Search results for: bone viscoelasticity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 818

Search results for: bone viscoelasticity

818 Viscoelastic Characterization of Bovine Trabecular Bone Samples

Authors: I. Ramirez D. Edgar, J. Angeles H. José, Ruiz C. Osvaldo, H. Jacobo A. Victor, Ortiz P. Armando

Abstract:

Knowledge of bone mechanical properties is important for bone substitutes design and fabrication, and more efficient prostheses development. The aim of this study is to characterize the viscoelastic behavior of bone specimens, through stress relaxation and fatigue tests performed to trabecular bone samples from bovine femoral heads. Relaxation tests consisted on preloading the samples at five different magnitudes and evaluate them for 1020 seconds, adjusting the results to a KWW mathematical model. Fatigue tests consisted of 700 load cycles and analyze their status at the end of the tests. As a conclusion we have that between relaxation stress and each preload there is linear relation and for samples with initial Young´s modulus greater than 1.5 GPa showed no effects due fatigue test loading cycles.

Keywords: bone viscoelasticity, fatigue test, stress relaxation test, trabecular bone properties

Procedia PDF Downloads 453
817 A Review on Bone Grafting, Artificial Bone Substitutes and Bone Tissue Engineering

Authors: Kasun Gayashan Samarawickrama

Abstract:

Bone diseases, defects, and fractions are commonly seen in modern life. Since bone is regenerating dynamic living tissue, it will undergo healing process naturally, it cannot recover from major bone injuries, diseases and defects. In order to overcome them, bone grafting technique was introduced. Gold standard was the best method for bone grafting for the past decades. Due to limitations of gold standard, alternative methods have been implemented. Apart from them artificial bone substitutes and bone tissue engineering have become the emerging methods with technology for bone grafting. Many bone diseases and defects will be healed permanently with these promising techniques in future.

Keywords: bone grafting, gold standard, bone substitutes, bone tissue engineering

Procedia PDF Downloads 271
816 A Guide for Using Viscoelasticity in ANSYS

Authors: A. Fettahoglu

Abstract:

Theory of viscoelasticity is used by many researchers to represent the behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell model and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Afterwards, a guide is illustrated to ease using of viscoelasticity tool in ANSYS.

Keywords: ANSYS, generalized Maxwell model, finite element method, Prony series, viscoelasticity, viscoelastic material curve fitting

Procedia PDF Downloads 530
815 Induced Bone Tissue Temperature in Drilling Procedures: A Comparative Laboratory Study with and without Lubrication

Authors: L. Roseiro, C. Veiga, V. Maranha, A. Neto, N. Laraqi, A. Baïri, N. Alilat

Abstract:

In orthopedic surgery there are various situations in which the surgeon needs to implement methods of cutting and drilling the bone. With this type of procedure the generated friction leads to a localized increase in temperature, which may lead to the bone necrosis. Recognizing the importance of studying this phenomenon, an experimental evaluation of the temperatures developed during the procedure of drilling bone has been done. Additionally the influence of the use of the procedure with / without additional lubrication during drilling of bone has also been done. The obtained results are presented and discussed and suggests an advantage in using additional lubrication as a way to minimize the appearance of bone tissue necrosis during bone drilling procedures.

Keywords: bone necrosis, bone drilling, thermography, surgery

Procedia PDF Downloads 555
814 Error Amount in Viscoelasticity Analysis Depending on Time Step Size and Method used in ANSYS

Authors: A. Fettahoglu

Abstract:

Theory of viscoelasticity is used by many researchers to represent behavior of many materials such as pavements on roads or bridges. Several researches used analytical methods and rheology to predict the material behaviors of simple models. Today, more complex engineering structures are analyzed using Finite Element Method, in which material behavior is embedded by means of three dimensional viscoelastic material laws. As a result, structures of unordinary geometry and domain like pavements of bridges can be analyzed by means of Finite Element Method and three dimensional viscoelastic equations. In the scope of this study, rheological models embedded in ANSYS, namely, generalized Maxwell elements and Prony series, which are two methods used by ANSYS to represent viscoelastic material behavior, are presented explicitly. Subsequently, a practical problem, which has an analytical solution given in literature, is used to verify the applicability of viscoelasticity tool embedded in ANSYS. Finally, amount of error in the results of ANSYS is compared with the analytical results to indicate the influence of used method and time step size.

Keywords: generalized Maxwell model, finite element method, prony series, time step size, viscoelasticity

Procedia PDF Downloads 339
813 Analysis of Wall Deformation of the Arterial Plaque Models: Effects of Viscoelasticity

Authors: Eun Kyung Kim, Kyehan Rhee

Abstract:

Viscoelastic wall properties of the arterial plaques change as the disease progresses, and estimation of wall viscoelasticity can provide a valuable assessment tool for plaque rupture prediction. Cross section of the stenotic coronary artery was modeled based on the IVUS image, and the finite element analysis was performed to get wall deformation under pulsatile pressure. The effects of viscoelastic parameters of the plaque on luminal diameter variations were explored. The result showed that decrease of viscous effect reduced the phase angle between the pressure and displacement waveforms, and phase angle was dependent on the viscoelastic properties of the wall. Because viscous effect of tissue components could be identified using the phase angle difference, wall deformation waveform analysis may be applied to predict plaque wall composition change and vascular wall disease progression.

Keywords: atherosclerotic plaque, diameter variation, finite element method, viscoelasticity

Procedia PDF Downloads 177
812 Effect of Aerobic Exercise on Estrogen Hormone and Bone Mineral Density in Osteoporotic Women

Authors: Noha Mohamed Abdelhafez Dahy, Azza Abd El-Aziz, Eman Ahmed, Marwa El-Sayed

Abstract:

Osteoporosis is a metabolic bone disease characterized by low bone mass, deterioration of bone tissue, and disruption of bone microarchitecture, which leads to compromised bone strength and an increased risk of fracture, commonly it occurs in women 10-15 years after menopause, the mean age of menopause is 51 years. Menopause is natural physiological changes primary because of decline of ovaries function with age which leads to decrease of estrogen hormone production which is the main hormone for bone continuous remodeling for bone density maintenance. Exercise increase stimulation of bone growth to keep bone mass by the effect of the mechanical stimulation, antigravity loading and stress exerted on musculoskeletal muscles. Purpose: This study aimed to determine the effect of aerobic exercise on estrogen hormone and bone mineral density (BMD) in osteoporotic women and the correlation between the estrogen and BMD.

Keywords: Osteoporosis, Postmenopause, Aerobic exercise, DEXA, Serum Estrogen

Procedia PDF Downloads 56
811 Design Improvement of Dental Implant-Based on Bone Remodelling

Authors: Solehuddin Shuib, Koay Boon Aik, Zainul Ahmad Rajion

Abstract:

There are many types of mechanical failure on the dental implant. In this project, the failure that needs to take into consideration is the bone resorption on the dental implant. Human bone has its ability to remodel after the implantation. As the dental implant is installed into the bone, the bone will detect and change the bone structure to achieve new biomechanical environment. This phenomenon is known as bone remodeling. The objective of the project is to improve the performance of dental implant by using different types of design. These designs are used to analyze and predict the failure of the dental implant by using finite element analysis (FEA) namely ANSYS. The bone is assumed to be fully attached to the implant or cement. Hence, results are then compared with other researchers. The results were presented in the form of Von Mises stress, normal stress, shear stress analysis, and displacement. The selected design will be analyzed further based on a theoretical calculation of bone remodeling on the dental implant. The results have shown that the design constructed passed the failure analysis. Therefore, the selected design is proven to have a stable performance at the recovery stage.

Keywords: dental implant, FEA, bone remodeling, design

Procedia PDF Downloads 476
810 Assessment of the Radiation Absorbed Dose Produced by Lu-177, Ra-223, AC-225 for Metastatic Prostate Cancer in a Bone Model

Authors: Maryam Tajadod

Abstract:

The treatment of cancer is one of the main challenges of nuclear medicine; while cancer begins in an organ, such as the breast or prostate, it spreads to the bone, resulting in metastatic bone. In the treatment of cancer with radiotherapy, the determination of the involved tissues’ dose is one of the important steps in the treatment protocol. Comparing absorbed doses for Lu-177 and Ra-223 and Ac-225 in the bone marrow and soft tissue of bone phantom with evaluating energetic emitted particles of these radionuclides is the important aim of this research. By the use of MCNPX computer code, a model for bone phantom was designed and the values of absorbed dose for Ra-223 and Ac-225, which are Alpha emitters & Lu-177, which is a beta emitter, were calculated. As a result of research, in comparing gamma radiation for three radionuclides, Lu-177 released the highest dose in the bone marrow and Ra-223 achieved the lowest level. On the other hand, the result showed that although the figures of absorbed dose for Ra and Ac in the bone marrow are near to each other, Ra spread more energy in cortical bone. Moreover, The alpha component of the Ra-223 and Ac-225 have very little effect on bone marrow and soft tissue than a beta component of the lu-177 and it leaves the highest absorbed dose in the bone where the source is located.

Keywords: bone metastases, lutetium-177, radium-223, actinium-225, absorbed dose

Procedia PDF Downloads 75
809 Identification of the Orthotropic Parameters of Cortical Bone under Nanoindentation

Authors: D. Remache, M. Semaan, C. Baron, M. Pithioux, P. Chabrand, J. M. Rossi, J. L. Milan

Abstract:

A good understanding of the mechanical properties of the bone implies a better understanding of its various diseases, such as osteoporosis. Berkovich nanoindentation tests were performed on the human cortical bone to extract its orthotropic parameters. The nanoindentation experiments were then simulated by the finite element method. Different configurations of interactions between the tip indenter and the bone were simulated. The orthotropic parameters of the material were identified by the inverse method for each configuration. The friction effect on the bone mechanical properties was then discussed. It was found that the inverse method using the finite element method is a very efficient method to predict the mechanical behavior of the bone.

Keywords: mechanical behavior of bone, nanoindentation, finite element analysis, inverse optimization approaches

Procedia PDF Downloads 354
808 Preliminary Dosimetric Evaluation of Two New 153Sm Bone Pain Palliative Agents

Authors: H. Yousefnia, S. Zolghadri, N. Amraee, Z. Naseri, Ar. Jalilian

Abstract:

The purpose of this study was to calculate the absorbed dose to each human organ for two new Sm-153 bone-seeking agents in order to evaluate their effectiveness in bone pain palliation therapy. In this work, the absorbed dose of 153Sm-TTHMP and 153Sm-PDTMP to each human organ was evaluated based on biodistribution studies in rats by radiation dose assessment resource (RADAR) method. The highest absorbed dose for 153Sm-TTHMP and 153Sm-PDTMP is observed in trabecular bone with 1.844 and 3.167 mGy/MBq, respectively. Bone/red marrow dose ratio, as the target/critical organ dose ratio, for 153Sm-PDTMP is greater than 153Sm-TTHMP and is compatible with 153Sm-EDTMP. The results showed that these bone-seeking agents, specially 153Sm-PDTMP, have considerable characteristics compared to the most clinically used bone pain palliative radiopharmaceutical, and therefore, can be good candidates for bone pain palliation in patients with bone metastasis; however, further biological studies in other mammals are still needed.

Keywords: internal dosimetry, PDTMP, 153Sm, TTHMP

Procedia PDF Downloads 518
807 Development of a Model Based on Wavelets and Matrices for the Treatment of Weakly Singular Partial Integro-Differential Equations

Authors: Somveer Singh, Vineet Kumar Singh

Abstract:

We present a new model based on viscoelasticity for the Non-Newtonian fluids.We use a matrix formulated algorithm to approximate solutions of a class of partial integro-differential equations with the given initial and boundary conditions. Some numerical results are presented to simplify application of operational matrix formulation and reduce the computational cost. Convergence analysis, error estimation and numerical stability of the method are also investigated. Finally, some test examples are given to demonstrate accuracy and efficiency of the proposed method.

Keywords: Legendre Wavelets, operational matrices, partial integro-differential equation, viscoelasticity

Procedia PDF Downloads 299
806 Characterization of Fish Bone Catalyst for Biodiesel Production

Authors: Sarina Sulaiman, N.Khairudin , P.Jamal, M.Z. Alam, Zaki Zainudin, S. Azmi

Abstract:

In this study, fish bone waste was used as a new catalyst for biodiesel production. Instead of discarding the fish bone waste, it will be utilized as a source for catalyst that can provide significant benefit to the environment. Also, it can be substitute as a calcium oxide source instead of using eggshell, crab shell and snail shell. The XRD and SEM analysis proved that calcined fish bone contains calcium oxide, calcium phosphate and hydroxyapatite. The catalyst was characterized using Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD).

Keywords: calcinations, fish bone, transesterification, waste catalyst

Procedia PDF Downloads 262
805 A Radiographic Survey of Eggshell Powder Effect on Tibial Bone Defect Repair Tested in Dog

Authors: M. Yadegari, M. Nourbakhsh, N. Arbabzadeh

Abstract:

The skeletal system injuries are of major importance. In addition, it is recommended to use materials for hard tissue repair in open or closed fractures. It is important to use complex minerals with a beneficial effect on hard tissue repair, stimulating cell growth in the bone. Materials that could help avoid bone fracture inflammatory reaction and speed up bone fracture repair are of utmost importance in the treatment of bone fractures. Similar to minerals, the inner eggshell membrane consists of carbohydrates, lipids, proteins with the high pH, high calcium absorptive capacity and with faster bone fracture repair ability. In the present radiographic survey, eggshell-derived bone graft substitutes were used for bone defect repair in 8 dog tibia, measuring bone density on the day of implant placement and 30 and 60 days after placement. In fact, the result of this study shows the difference in bone growth and misshapen bones between treatment and control sites. Cell growth was adequate in treatment sites and misshapen bones were less frequent here than in control sites.

Keywords: bone repair, eggshell powder, implant, radiography

Procedia PDF Downloads 286
804 Ultrasonic Densitometry of Bone Tissue of Jaws and Phalanges of Fingers in Patients after Orthodontic Treatment

Authors: Margarita Belousova

Abstract:

The ultrasonic densitometry (RU patent № 2541038) was used to assess the density of the bone tissue in the jaws of patients after orthodontic treatment. In addition, by ultrasonic densitometry assessed the state of the bone tissue in the region III phalanges of middle fingers in above mentioned patients. A comparative study was carried out in healthy volunteers of same age. It was established a significant decrease of the ultrasound wave speed and bone mineral density after active period of orthodontic treatment. Statistically, significant differences in bone mineral density of the fingers by ultrasonic densitometry in both groups of patients were not detected.

Keywords: intraoral ultrasonic densitometry, bone tissue density of jaws, bone tissue density of phalanges of fingers, orthodontic treatment

Procedia PDF Downloads 240
803 Application of Wavelet Based Approximation for the Solution of Partial Integro-Differential Equation Arising from Viscoelasticity

Authors: Somveer Singh, Vineet Kumar Singh

Abstract:

This work contributes a numerical method based on Legendre wavelet approximation for the treatment of partial integro-differential equation (PIDE). Operational matrices of Legendre wavelets reduce the solution of PIDE into the system of algebraic equations. Some useful results concerning the computational order of convergence and error estimates associated to the suggested scheme are presented. Illustrative examples are provided to show the effectiveness and accuracy of proposed numerical method.

Keywords: legendre wavelets, operational matrices, partial integro-differential equation, viscoelasticity

Procedia PDF Downloads 402
802 Particle Migration in Shear Thinning Viscoelastic Fluid

Authors: Shamik Hazra, Sushanta Mitra, Ashis Sen

Abstract:

Despite growing interest of microparticle manipulation in non-Newtonian fluids, combined effect of viscoelasticity and shear thinning on particle lateral position is not well understood. We performed experiments with rigid microparticles of 15 µm diamater in popular Shear thinning viscoelastic (STVE) liquid poyethylene oxide (PEO) of different molecular weights (MW) and concentrations (c), for Reynolds number (Re) < 1. Microparticles in an STVE liquid revealed four different migration regimes: original streamline (OS), bimodal (BM), centre migration (CM) and defocusing (DF), depending upon the Re and c and interplay of different forces is also elucidated. Our investigation will be helpful to select proper polymer concentration to achieve desired particle focusing inside microchannel.

Keywords: lateral migration, microparticle, polyethylene oxide, shear thinning, viscoelasticity

Procedia PDF Downloads 111
801 Viscoelastic Modeling of Hot Mix Asphalt (HMA) under Repeated Loading by Using Finite Element Method

Authors: S. A. Tabatabaei, S. Aarabi

Abstract:

Predicting the hot mix asphalt (HMA) response and performance is a challenging task because of the subjectivity of HMA under the complex loading and environmental condition. The behavior of HMA is a function of temperature of loading and also shows the time and rate-dependent behavior directly affecting design criteria of mixture. Velocity of load passing make the time and rate. The viscoelasticity illustrates the reaction of HMA under loading and environmental conditions such as temperature and moisture effect. The behavior has direct effect on design criteria such as tensional strain and vertical deflection. In this paper, the computational framework for viscoelasticity and implementation in 3D dimensional HMA model is introduced to use in finite element method. The model was lied under various repeated loading conditions at constant temperature. The response of HMA viscoelastic behavior is investigated in loading condition under speed vehicle and sensitivity of behavior to the range of speed and compared to HMA which is supposed to have elastic behavior as in conventional design methods. The results show the importance of loading time pulse, unloading time and various speeds on design criteria. Also the importance of memory fading of material to storing the strain and stress due to repeated loading was shown. The model was simulated by ABAQUS finite element package

Keywords: viscoelasticity, finite element method, repeated loading, HMA

Procedia PDF Downloads 369
800 Epidemiology of Bone Hydatidosis in Eastern Libya from 1995 to 2013

Authors: Sadek A. Makhlouf, Hassan M. Nouh

Abstract:

Bone hydatidosis is an infection in worldwide distribution. Although there is no evidence in literature on Bone Hydatid disease in Libya, we tried to present the first epidemiological study of this disease in Eastern Libya through retrospective study from 1995 to 2013. Our data were collected from 3 hospitals in Eastern Libya particularly the sheep-raising areas with total number of musculoskeletal infection cases of two thousand one hundred ninety-four (2,194). There were five (5) five cases of bone infection, four (4) of it have been diagnosed after more than three (3) months. Our study is comparable to other international study but this type of bone infection need further studies for effective control strategies for all dogs to avoid serious complications that might happened from the delay in diagnosing this type of disease.

Keywords: bone infection, hydatidosis, Eastern Libya, sheep-raising areas

Procedia PDF Downloads 379
799 Numerical Analysis of Water Hammer in a Viscoelastic Pipe System Considering Fluid Structure Interaction

Authors: N. Tavakoli Shirazi

Abstract:

This study investigates the effects of pipe-wall viscoelasticity on water hammer pressures. Tests have been conducted in a reservoir-pipe-valve system configured of a main viscoelastic pipeline and two short steel pipes placed upstream and downstream of the main pipe. Rapid closure of a manually operated valve at the downstream end generates water hammer. Experimental measurements at several positions along the pipeline have been collected from the papers. Computer simulations of the experiment have been performed and the results of runs with various options affecting the water hammer are provided and discussed. It is shown that the incorporation of viscoelastic pipe wall mechanical behavior in the hydraulic transient model contributes to a favorable fitting between numerical results and observed data.

Keywords: pipe system, PVC pipe, viscoelasticity, water hammer

Procedia PDF Downloads 432
798 A Comparison of Implant Stability between Implant Placed without Bone Graft versus with Bone Graft Using Guided Bone Regeneration (GBR) Technique: A Resonance Frequency Analysis

Authors: R. Janyaphadungpong, A. Pimkhaokham

Abstract:

This prospective clinical study determined the insertion torque (IT) value and monitored the changes in implant stability quotient (ISQ) values during the 12 weeks healing period from implant placement without bone graft (control group) and with bone graft using the guided bone regeneration (GBR) technique (study group). The relationship between the IT and ISQ values of the implants was also assessed. The control and study groups each consisted of 6 patients with 8 implants per group. The ASTRA TECH Implant System™ EV 4.2 mm in diameter was placed in the posterior mandibular region. In the control group, implants were placed in bone without bone graft, whereas in the study group implants were placed simultaneously with the GBR technique at favorable bone defect. IT (Ncm) of each implant was recorded when fully inserted. ISQ values were obtained from the Osstell® ISQ at the time of implant placement, and at 2, 4, 8, and 12 weeks. No difference in IT was found between groups (P = 0.320). The ISQ values in the control group were significantly higher than in the study group at the time of implant placement and at 4 weeks. There was no significant association between IT and ISQ values either at baseline or after the 12 weeks. At 12 weeks of healing, the control and study groups displayed different trends. Mean ISQ values for the control group decreased over the first 2 weeks and then started to increase. ISQ value increases were statistically significant at 8 weeks and later, whereas mean ISQ values in the study group decreased over the first 4 weeks and then started to increase, with statistical significance after 12 weeks. At 12 weeks, all implants achieved osseointegration with mean ISQ values over the threshold value (ISQ>70). These results indicated that implants, in which guided bone regeneration technique was performed during implant placement for treating favorable bone defects, were as predictable as implants placed without bone graft. However, loading in implants placed with the GBR technique for correcting favorable bone defects should be performed after 12 weeks of healing to ensure implant stability and osseointegration.

Keywords: dental implant, favorable bone defect, guided bone regeneration technique, implant stability

Procedia PDF Downloads 262
797 Mechanical Cortical Bone Characterization with the Finite Element Method Based Inverse Method

Authors: Djamel Remache, Marie Semaan, Cécile Baron, Martine Pithioux, Patrick Chabrand, Jean-Marie Rossi, Jean-Louis Milan

Abstract:

Cortical bone is a complex multi-scale structure. Even though several works have contributed significantly to understanding its mechanical behavior, this behavior remains poorly understood. Nanoindentation testing is one of the primary testing techniques for the mechanical characterization of bone at small scales. The purpose of this study was to provide new nanoindentation data of cortical bovine bone in different directions and at different bone microstructures (osteonal, interstitial and laminar bone), and then to identify anisotropic properties of samples with FEM (finite element method) based inverse method. Experimentally and numerical results were compared. Experimental and numerical results were compared. The results compared were in good agreement.

Keywords: mechanical behavior of bone, nanoindentation, finite element analysis, inverse optimization approach

Procedia PDF Downloads 302
796 Relation between Initial Stability of the Dental Implant and Bone-Implant Contact Level

Authors: Jui-Ting Hsu, Heng-Li Huang, Ming-Tzu Tsai, Kuo-Chih Su, Lih-Jyh Fuh

Abstract:

The objectives of this study were to measure the initial stability of the dental implant (ISQ and PTV) in the artificial foam bone block with three different quality levels. In addition, the 3D bone to implant contact percentage (BIC%) was measured based on the micro-computed tomography images. Furthermore, the relation between the initial stability of dental implant (ISQ and PTV) and BIC% were calculated. The experimental results indicated that enhanced the material property of the artificial foam bone increased the initial stability of the dental implant. The Pearson’s correlation coefficient between the BIC% and the two approaches (ISQ and PTV) were 0.652 and 0.745.

Keywords: dental implant, implant stability quotient, peak insertion torque, bone-implant contact, micro-computed tomography

Procedia PDF Downloads 548
795 Alteration of Bone Strength in Osteoporosis of Mouse Femora: Computational Study Based on Micro CT Images

Authors: Changsoo Chon, Sangkuy Han, Donghyun Seo, Jihyung Park, Bokku Kang, Hansung Kim, Keyoungjin Chun, Cheolwoong Ko

Abstract:

The purpose of the study is to develop a finite element model based on 3D bone structural images of Micro-CT and to analyze the stress distribution for the osteoporosis mouse femora. In this study, results of finite element analysis show that the early osteoporosis of mouse model decreased a bone density in trabecular region; however, the bone density in cortical region increased.

Keywords: micro-CT, finite element analysis, osteoporosis, bone strength

Procedia PDF Downloads 332
794 Preparation and Characterization of Activated Carbon from Animal Bone

Authors: Getenet Aseged Zeleke

Abstract:

The aim of this project was to study the synthesis of activated carbon from low-cost animal beef and the characterization of the product obtained. The bone was carbonized in an inert atmosphere at three different temperatures (500°C, 700oC and 900°C) in an electric furnace, followed by activation with hydrochloric acid. The activated animal bone charcoals obtained were characterized by using scanning electron microscopy (SEM)to observe the effect of activation compared to the unactivated bone charcoal. The following parameters were also determined: ash content, moisture content, volatile content, fixed carbon, pH, pore volume and bulk (apparent) density. The characterization result showed that the activated bone charcoal has good properties and is compared favorably with other reference activated carbons.

Keywords: bones, carbonization, activation, characterization, activated carbon

Procedia PDF Downloads 46
793 Reconstructing Calvarial Bone Lesions Using PHBV Scaffolds and Cord Blood Mesenchymal Stem Cells in Rat

Authors: Hamed Hosseinkazemi, Esmaeil Biazar

Abstract:

For tissue engineering of bone, anatomical and operational reconstructions of damaged tissue seem to be vital. This is done via reconstruction of bone and appropriate biological joint with bone tissues of damaged areas. In this study the condition of biodegradable bed Nanofibrous PHBV and USSC cells were used to accelerate bone repair of damaged area. Hollow nanofabrication scaffold of damageable life was designed as PHBV by electrospinning and via determining the best factors such as the kind and amount of solvent, specific volume and rate. The separation of osseous tissue infiltration and evaluating its nature by flow cytometrocical analysis was done. Animal test including USSC as well as PHBV condition in the damaged bone was done in the rat. After 8 weeks the implanted area was analyzed using CT scan and was sent to histopathology ward. Finally, the rate and quality of reconstruction were determined after H and E coloring. Histomorphic analysis indicated a statistically significant difference between the experimental group of PHBV, USSC+PHBV and control group. Besides, the histopathologic analysis showed that bone reconstruction rate was high in the area containing USSC and PHBV, compared with area having PHBV and control group and consequently the reconstruction quality of bones and the relationship between the new bone tissues and surrounding bone tissues were high too. Using PHBR scaffold and USSC together could be useful in the amending of wide range of bone lesion.

Keywords: bone lesion, nanofibrous PHBV, stem cells, umbilical cord blood

Procedia PDF Downloads 288
792 Stress-Strain Relation for Human Trabecular Bone Based on Nanoindentation Measurements

Authors: Marek Pawlikowski, Krzysztof Jankowski, Konstanty Skalski, Anna Makuch

Abstract:

Nanoindentation or depth-sensing indentation (DSI) technique has proven to be very useful to measure mechanical properties of various tissues at a micro-scale. Bone tissue, both trabecular and cortical one, is one of the most commonly tested tissues by means of DSI. Most often such tests on bone samples are carried out to compare the mechanical properties of lamellar and interlamellar bone, osteonal bone as well as compact and cancellous bone. In the paper, a relation between stress and strain for human trabecular bone is presented. The relation is based on the results of nanoindentation tests. The formulation of a constitutive model for human trabecular bone is based on nanoindentation tests. In the study, the approach proposed by Olivier-Pharr is adapted. The tests were carried out on samples of trabecular tissue extracted from human femoral heads. The heads were harvested during surgeries of artificial hip joint implantation. Before samples preparation, the heads were kept in 95% alcohol in temperature 4 Celsius degrees. The cubic samples cut out of the heads were stored in the same conditions. The dimensions of the specimens were 25 mm x 25 mm x 20 mm. The number of 20 samples have been tested. The age range of donors was between 56 and 83 years old. The tests were conducted with the indenter spherical tip of the diameter 0.200 mm. The maximum load was P = 500 mN and the loading rate 500 mN/min. The data obtained from the DSI tests allows one only to determine bone behoviour in terms of nanoindentation force vs. nanoindentation depth. However, it is more interesting and useful to know the characteristics of trabecular bone in the stress-strain domain. This allows one to simulate trabecular bone behaviour in a more realistic way. The stress-strain curves obtained in the study show relation between the age and the mechanical behaviour of trabecular bone. It was also observed that the bone matrix of trabecular tissue indicates an ability of energy absorption.

Keywords: constitutive model, mechanical behaviour, nanoindentation, trabecular bone

Procedia PDF Downloads 183
791 Benign Osteoblastoma of the Mandible Resection and Replacement of the Defects with Decellularized Cattle Bone Scaffold with Mesenchymal Bone Marrow Stem Cells

Authors: K. Mardaleishvili, G. Loladze, G. Shatirishivili, D. Chakhunashvili, A. Vishnevskaya, Z. Kakabadze

Abstract:

Benign osteoblastoma is a benign tumor of the bone, usually affecting the vertebrae and long tubular bones. It is a rarely seen tumor of the facial bones. The authors present a case of a 28-year-old male patient with a tumor in mandibular body. The lesion was radically resected and histological analysis of the specimen demonstrated features typical of a benign osteoblastoma. The defect of the jaw was reconstructed with titanium implants and decellularized and lyophilized cattle bone matrix with mesenchymal bone marrow stem cells transplantation. This presentation describes the procedures for rehabilitating a patient with decellularized bone scaffold in the region of the face, recovering the facial contours and esthetics of the patient.

Keywords: facial bones, osteoblastoma, stem cells, transplantation

Procedia PDF Downloads 397
790 Suitability Verification of Cellulose Nanowhisker as a Scaffold for Bone Tissue Engineering

Authors: Moon Hee Jung, Dae Seung Kim, Sang-Myung Jung, Gwang Heum Yoon, Hoo Cheol Lee, Hwa Sung Shin

Abstract:

Scaffolds are an important part to support growth and differentiation of osteoblast for regeneration of injured bone in bone tissue engineering. We utilized tunicate cellulose nanowhisker (CNW) as scaffold and developed complex system that can enhance differentiation of osteoblast by applying mechanical stimulation. CNW, a crystal form of cellulose, has high stiffness with a large surface area and is useful as a biomedical material due to its biodegradability and biocompatibility. In this study, CNW was obtained from tunicate extraction and was confirmed for its adhesion, differentiation, growth of osteoblast without cytotoxicity. In addition, osteoblast was successfully differentiated under mechanical stimulation, followed by calcium dependent signaling. In conclusion, we verified suitability of CNW as scaffold and possibility of bone substitutes.

Keywords: osteoblast, cellulose nanowhisker, CNW, mechanical stimulation, bone tissue engineering, bone substitute

Procedia PDF Downloads 335
789 Influence of Modified and Unmodified Cow Bone on the Mechanical Properties of Reinforced Polyester Composites for Biomedical Applications

Authors: I. O. Oladele, J. A. Omotoyinbo, A. M. Okoro, A. G. Okikiola, J. L. Olajide

Abstract:

This work was carried out to investigate comparatively the effects of modified and unmodified cow bone particles on the mechanical properties of polyester matrix composites in order to investigate the suitability of the materials as biomaterial. Cow bones were procured from an abattoir, sun dried for 4 weeks and crushed. The crushed bones were divided into two, where one part was turned to ash while the other part was pulverized with laboratory ball mill before the two grades were sieved using 75 µm sieve size. Bone ash and bone particle reinforced tensile and flexural composite samples were developed from pre-determined proportions of 2, 4, 6, and 8 %. The samples after curing were stripped from the moulds and were allowed to further cure for 3 weeks before tensile and flexural tests were performed on them. The tensile test result showed that, 8 wt % bone particle reinforced polyester composites has higher tensile properties except for modulus of elasticity where 8 wt % bone ash particle reinforced composites has higher value while for flexural test, bone ash particle reinforced composites demonstrate the best flexural properties. The results show that these materials are structurally compatible.

Keywords: biomedical, composites, cow bone, mechanical properties, polyester, reinforcement

Procedia PDF Downloads 247