDM Systems in Non-Gaussian Noise Environments

Authors: Keunhong Chae, Seokho Yoon

Abstract:

In this paper, frequency offset (FO) estimation schemes robust to the non-Gaussian noise environments are proposed for orthogonal frequency division multiplexing (OFDM) systems. First, a maximum-likelihood (ML) estimation scheme in non-Gaussian noise environments is proposed, and then, the complexity of the ML estimation scheme is reduced by employing a reduced set of candidate values. In numerical results, it is demonstrated that the proposed schemes provide a significant performance improvement over the conventional estimation scheme in non-Gaussian noise environments while maintaining the performance similar to the estimation performance in Gaussian noise environments.

Keywords: frequency offset estimation, maximum-likelihood, non-Gaussian noise environment, OFDM, training symbol

Procedia PDF Downloads 323
9132 Fatigue Truck Modification Factor for Design Truck (CL-625)

Authors: Mohamad Najari, Gilbert Grondin, Marwan El-Rich

Abstract:

Design trucks in standard codes are selected based on the amount of damage they cause on structures-specifically bridges- and roads to represent the real traffic loads. Some limited numbers of trucks are run on a bridge one at a time and the damage on the bridge is recorded for each truck. One design track is also run on the same bridge “n” times -“n” is the number of trucks used previously- to calculate the damage of the design truck on the same bridge. To make these damages equal a reduction factor is needed for that specific design truck in the codes. As the limited number of trucks cannot be the exact representative of real traffic through the life of the structure, these reduction factors are not accurately calculated and they should be modified accordingly. Started on July 2004, the vehicle load data were collected in six weigh in motion (WIM) sites owned by Alberta Transportation for eight consecutive years. This database includes more than 200 million trucks. Having these data gives the opportunity to compare the effect of any standard fatigue trucks weigh and the real traffic load on the fatigue life of the bridges which leads to a modification for the fatigue truck factor in the code. To calculate the damage for each truck, the truck is run on the bridge, moment history of the detail under study is recorded, stress range cycles are counted, and then damage is calculated using available S-N curves. A 2000 lines FORTRAN code has been developed to perform the analysis and calculate the damages of the trucks in the database for all eight fatigue categories according to Canadian Institute of Steel Construction (CSA S-16). Stress cycles are counted using rain flow counting method. The modification factors for design truck (CL-625) are calculated for two different bridge configurations and ten span lengths varying from 1 m to 200 m. The two considered bridge configurations are single-span bridge and four span bridge. This was found to be sufficient and representative for a simply supported span, positive moment in end spans of bridges with two or more spans, positive moment in interior spans of three or more spans, and the negative moment at an interior support of multi-span bridges. The moment history of the mid span is recorded for single-span bridge and, exterior positive moment, interior positive moment, and support negative moment are recorded for four span bridge. The influence lines are expressed by a polynomial expression obtained from a regression analysis of the influence lines obtained from SAP2000. It is found that for design truck (CL-625) fatigue truck factor is varying from 0.35 to 0.55 depending on span lengths and bridge configuration. The detail results will be presented in the upcoming papers. This code can be used for any design trucks available in standard codes.

Keywords: bridge, fatigue, fatigue design truck, rain flow analysis, FORTRAN

Procedia PDF Downloads 497
9131 Software Engineering Inspired Cost Estimation for Process Modelling

Authors: Felix Baumann, Aleksandar Milutinovic, Dieter Roller

Abstract:

Up to this point business process management projects in general and business process modelling projects in particular could not rely on a practical and scientifically validated method to estimate cost and effort. Especially the model development phase is not covered by a cost estimation method or model. Further phases of business process modelling starting with implementation are covered by initial solutions which are discussed in the literature. This article proposes a method of filling this gap by deriving a cost estimation method from available methods in similar domains namely software development or software engineering. Software development is regarded as closely similar to process modelling as we show. After the proposition of this method different ideas for further analysis and validation of the method are proposed. We derive this method from COCOMO II and Function Point which are established methods of effort estimation in the domain of software development. For this we lay out similarities of the software development rocess and the process of process modelling which is a phase of the Business Process Management life-cycle.

Keywords: COCOMO II, busines process modeling, cost estimation method, BPM COCOMO

Procedia PDF Downloads 405
9130 Mechanical Responses to Hip Versus Knee Induced Muscle Fatigue in Patellofemoral Pain Syndrome

Authors: Eman Ahmed Ahmed, Ghada Abdelmoneim Mohamed, Hamada Ahmed Hamada, Nagui Sobhi Nassif

Abstract:

Impaired skeletal muscle endurance may be an important causal factor in the development of patellofemoral pain syndrome (PFPS). However, there is lack of information regarding the effect of hip versus knee muscle fatigue on isokinetic parameters, and myoelectric activity of hip and knee muscles in these patients. Purpose: The study was conducted to investigate the effect of hip abductors versus knee extensors fatigue protocol on knee proprioception, hip and knee muscle strength and their myoelectric activity in patients with PFPS. Methods: Fifteen female patients with PFPS participated in the study. They were tested randomly under two fatiguing conditions; hip abductors and knee extensors fatigue protocols. Isolated muscle fatigue of two muscles was induced isokinetically on the affected side in a two separate sessions with a rest interval of at least three days. After determining peak torque, patients performed continuous maximal concentric-eccentric contraction of the selected muscle until the torque output dropped below 50% of peak torque value for 3 consecutive repetitions. Knee proprioception, eccentric hip abductors' peak torque, eccentric knee extensors' peak torque, EMG ratio of vastus medialis obliquus (VMO) / vastus lateralis (VL), and EMG activity of gluteus medius (GM) muscle, were recorded before and immediately after each fatigue protocol using the Biodex Isokinetic system and EMG Myosystem. Results: Two-way within subject MANOVA revealed that eccentric knee extensors’ peak torque decreased significantly after hip abductors fatigue protocol compared to pre fatigue condition (p<0.05). On the other hand, there was no statistically significant difference in the eccentric hip abductors’ peak torque after admitting knee extensors fatigue protocol (p > 0.05). Moreover, no significant difference was found in knee proprioception, EMG ratio of VMO/VL, and EMG activity of GM muscle, after either hip or knee fatigue protocol (p>0.05). Conclusion: A hip focused rehabilitation program may be beneficial in improving knee function through correcting faulty kinematics and hence decrease knee loading in patients with PFPS.

Keywords: electromyography, knee proprioception, mechanical responses, muscle fatigue, patellofemoral pain syndrome

Procedia PDF Downloads 280
9129 Parameters Estimation of Multidimensional Possibility Distributions

Authors: Sergey Sorokin, Irina Sorokina, Alexander Yazenin

Abstract:

We present a solution to the Maxmin u/E parameters estimation problem of possibility distributions in m-dimensional case. Our method is based on geometrical approach, where minimal area enclosing ellipsoid is constructed around the sample. Also we demonstrate that one can improve results of well-known algorithms in fuzzy model identification task using Maxmin u/E parameters estimation.

Keywords: possibility distribution, parameters estimation, Maxmin u\E estimator, fuzzy model identification

Procedia PDF Downloads 436
9128 The Association between Obstructive Sleep Apnea Syndrome and Driver Fatigue in North Taiwan Urban Areas

Authors: Cheng-Yu Tsai, Wen-Te Liu, Chen-Chen Lo, Yin-Tzu Lin, Kang Lo

Abstract:

Background: Driving fatigue related to inadequate or disordered sleep accounts for a major percentage of traffic accidents. Obstructive sleep apnea syndrome (OSAS) is a common respiratory disorder during sleep. However, the effects of OSAS severity on driving drowsiness remain unclear. Objective: The aim of this study is to investigate the relationship between OSAS severity and driving fatigue. Methodologies: The physical condition while driving was obtained from the questionnaires to classify the state of driving fatigue. OSAS severity was quantified as the polysomnography, and the mean hourly number of greater than 3% dips in oxygen saturation during examination in a hospital in New Taipei City (Taiwan). The severity of OSAS was diagnosed by the apnea and hypopnea index (AHI) with the American Academy of Sleep Medicine (AASM) guideline. The logistic regression model was used to examine the associations after adjusted age, gender, neck circumstance, waist circumstance, and body mass index (BMI). Results: There were 880 subjects recruited in this study, who had been done polysomnography for evaluating severity for OSAS as well as completed the driver condition questionnaire. 752 subjects were diagnosed with OSA, and 484 subjects had fatigue driving behavior in the past week. Patients diagnosed with OSAS had a 9.42-fold higher odds ratio (p < 0.01, 95% CI = 5.41 – 16.42) of driving drowsiness for cohorts with a normal degree. Conclusion: We observe the considerable correlation between OSAS and driving fatigue. For the purpose of promoting traffic safety, OSAS should be monitored and treated.

Keywords: obstructive sleep apnea syndrome, driving fatigue, polysomnography, apnea and hypopnea index

Procedia PDF Downloads 102
9127 An ANN Approach for Detection and Localization of Fatigue Damage in Aircraft Structures

Authors: Reza Rezaeipour Honarmandzad

Abstract:

In this paper we propose an ANN for detection and localization of fatigue damage in aircraft structures. We used network of piezoelectric transducers for Lamb-wave measurements in order to calculate damage indices. Data gathered by the sensors was given to neural network classifier. A set of neural network electors of different architecture cooperates to achieve consensus concerning the state of each monitored path. Sensed signal variations in the ROI, detected by the networks at each path, were used to assess the state of the structure as well as to localize detected damage and to filter out ambient changes. The classifier has been extensively tested on large data sets acquired in the tests of specimens with artificially introduced notches as well as the results of numerous fatigue experiments. Effect of the classifier structure and test data used for training on the results was evaluated.

Keywords: ANN, fatigue damage, aircraft structures, piezoelectric transducers, lamb-wave measurements

Procedia PDF Downloads 387
9126 A Packet Loss Probability Estimation Filter Using Most Recent Finite Traffic Measurements

Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang

Abstract:

A packet loss probability (PLP) estimation filter with finite memory structure is proposed to estimate the packet rate mean and variance of the input traffic process in real-time while removing undesired system and measurement noises. The proposed PLP estimation filter is developed under a weighted least square criterion using only the finite traffic measurements on the most recent window. The proposed PLP estimation filter is shown to have several inherent properties such as unbiasedness, deadbeat, robustness. A guideline for choosing appropriate window length is described since it can affect significantly the estimation performance. Using computer simulations, the proposed PLP estimation filter is shown to be superior to the Kalman filter for the temporarily uncertain system. One possible explanation for this is that the proposed PLP estimation filter can have greater convergence time of a filtered estimate as the window length M decreases.

Keywords: packet loss probability estimation, finite memory filter, infinite memory filter, Kalman filter

Procedia PDF Downloads 638
9125 The Linear Combination of Kernels in the Estimation of the Cumulative Distribution Functions

Authors: Abdel-Razzaq Mugdadi, Ruqayyah Sani

Abstract:

The Kernel Distribution Function Estimator (KDFE) method is the most popular method for nonparametric estimation of the cumulative distribution function. The kernel and the bandwidth are the most important components of this estimator. In this investigation, we replace the kernel in the KDFE with a linear combination of kernels to obtain a new estimator based on the linear combination of kernels, the mean integrated squared error (MISE), asymptotic mean integrated squared error (AMISE) and the asymptotically optimal bandwidth for the new estimator are derived. We propose a new data-based method to select the bandwidth for the new estimator. The new technique is based on the Plug-in technique in density estimation. We evaluate the new estimator and the new technique using simulations and real-life data.

Keywords: estimation, bandwidth, mean square error, cumulative distribution function

Procedia PDF Downloads 544
9124 Multiaxial Fatigue in Thermal Elastohydrodynamic Lubricated Contacts with Asperities and Slip

Authors: Carl-Magnus Everitt, Bo Alfredsson

Abstract:

Contact mechanics and tribology have been combined with fundamental fatigue and fracture mechanics to form the asperity mechanism which supplies an explanation for the surface-initiated rolling contact fatigue damage, called pitting or spalling. The cracks causing the pits initiates at one surface point and thereafter they slowly grow into the material before chipping of a material piece to form the pit. In the current study, the lubrication aspects on fatigue initiation are simulated by passing a single asperity through a thermal elastohydrodynamic lubricated, TEHL, contact. The physics of the lubricant was described with Reynolds equation and the lubricants pressure-viscosity relation was modeled by Roelands equation, formulated to include temperature dependence. A pressure dependent shear limit was incorporated. To capture the full phenomena of the sliding contact the temperature field was resolved through the incorporation of the energy flow. The heat was mainly generated due to shearing of the lubricant and from dry friction where metal contact occurred. The heat was then transported, and conducted, away by the solids and the lubricant. The fatigue damage caused by the asperities was evaluated through Findley’s fatigue criterion. The results show that asperities, in the size of surface roughness found in applications, may cause surface initiated fatigue damage and crack initiation. The simulations also show that the asperities broke through the lubricant in the inlet, causing metal to metal contact with high friction. When the asperities thereafter moved through the contact, the sliding provided the asperities with lubricant releasing the metal contact. The release of metal contact was possible due to the high viscosity the lubricant obtained from the high pressure. The metal contact in the inlet caused higher friction which increased the risk of fatigue damage. Since the metal contact occurred in the inlet it increased the fatigue risk more for asperities subjected to negative slip than positive slip. Therefore the fatigue evaluations showed that the asperities subjected to negative slip yielded higher fatigue stresses than the asperities subjected to positive slip of equal magnitude. This is one explanation for why pitting is more common in the dedendum than the addendum on pinion gear teeth. The simulations produced further validation for the asperity mechanism by showing that asperities cause surface initiated fatigue and crack initiation.

Keywords: fatigue, rolling, sliding, thermal elastohydrodynamic

Procedia PDF Downloads 95
9123 Investigations on the Fatigue Behavior of Welded Details with Imperfections

Authors: Helen Bartsch, Markus Feldmann

Abstract:

The dimensioning of steel structures subject to fatigue loads, such as wind turbines, bridges, masts and towers, crane runways and weirs or components in crane construction, is often dominated by fatigue verification. The fatigue details defined by the welded connections, such as butt or cruciform joints, longitudinal welds, welded-on or welded-in stiffeners, etc., are decisive. In Europe, the verification is usually carried out according to EN 1993-1-9 on a nominal stress basis. The basis is the detailed catalog, which specifies the fatigue strength of the various weld and construction details according to fatigue classes. Until now, a relation between fatigue classes and weld imperfection sizes is not included. Quality levels for imperfections in fusion-welded joints in steel, nickel, titanium and their alloys are regulated in EN ISO 5817, which, however, doesn’t contain direct correlations to fatigue resistances. The question arises whether some imperfections might be tolerable to a certain extent since they may be present in the test data used for detail classifications dating back decades ago. Although current standardization requires proof of satisfying limits of imperfection sizes, it would also be possible to tolerate welds with certain irregularities if these can be reliably quantified by non-destructive testing. Fabricators would be prepared to undertake carefully and sustained weld inspection in view of the significant economic consequences of such unfavorable fatigue classes. This paper presents investigations on the fatigue behavior of common welded details containing imperfections. In contrast to the common nominal stress concept, local fatigue concepts were used to consider the true stress increase, i.e., local stresses at the weld toe and root. The actual shape of a weld comprising imperfections, e.g., gaps or undercuts, can be incorporated into the fatigue evaluation, usually on a numerical basis. With the help of the effective notch stress concept, the fatigue resistance of detailed local weld shapes is assessed. Validated numerical models serve to investigate notch factors of fatigue details with different geometries. By utilizing parametrized ABAQUS routines, detailed numerical studies have been performed. Depending on the shape and size of different weld irregularities, fatigue classes can be defined. As well load-carrying welded details, such as the cruciform joint, as non-load carrying welded details, e.g., welded-on or welded-in stiffeners, are regarded. The investigated imperfections include, among others, undercuts, excessive convexity, incorrect weld toe, excessive asymmetry and insufficient or excessive throat thickness. Comparisons of the impact of different imperfections on the different types of fatigue details are made. Moreover, the influence of a combination of crucial weld imperfections on the fatigue resistance is analyzed. With regard to the trend of increasing efficiency in steel construction, the overall aim of the investigations is to include a more economical differentiation of fatigue details with regard to tolerance sizes. In the long term, the harmonization of design standards, execution standards and regulations of weld imperfections is intended.

Keywords: effective notch stress, fatigue, fatigue design, weld imperfections

Procedia PDF Downloads 228
9122 Stress and Strain Analysis of Notched Bodies Subject to Non-Proportional Loadings

Authors: Ayhan Ince

Abstract:

In this paper, an analytical simplified method for calculating elasto-plastic stresses strains of notched bodies subject to non-proportional loading paths is discussed. The method was based on the Neuber notch correction, which relates the incremental elastic and elastic-plastic strain energy densities at the notch root and the material constitutive relationship. The validity of the method was presented by comparing computed results of the proposed model against finite element numerical data of notched shaft. The comparison showed that the model estimated notch-root elasto-plastic stresses strains with good accuracy using linear-elastic stresses. The prosed model provides more efficient and simple analysis method preferable to expensive experimental component tests and more complex and time consuming incremental non-linear FE analysis. The model is particularly suitable to perform fatigue life and fatigue damage estimates of notched components subjected to non-proportional loading paths.

Keywords: elasto-plastic, stress-strain, notch analysis, nonprortional loadings, cyclic plasticity, fatigue

Procedia PDF Downloads 433
9121 Evaluation of Fatigue Crack Growth Rate in Weldments

Authors: Pavel Zlabek, Vaclav Mentl

Abstract:

The fatigue crack growth rate evaluation is a basic experimental characteristic when assessment o f the remaining lifetime is needed. Within the repair welding technology project, the crack growth rate at cyclic loading was measured in base and weld metals and in the situation when cracks were initiated in base metal and grew into the weld metal through heat-affected zone and back to the base metal. Two welding technologies were applied and specimens in as-welded state and after heat treatment were tested. Fatigue crack growth rate measurement was performed on CrMoV pressure vessel steel and the tests were performed at room temperature. The crack growth rate was measured on CCT test specimens (see figure) for both the base and weld metals and also in the case of crack subsequent transition through all the weld zones. A 500 kN MTS controlled electro-hydraulic testing machine and Model 632.13C-20 MTS extensometer were used to perform the tests.

Keywords: cracks, fatigue, steels, weldments

Procedia PDF Downloads 498