Search results for: fatigue crack initiation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1285

Search results for: fatigue crack initiation

955 Stress and Strain Analysis of Notched Bodies Subject to Non-Proportional Loadings

Authors: Ayhan Ince

Abstract:

In this paper, an analytical simplified method for calculating elasto-plastic stresses strains of notched bodies subject to non-proportional loading paths is discussed. The method was based on the Neuber notch correction, which relates the incremental elastic and elastic-plastic strain energy densities at the notch root and the material constitutive relationship. The validity of the method was presented by comparing computed results of the proposed model against finite element numerical data of notched shaft. The comparison showed that the model estimated notch-root elasto-plastic stresses strains with good accuracy using linear-elastic stresses. The prosed model provides more efficient and simple analysis method preferable to expensive experimental component tests and more complex and time consuming incremental non-linear FE analysis. The model is particularly suitable to perform fatigue life and fatigue damage estimates of notched components subjected to non-proportional loading paths.

Keywords: elasto-plastic, stress-strain, notch analysis, nonprortional loadings, cyclic plasticity, fatigue

Procedia PDF Downloads 433
954 Simplified Linearized Layering Method for Stress Intensity Factor Determination

Authors: Jeries J. Abou-Hanna, Bradley Storm

Abstract:

This paper looks to reduce the complexity of determining stress intensity factors while maintaining high levels of accuracy by the use of a linearized layering approach. Many techniques for stress intensity factor determination exist, but they can be limited by conservative results, requiring too many user parameters, or by being too computationally intensive. Multiple notch geometries with various crack lengths were investigated in this study to better understand the effectiveness of the proposed method. By linearizing the average stresses in radial layers around the crack tip, stress intensity factors were found to have error ranging from -10.03% to 8.94% when compared to analytically exact solutions. This approach proved to be a robust and efficient method of accurately determining stress intensity factors.

Keywords: fracture mechanics, finite element method, stress intensity factor, stress linearization

Procedia PDF Downloads 106
953 Fatigue Truck Modification Factor for Design Truck (CL-625)

Authors: Mohamad Najari, Gilbert Grondin, Marwan El-Rich

Abstract:

Design trucks in standard codes are selected based on the amount of damage they cause on structures-specifically bridges- and roads to represent the real traffic loads. Some limited numbers of trucks are run on a bridge one at a time and the damage on the bridge is recorded for each truck. One design track is also run on the same bridge “n” times -“n” is the number of trucks used previously- to calculate the damage of the design truck on the same bridge. To make these damages equal a reduction factor is needed for that specific design truck in the codes. As the limited number of trucks cannot be the exact representative of real traffic through the life of the structure, these reduction factors are not accurately calculated and they should be modified accordingly. Started on July 2004, the vehicle load data were collected in six weigh in motion (WIM) sites owned by Alberta Transportation for eight consecutive years. This database includes more than 200 million trucks. Having these data gives the opportunity to compare the effect of any standard fatigue trucks weigh and the real traffic load on the fatigue life of the bridges which leads to a modification for the fatigue truck factor in the code. To calculate the damage for each truck, the truck is run on the bridge, moment history of the detail under study is recorded, stress range cycles are counted, and then damage is calculated using available S-N curves. A 2000 lines FORTRAN code has been developed to perform the analysis and calculate the damages of the trucks in the database for all eight fatigue categories according to Canadian Institute of Steel Construction (CSA S-16). Stress cycles are counted using rain flow counting method. The modification factors for design truck (CL-625) are calculated for two different bridge configurations and ten span lengths varying from 1 m to 200 m. The two considered bridge configurations are single-span bridge and four span bridge. This was found to be sufficient and representative for a simply supported span, positive moment in end spans of bridges with two or more spans, positive moment in interior spans of three or more spans, and the negative moment at an interior support of multi-span bridges. The moment history of the mid span is recorded for single-span bridge and, exterior positive moment, interior positive moment, and support negative moment are recorded for four span bridge. The influence lines are expressed by a polynomial expression obtained from a regression analysis of the influence lines obtained from SAP2000. It is found that for design truck (CL-625) fatigue truck factor is varying from 0.35 to 0.55 depending on span lengths and bridge configuration. The detail results will be presented in the upcoming papers. This code can be used for any design trucks available in standard codes.

Keywords: bridge, fatigue, fatigue design truck, rain flow analysis, FORTRAN

Procedia PDF Downloads 497
952 Dynamic Modeling of Orthotropic Cracked Materials by X-FEM

Authors: S. Houcine Habib, B. Elkhalil Hachi, Mohamed Guesmi, Mohamed Haboussi

Abstract:

In this paper, dynamic fracture behaviors of cracked orthotropic structure are modeled using extended finite element method (X-FEM). In this approach, the finite element method model is first created and then enriched by special orthotropic crack tip enrichments and Heaviside functions in the framework of partition of unity. The mixed mode stress intensity factor (SIF) is computed using the interaction integral technique based on J-integral in order to predict cracking behavior of the structure. The developments of these procedures are programmed and introduced in a self-software platform code. To assess the accuracy of the developed code, results obtained by the proposed method are compared with those of literature.

Keywords: X-FEM, composites, stress intensity factor, crack, dynamic orthotropic behavior

Procedia PDF Downloads 533
951 Outreach Intervention Addressing Crack Cocaine Addiction in Users with Co-Occurring Opioid Use Disorder

Authors: Louise Penzenstadler, Tiphaine Robet, Radu Iuga, Daniele Zullino

Abstract:

Context: The outpatient clinic of the psychiatric addiction service of Geneva University Hospital has been providing support to individuals affected by various narcotics for 30 years. However, the increasing consumption of crack cocaine in Geneva has presented a new challenge for the healthcare system. Research Aim: The aim of this research is to evaluate the impact of an outreach intervention on crack cocaine addiction in users with co-occurring opioid use disorder. Methodology: The research utilizes a combination of quantitative and qualitative retrospective data analysis to evaluate the effectiveness of the outreach intervention. Findings: The data collected from October 2023 to December 2023 show that the outreach program successfully made 1,071 contacts with drug users and led to 15 new requests for care and enrollment in treatment. Patients expressed high satisfaction with the intervention, citing easy and rapid access to treatment and social support. Theoretical Importance: This research contributes to the understanding of the challenges and specific needs of a complex group of drug users who face severe health problems. It highlights the importance of outreach interventions in establishing trust, connecting users with care, and facilitating medication-assisted treatment for opioid addiction. Data Collection: Data was collected through the outreach program's interactions with drug users, including street outreach interventions and presence at locations frequented by users. Patient satisfaction surveys were also utilized. Analysis Procedures: The collected data was analyzed using both quantitative and qualitative methods. The quantitative analysis involved examining the number of contacts made, new requests for care, and treatment enrollment. The qualitative analysis focused on patient satisfaction and their perceptions of the intervention. Questions Addressed: The research addresses the following questions: What is the impact of an outreach intervention on crack cocaine addiction in users with co-occurring opioid use disorder? How effective is the outreach program in connecting drug users with care and initiating medication-assisted treatment? Conclusion: The outreach program has proven to be an effective intervention in establishing trust with crack users, connecting them with care, and initiating medication-assisted treatment for opioid addiction. It has also highlighted the importance of addressing the specific challenges faced by this group of drug users.

Keywords: crack addiction, outreach treatment, peer intervention, polydrug use

Procedia PDF Downloads 32
950 Delay in the Diagnosis of Tuberculosis and Initiation of TB Treatment in the Private and Public Health Sectors, Udaipur District, Rajasthan, India, Nov 2013

Authors: Yogita Tulsian, R. S. Gupta, K. F. Laserson

Abstract:

Background: Delays in the diagnosis and treatment of TB facilitates disease transmission in the community, so we conducted a study to evaluate the burden of and risk factors for delay in TB diagnosis and initiation of TB treatment among patients in the private and public sectors in Udaipur district, Rajasthan, India. Methods: A retrospective cohort study was conducted among 100 new sputum-positive TB. Patients were interviewed in the intensive phase of treatment September 2013-November 2013 Long total diagnosis delay (TDD) was defined as a time interval between first symptom to confirmed diagnosis > 30 days. Long health treatment delay (HTD) was defined as a time interval between confirmed diagnosis to treatment initiation > 7 days. Results: We observed a median TDD of 55 days (range: 7-136 days) in the public sector and of 92 days (11-380 days) in the private sector. Long TDD in the private sector was significantly associated with middle-higher socio-economic status (Risk Ratio (RR): 2;95% CI: 1.3-3). The reasons reported from the private sector for long TDD were suspect TB patients not advised for sputum examination (RR: 42; 95% CI:2.6-660), practise of self-medication (RR: 17.4; 95% CI: 1.1-267), or lack of awareness (RR: 9.7;95% CI: 0.6-145). The median HTD in the public sector was 3 days (range: 0-14 days), and in the private sector, 2 days (range: 0-11 days) (non-significant difference). Conclusions: Long TDD in private sector may be improved through sputum referral for all suspect TB cases and better education to all regarding TB.

Keywords: diagnosis delay, treatment delay, privatesector, public sector

Procedia PDF Downloads 394
949 Temperature Susceptibility of Multigrade Bitumen Asphalt and an Approach to Account for Temperature Variation through Deep Pavements

Authors: Brody R. Clark, Chaminda Gallage, John Yeaman

Abstract:

Multigrade bitumen asphalt is a quality asphalt product that is not utilised in many places globally. Multigrade bitumen is believed to be less sensitive to temperature, which gives it an advantage over conventional binders. Previous testing has shown that asphalt temperature changes greatly with depth, but currently the industry standard is to nominate a single temperature for design. For detailed design of asphalt roads, perhaps asphalt layers should be divided into nominal layer depths and different modulus and fatigue equations/values should be used to reflect the temperatures of each respective layer. A collaboration of previous laboratory testing conducted on multigrade bitumen asphalt beams under a range of temperatures and loading conditions was analysed. The samples tested included 0% or 15% recycled asphalt pavement (RAP) to determine what impact the recycled material has on the fatigue life and stiffness of the pavement. This paper investigated the temperature susceptibility of multigrade bitumen asphalt pavements compared to conventional binders by combining previous testing that included conducting a sweep of fatigue tests, developing complex modulus master curves for each mix and a study on how pavement temperature changes through pavement depth. This investigation found that the final design of the pavement is greatly affected by the nominated pavement temperature and respective material properties. This paper has outlined a potential revision to the current design approach for asphalt pavements and proposes that further investigation is needed into pavement temperature and its incorporation into design.

Keywords: asphalt, complex modulus, fatigue life, flexural stiffness, four point bending, multigrade bitumen, recycled asphalt pavement

Procedia PDF Downloads 333
948 The Effect of Meta-Cognitive Therapy on Meta-Cognitive Defects and Emotional Regulation in Substance Dependence Patients

Authors: Sahra Setorg

Abstract:

The purpose of this study was to determine the effect of meta-cognitive therapy on meta-cognitive defects and emotional regulation in industrial substance dependence patients. This quasi-experimental research was conducted with post-test and two-month follow-up design with control and experimental groups. The statistical population consisted of all industrial Substance dependence patients refer to addictive withdrawal clinics in Esfahan city, in Iran in 2013. 45 patients were selected from three clinics through the convenience sampling method and were randomly divided into two experimental groups (15 crack dependences, 15 amphetamine dependences) and one control group (n=15). The meta-cognitive questionnaire (MCQ) and difficulties in emotional regulation questionnaire (DERS) were used as pre-test measures and the experimental groups (crack and amphetamine) received 8 MC therapy sessions in groups. The data were analyzed via multivariate covariance statistic method by spss-18. The results showed that MCT had a significant effect in improving the meta-cognitive defects in crack and amphetamine dependences. Also, this therapy can increase the emotional regulation in both groups (p<0/05).The effect of this therapy is confirmed in two months followup. According to these findings, met-cognitive is as an interface and important variable in prevention, control, and treatment of the new industrial substance dependences.

Keywords: meta-cognitive therapy, meta-cognitive defects, emotional regulation, substance dependence disorder

Procedia PDF Downloads 482
947 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling

Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé

Abstract:

Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.

Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation

Procedia PDF Downloads 56
946 Multi-Scale Damage Modelling for Microstructure Dependent Short Fiber Reinforced Composite Structure Design

Authors: Joseph Fitoussi, Mohammadali Shirinbayan, Abbas Tcharkhtchi

Abstract:

Due to material flow during processing, short fiber reinforced composites structures obtained by injection or compression molding generally present strong spatial microstructure variation. On the other hand, quasi-static, dynamic, and fatigue behavior of these materials are highly dependent on microstructure parameters such as fiber orientation distribution. Indeed, because of complex damage mechanisms, SFRC structures design is a key challenge for safety and reliability. In this paper, we propose a micromechanical model allowing prediction of damage behavior of real structures as a function of microstructure spatial distribution. To this aim, a statistical damage criterion including strain rate and fatigue effect at the local scale is introduced into a Mori and Tanaka model. A critical local damage state is identified, allowing fatigue life prediction. Moreover, the multi-scale model is coupled with an experimental intrinsic link between damage under monotonic loading and fatigue life in order to build an abacus giving Tsai-Wu failure criterion parameters as a function of microstructure and targeted fatigue life. On the other hand, the micromechanical damage model gives access to the evolution of the anisotropic stiffness tensor of SFRC submitted to complex thermomechanical loading, including quasi-static, dynamic, and cyclic loading with temperature and amplitude variations. Then, the latter is used to fill out microstructure dependent material cards in finite element analysis for design optimization in the case of complex loading history. The proposed methodology is illustrated in the case of a real automotive component made of sheet molding compound (PSA 3008 tailgate). The obtained results emphasize how the proposed micromechanical methodology opens a new path for the automotive industry to lighten vehicle bodies and thereby save energy and reduce gas emission.

Keywords: short fiber reinforced composite, structural design, damage, micromechanical modelling, fatigue, strain rate effect

Procedia PDF Downloads 84
945 The Failure and Energy Mechanism of Rock-Like Material with Single Flaw

Authors: Yu Chen

Abstract:

This paper investigates the influence of flaw on failure process of rock-like material under uniaxial compression. In laboratory, the uniaxial compression tests of intact specimens and a series of specimens within single flaw were conducted. The inclination angle of flaws includes 0°, 15°, 30°, 45°, 60°, 75° and 90°. Based on the laboratory tests, the corresponding models of numerical simulation were built and loaded in PFC2D. After analysing the crack initiation and failure modes, deformation field, and energy mechanism for both laboratory tests and numerical simulation, it can be concluded that the influence of flaws on the failure process is determined by its inclination. The characteristic stresses increase as flaw angle rising basically. The tensile cracks develop from gentle flaws (α ≤ 30°) and the shear cracks develop from other flaws. The propagation of cracks changes during failure process and the failure mode of a specimen corresponds to the orientation of the flaw. A flaw has significant influence on the transverse deformation field at the middle of the specimen, except the 75° and 90° flaw sample. The input energy, strain energy and dissipation energy of specimens show approximate increase trends with flaw angle rising and it presents large difference on the energy distribution.

Keywords: failure pattern, particle deformation field, energy mechanism, PFC

Procedia PDF Downloads 186
944 Intelligent Driver Safety System Using Fatigue Detection

Authors: Samra Naz, Aneeqa Ahmed, Qurat-ul-ain Mubarak, Irum Nausheen

Abstract:

Driver safety systems protect driver from accidents by sensing signs of drowsiness. The paper proposes a technique which can detect the signs of drowsiness and make corresponding decisions to make the driver alert. This paper presents a technique in which the driver will be continuously monitored by a camera and his eyes, head and mouth movements will be observed. If the drowsiness signs are detected on the basis of these three movements under the predefined criteria, driver will be declared as sleepy and he will get alert with the help of alarms. Three robust techniques of drowsiness detection are combined together to make a robust system that can prevent form accident.

Keywords: drowsiness, eye closure, fatigue detection, yawn detection

Procedia PDF Downloads 268
943 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection

Authors: Ankur Dixit, Hiroaki Wagatsuma

Abstract:

The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.

Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform

Procedia PDF Downloads 150
942 [Keynote Talk]: Formal Specification and Description Language and Message Sequence Chart to Model and Validate Session Initiation Protocol Services

Authors: Sa’ed Abed, Mohammad H. Al Shayeji, Ovais Ahmed, Sahel Alouneh

Abstract:

Session Initiation Protocol (SIP) is a signaling layer protocol for building, adjusting and ending sessions among participants including Internet conferences, telephone calls and multimedia distribution. SIP facilitates user movement by proxying and forwarding requests to the present location of the user. In this paper, we provide a formal Specification and Description Language (SDL) and Message Sequence Chart (MSC) to model and define the Internet Engineering Task Force (IETF) SIP protocol and its sample services resulted from informal SIP specification. We create an “Abstract User Interface” using case analysis so that can be applied to identify SIP services more explicitly. The issued sample SIP features are then used as case scenarios; they are revised in MSCs format and validated to their corresponding SDL models.

Keywords: modeling, MSC, SDL, SIP, validating

Procedia PDF Downloads 182
941 The Contribution of Hip Strategy in Dynamic Postural Control in Recurrent Ankle Sprain

Authors: Radwa El Shorbagy, Alaa El Din Balbaa, Khaled Ayad, Waleed Reda

Abstract:

Introduction: Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated. Objective: to determine the contribution of proximal hip strategy to dynamic postural control in patients with recurrent ankle sprain. Methods: Fifteen subjects with recurrent ankle sprain (group A) and fifteen healthy control subjects (group B) participated in this study. Abductor-adductors as well as flexor-extensor hip musculatures control was abolished by fatigue using the Biodex Isokinetic System. Dynamic postural control was measured before and after fatigue by the Biodex Balance System Results: Repeated measures MANOVA was used to compare between and within group differences, In group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) increased overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p= 0.00) whereas; in group B fatiguing of hip flexors-extensors increased significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Moreover, patients with ankle sprain had significantly lower dynamic balance after hip muscles fatigue compared to the control group. Specifically, after hip flexor-extensor fatigue, the OASI, APSI and MLSI were increased significantly than those of the control values (p= 0.002, 0.011, and 0.003, respectively) whereas fatiguing of hip abductors-adductors increased significantly in OASI and APSI only (p=0.012, 0.026, respectively). Conclusion: To maintain dynamic balance, patients with recurrent ankle sprain seem to relay more on the hip strategy. This means that those patients depend on a top to down instead of down to top strategy clinical relevance: patients with recurrent ankle sprain less efficient in maintaining the dynamic postural control due to the change in motor strategies. Indicating that health care providers and rehabilitation specialists should treat CAI as a global/central and not just as a simple local or peripheral injury.

Keywords: ankle sprain, fatigue hip muscles, dynamic balance

Procedia PDF Downloads 272
940 Failure Criterion for Mixed Mode Fracture of Cracked Wood Specimens

Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi

Abstract:

Investigation of fracture of wood components can prevent from catastrophic failures. Created fracture process zone (FPZ) in crack tip vicinity has important effect on failure of cracked composite materials. In this paper, a failure criterion for fracture investigation of cracked wood specimens under mixed mode I/II loading is presented. This criterion is based on maximum strain energy release rate and material nonlinearity in the vicinity of crack tip due to presence of microcracks. Verification of results with available experimental data proves the coincidence of the proposed criterion with the nature of fracture of wood. To simplify the estimation of nonlinear properties of FPZ, a damage factor is also introduced for engineering and application purposes.

Keywords: fracture criterion, mixed mode loading, damage zone, micro cracks

Procedia PDF Downloads 269
939 Chlorine Pretreatment Effect on Mechanical Properties of Optical Fiber Glass

Authors: Abhinav Srivastava, Hima Harode, Chandan Kumar Saha

Abstract:

The principal ingredient of an optical fiber is quartz glass. The quality of the optical fiber decreases if impure foreign substances are attached to its preform surface. If residual strain inside a preform is significant, it cracks with a small impact during drawing or transporting. Furthermore, damages and unevenness on the surface of an optical fiber base material break the fiber during drawing. The present work signifies that chlorine pre-treatment enhances mechanical properties of the optical fiber glass. FTIR (Fourier-Transform Infrared Spectroscopy) results show that chlorine gas chemically modifies the structure of silica clad; chlorine is known to soften glass. Metallic impurities on the preform surface likely formed volatile metal chlorides due to chlorine pretreatment at elevated temperature. The chlorine also acts as a drying agent, and therefore the preform surface is anticipated to be water deficient and supposedly avoids particle adhesion on the glass surface. The Weibull analysis of long length tensile strength demarcates a substantial shift in its knee. The higher dynamic fatigue n-value also indicated surface crack healing.

Keywords: mechanical strength, optical fiber glass, FTIR, Weibull analysis

Procedia PDF Downloads 144
938 Life Time Improvement of Clamp Structural by Using Fatigue Analysis

Authors: Pisut Boonkaew, Jatuporn Thongsri

Abstract:

In hard disk drive manufacturing industry, the process of reducing an unnecessary part and qualifying the quality of part before assembling is important. Thus, clamp was designed and fabricated as a fixture for holding in testing process. Basically, testing by trial and error consumes a long time to improve. Consequently, the simulation was brought to improve the part and reduce the time taken. The problem is the present clamp has a low life expectancy because of the critical stress that occurred. Hence, the simulation was brought to study the behavior of stress and compressive force to improve the clamp expectancy with all probability of designs which are present up to 27 designs, which excluding the repeated designs. The probability was calculated followed by the full fractional rules of six sigma methodology which was provided correctly. The six sigma methodology is a well-structured method for improving quality level by detecting and reducing the variability of the process. Therefore, the defective will be decreased while the process capability increasing. This research focuses on the methodology of stress and fatigue reduction while compressive force still remains in the acceptable range that has been set by the company. In the simulation, ANSYS simulates the 3D CAD with the same condition during the experiment. Then the force at each distance started from 0.01 to 0.1 mm will be recorded. The setting in ANSYS was verified by mesh convergence methodology and compared the percentage error with the experimental result; the error must not exceed the acceptable range. Therefore, the improved process focuses on degree, radius, and length that will reduce stress and still remain in the acceptable force number. Therefore, the fatigue analysis will be brought as the next process in order to guarantee that the lifetime will be extended by simulating through ANSYS simulation program. Not only to simulate it, but also to confirm the setting by comparing with the actual clamp in order to observe the different of fatigue between both designs. This brings the life time improvement up to 57% compared with the actual clamp in the manufacturing. This study provides a precise and trustable setting enough to be set as a reference methodology for the future design. Because of the combination and adaptation from the six sigma method, finite element, fatigue and linear regressive analysis that lead to accurate calculation, this project will able to save up to 60 million dollars annually.

Keywords: clamp, finite element analysis, structural, six sigma, linear regressive analysis, fatigue analysis, probability

Procedia PDF Downloads 211
937 Measurement of the Dynamic Modulus of Elasticity of Cylindrical Concrete Specimens Used for the Cyclic Indirect Tensile Test

Authors: Paul G. Bolz, Paul G. Lindner, Frohmut Wellner, Christian Schulze, Joern Huebelt

Abstract:

Concrete, as a result of its use as a construction material, is not only subject to static loads but is also exposed to variables, time-variant, and oscillating stresses. In order to ensure the suitability of construction materials for resisting these cyclic stresses, different test methods are used for the systematic fatiguing of specimens, like the cyclic indirect tensile test. A procedure is presented that allows the estimation of the degradation of cylindrical concrete specimens during the cyclic indirect tensile test by measuring the dynamic modulus of elasticity in different states of the specimens’ fatigue process. Two methods are used in addition to the cyclic indirect tensile test in order to examine the dynamic modulus of elasticity of cylindrical concrete specimens. One of the methods is based on the analysis of eigenfrequencies, whilst the other one uses ultrasonic pulse measurements to estimate the material properties. A comparison between the dynamic moduli obtained using the three methods that operate in different frequency ranges shows good agreement. The concrete specimens’ fatigue process can therefore be monitored effectively and reliably.

Keywords: concrete, cyclic indirect tensile test, degradation, dynamic modulus of elasticity, eigenfrequency, fatigue, natural frequency, ultrasonic, ultrasound, Young’s modulus

Procedia PDF Downloads 141
936 Analysis of Waiting Time and Drivers Fatigue at Manual Toll Plaza and Suggestion of an Automated Toll Tax Collection System

Authors: Muhammad Dawood Idrees, Maria Hafeez, Arsalan Ansari

Abstract:

Toll tax collection is the earliest method of tax collection and revenue generation. This revenue is utilized for the development of roads networks, maintenance, and connecting to roads and highways across the country. Pakistan is one of the biggest countries, covers a wide area of land, roads networks, and motorways are important source of connecting cities. Every day millions of people use motorways, and they have to stop at toll plazas to pay toll tax as majority of toll plazas are manually collecting toll tax. The purpose of this study is to calculate the waiting time of vehicles at Karachi Hyderabad (M-9) motorway. As Karachi is the biggest city of Pakistan and hundreds of thousands of people use this route to approach other cities. Currently, toll tax collection is manual system which is a major cause for long time waiting at toll plaza. This study calculates the waiting time of vehicles, fuel consumed in waiting time, manpower employed at toll plaza as all process is manual, and it also leads to mental and physical fatigue of driver. All wastages of sources are also calculated, and a most feasible automatic toll tax collection system is proposed which is not only beneficial to reduce waiting time but also beneficial in reduction of fuel, reduction of manpower employed, and reduction in physical and mental fatigue. A cost comparison in terms of wastages is also shown between manual and automatic toll tax collection system (E-Z Pass). Results of this study reveal that, if automatic tool collection system is implemented at Karachi to Hyderabad motorway (M-9), there will be a significance reduction in waiting time of vehicles, which leads to reduction of fuel consumption, environmental pollution, mental and physical fatigue of driver. All these reductions are also calculated in terms of money (Pakistani rupees) and it is obtained that millions of rupees can be saved by using automatic tool collection system which will lead to improve the economy of country.

Keywords: toll tax collection, waiting time, wastages, driver fatigue

Procedia PDF Downloads 122
935 Restrained Shrinkage Behavior of Self Consolidating Concrete

Authors: Boudjelthia Radhwane

Abstract:

Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. The shrinkage of concrete is the main cause of cracking in bridge decks. Bridge decks tend to be restrained from shrinkage, and this restraint along with other factors causes the bridge to crack. The characteristics of SCC under restrained shrinkage are important to understand in order to predict the cracking behavior in actual structures. Restrained shrinkage testing is done in accordance to AASHTO testing protocol. The free shrinkage performance and cracking behavior were reported and compared when changing the sand to aggregate ratio and the water to cement ratio. The results of free shrinkage show that when a mix design has higher free shrinkage, it will crack in restrained shrinkage earlier than a mix with lower free shrinkage.

Keywords: concrete mix, cracking behavior, restrained shrinkage, self compacting concrete

Procedia PDF Downloads 349
934 Identification of the Most Effective Dosage of Clove Oil Solution as an Alternative for Synthetic Anaesthetics on Zebrafish (Danio rerio)

Authors: D. P. N. De Silva, N. P. P. Liyanage

Abstract:

Zebrafish (Danio rerio) in the family Cyprinidae, is a tropical freshwater fish widely used as a model organism in scientific research. Use of effective and economical anaesthetic is very important when handling fish. Clove oil (active ingredient: eugenol) was identified as a natural product which is safer and economical compared to synthetic chemicals like methanesulfonate (MS-222). Therefore, the aim of this study was to identify the most effective dosage of clove oil solution as an anaesthetic on mature Zebrafish. Clove oil solution was prepared by mixing pure clove oil with 94% ethanol at a ratio of 1:9 respectively. From that solution, different volumes were selected as (0.4 ml, 0.6 ml and 0.8 ml) and dissolved in one liter of conditioned water (dosages : 0.4 ml/L, 0.6 ml/L and 0.8 ml/L). Water quality parameters (pH, temperature and conductivity) were measured before and after adding clove oil solution. Mature Zebrafish with similar standard length (2.76 ± 0.1 cm) and weight (0.524 ± 0.1 g) were selected for this experiment. Time taken for loss of equilibrium (initiation phase) and complete loss of movements including opercular movement (anaesthetic phase) were measured. To detect the efficacy on anaesthetic recovery, time taken to begin opercular movements (initiation of recovery phase) until swimming (post anaesthetic phase) were observed. The results obtained were analyzed according to the analysis of variance (ANOVA) and Tukeys’ method using SPSS version 17.0 at 95% confidence interval (p<0.5). According to the results, there was no significant difference at the initiation phase of anaesthesia in all three doses though the time taken was varied from 0.14 to 0.41 minutes. Mean value of the time taken to complete the anaesthetic phase at 0.4 ml/L dosage was significantly different with 0.6 ml/L and 0.8 ml/L dosages independently (p=0.01). There was no significant difference among recovery times at all dosages but 0.8 ml/L dosage took longer time compared to 0.6 ml/L dosage. The water quality parameters (pH and temperature) were stable throughout the experiment except conductivity, which increased with the higher dosage. In conclusion, the best dosage need to anaesthetize Zebrafish using clove oil solution was 0.6 ml/L due to its fast initiation of anaesthesia and quick recovery compared to the other two dosages. Therefore clove oil can be used as a good substitute for synthetic anaesthetics because of its efficacy at a lower dosage with higher safety at a low cost.

Keywords: anaesthetics, clove oil, zebrafish, Cyprinidae

Procedia PDF Downloads 687
933 Identification of Parameters for Urban and Regional Level Infrastructure Development - A Theoretical Perspective: Case Study – Rail Based Mass Transit in Indian Cities

Authors: Chitresh Kumar, Santanu Gupta

Abstract:

The research work intends to understand the process of initiation, planning and development of capital-intensive urban area level infrastructure development in East Asian Cities (specific to Indian Cities). With the onset of emphasis on sustainable urban transport, self-financed urban local bodies, it has become of utmost important to identify infrastructure and projects on a priority basis, which provide optimal utility to the urban area. Through identification of Spatial, Demographic and Socio-Economic and Political Instability Parameters and their trends for the past 60 years at the urban area and state level, the paper attempts to identify the most suitable time period when initiation of the project would become economically and demographically viable for the city.

Keywords: urban planning, regional planning, mass transit, infrastructure development, spatial planning

Procedia PDF Downloads 528
932 Cyclic Plastic Deformation of 20MN-MO-NI 55 Steel in Dynamic Strain Ageing Regime

Authors: Ashok Kumar, Sarita Sahu, H. N. Bar

Abstract:

Low cycle fatigue behavior of a ferritic, martensitic pressure vessel steel at dynamic strain ageing regime of 250°C to 280°C has been investigated. Dynamic strain ageing is a mechanism that has attracted interests of researchers due to its fascinating inexplicable repetitive nature for quite a long time. The interaction of dynamic strain ageing and cyclic plasticity has been studied from the mechanistic point of view. Dynamic strain ageing gives rise to identical serrated flow behavior in tensile and compressive halves of hysteresis loops and this has been found to gives rise to initial cyclic hardening followed by softening behavior, where as in non-DSA regime continuous cyclic softening has been found to be the dominant mechanism. An appreciable sensitivity towards nature of serrations has been observed due to degree of hardening of stable loop. The increase in degree of hardening with strain amplitude in the regime where only A type serrations are present and it decreases with strain amplitude where A+B type of serrations are present. Masing type of locus has been found in the behavior of metal at 280°C. Cyclic Stress Strain curve and Master curve has been constructed to decipher among the fatigue strength and ductility coefficients. Fractographic examinations have also shown a competition between progression of striations and secondary cracking.

Keywords: dynamic strain ageing, hardening, low cycle fatigue, softening

Procedia PDF Downloads 269
931 Preliminary Study Investigating Trunk Muscle Fatigue and Cognitive Function in Event Riders during a Simulated Jumping Test

Authors: Alice Carter, Lucy Dumbell, Lorna Cameron, Victoria Lewis

Abstract:

The Olympic discipline of eventing is the triathlon of equestrian sport, consisting of dressage, cross-country and show jumping. Falls on the cross-country are common and can be serious even causing death to rider. Research identifies an increased risk of a fall with an increasing number of obstacles and for jumping efforts later in the course suggesting fatigue maybe a contributing factor. Advice based on anecdotal evidence suggests riders undertake strength and conditioning programs to improve their ‘core’, thus improving their ability to maintain and control their riding position. There is little empirical evidence to support this advice. Therefore, the aim of this study is to investigate truck muscle fatigue and cognitive function during a simulated jumping test. Eight adult riders participated in a riding test on a Racewood Event simulator for 10 minutes, over a continuous jumping programme. The SEMG activity of six trunk muscles were bilaterally measured at every minute, and normalised root mean squares (RMS) and median frequencies (MDF) were computed from the EMG power spectra. Visual analogue scales (VAS) measuring Fatigue and Pain levels and Cognitive Function ‘tapping’ tests were performed before and after the riding test. Average MDF values for all muscles differed significantly between each sampled minute (p = 0.017), however a consistent decrease from Minute 1 and Minute 9 was not found, suggesting the trunk muscles fatigued and then recovered as other muscle groups important in maintaining the riding position during dynamic movement compensated. Differences between the MDF and RMS of different muscles were highly significant (H=213.01, DF=5, p < 0.001), supporting previous anecdotal evidence that different trunk muscles carry out different roles of posture maintenance during riding. RMS values were not significantly different between the sampled minutes or between riders, suggesting the riding test produced a consistent and repeatable effect on the trunk muscles. MDF values differed significantly between riders (H=50.8, DF = 5, p < 0.001), suggesting individuals may experience localised muscular fatigue of the same test differently, and that other parameters of physical fitness should be investigated to provide conclusions. Lumbar muscles were shown to be important in maintaining the position, therefore physical training program should focus on these areas. No significant differences were found between pre- and post-riding test VAS Pain and Fatigue scores or cognitive function test scores, suggesting the riding test was not significantly fatiguing for participants. However, a near significant correlation was found between time of riding test and VAS Pain score (p = 0.06), suggesting somatic pain may be a limiting factor to performance. No other correlations were found between the factors of participant riding test time, VAS Pain and Fatigue, however a larger sample needs to be tested to improve statistical analysis. The findings suggest the simulator riding test was not sufficient to provoke fatigue in the riders, however foundations for future studies have been laid to enable methodologies in realistic eventing settings.

Keywords: eventing, fatigue, horse-rider, surface EMG, trunk muscles

Procedia PDF Downloads 167
930 New Stress Instability Workability Criteria for Internal Ductile Failure in Steel Cold Heading

Authors: Amar Sabih, James Nemes

Abstract:

The occurrence of internal ductile failure within the Adiabatic Shear Band (ASB) in cold-headed products presents a significant barrier in the fast-expanding cold-heading (CH) industry. The presence of internal ductile failure in cold-headed products may lead to catastrophic fracture under tensile loads despite the ductile nature of the material causing expensive industrial recalls. Therefore, this paper presents a new workability criterion that uses stress instability as an indicator to accurately reveal the locus of initiation of internal ductile failures. The concept of the instability criterion is to use the stress ratio at failure as a weighting function to indicate the initiation of ductile failure inside the ASBs. This paper presents a comprehensive experimental, metallurgical, and finite element simulation study to calculate the material constants used in this criterion.

Keywords: adiabatic sher band, ductile failure, stress instability, workability criterion

Procedia PDF Downloads 55
929 Physical Exertion and Fatigue: A Breakthrough in Choking Sphere

Authors: R. Maher, D. Marchant, F. Fazel

Abstract:

Choking in sport has been defined as ‘an acute performance breakdown’, and is generally explained through a range of contributory antecedents, factors, and explanatory theories. The influence of mental antecedents on an athlete’s performance under pressure has been widely examined through numerous studies. Researchers have only recently begun to investigate the influence of physical effort and associated residual fatigue as a potential contributor to choking in sport. Consequently, the initial aim of the present study was to examine the extent to which both physical exertion and pressure affect free-throw shooting performance. It was hypothesized that the free-throw shooting scores would decline under manipulated conditions. Design and Methods: Using a within-subjects design, 50 student-athletes were assigned to four manipulated conditions: (a) higher pressure-running, (b) higher pressure-no running, (c) lower pressure-running, and (d) lower pressure-no running. The physical exertion was manipulated by including a 56 meter shuttle-run in two of the running conditions. The pressure was manipulated with the presence of an audience, video-recording, performance contingent rewards, and weighting successful shots in the higher pressure conditions. A repeated measure analysis of variance was used to analyse the data. Results: The free-throw performance significantly deteriorated under manipulated physical exertion F (1, 49) = 10.13, p = .003, ηp 2 = .17 and pressure conditions F (1, 49) = 5.25, p = .02, ηp 2 = .09. The lowest free-throw scores were observed in the higher pressure-running condition, whereas the highest free-throw scores were reported in the lower pressure-no running condition. Conclusions: Physical exertion and the associated residual fatigue were contributors to choking. The results of the present study herald a new concept in choking research and yield a practical platform for use by athletes, coaches, and sport psychologists to better manage the psychological and physiological aspects of performance under pressure.

Keywords: anxiety, basketball, choking, fatigue, free-throw shooting, physical exertion

Procedia PDF Downloads 256
928 PPRA Controls DNA Replication and Cell Growth in Escherichia Coli

Authors: Ganesh K. Maurya, Reema Chaudhary, Neha Pandey, Hari S. Misra

Abstract:

PprA, a pleiotropic protein participating in radioresistance, has been reported for its roles in DNA replication initiation, genome segregation, cell division and DNA repair in polyextremophile Deinococcus radiodurans. Interestingly, expression of deinococcal PprA in E. coli suppresses its growth by reducing the number of colony forming units and provide better resistance against γ-radiation than control. We employed different biochemical and cell biology studies using PprA and its DNA binding/polymerization mutants (K133E & W183R) in E. coli. Cells expressing wild type PprA or its K133E mutant showed reduction in the amount of genomic DNA as well as chromosome copy number in comparison to W183R mutant of PprA and control cells, which suggests the role of PprA protein in regulation of DNA replication initiation in E. coli. Further, E. coli cells expressing PprA or its mutants exhibited different impact on cell morphology than control. Expression of PprA or K133E mutant displayed a significant increase in cell length upto 5 folds while W183R mutant showed cell length similar to uninduced control cells. We checked the interaction of deinococcal PprA and its mutants with E. coli DnaA using Bacterial two-hybrid system and co-immunoprecipitation. We observed a functional interaction of EcDnaA with PprA and K133E mutant but not with W183R mutant of PprA. Further, PprA or K133E mutant has suppressed the ATPase activity of EcDnaA but W183R mutant of PprA failed to do so. These observations suggested that PprA protein regulates DNA replication initiation and cell morphology of surrogate E. coli.

Keywords: DNA replication, radioresistance, protein-protein interaction, cell morphology, ATPase activity

Procedia PDF Downloads 34
927 Development of Surface Modification Technology for Control Element Drive Mechanism Nozzle and Fatigue Enhancement of Ni-Based Alloys

Authors: Auezhan Amanov, Inho Cho, Young-Sik Pyun

Abstract:

Control element drive mechanism (CEDM) nozzle is manufactured as welded on the reactor vessel and currently uses Alloy 690 material. The top of the reactor is equipped with about 100 CEDM nozzles with an internal diameter of about 70 mm. Relatively large Inlet/Outlet nozzles are equipped with two outlet nozzles and four inlet nozzles on the reactor wall. The inner diameter of the nozzle is vulnerable to stress corrosion cracking (SCC), and in order to solve this problem, an ultrasonic nanocrystal surface modification (UNSM) treatment is performed on the inner diameter of the nozzle and the weld surface. The ultimate goal is to improve the service life of parts by applying compressive residual stress and suppressing primary water stress corrosion cracking (PWSCC). The main purpose is to design and fabricate a UNSM treatment device for the internal diameter processing of CEDM nozzles and inlet/outlet nozzles. In order to develop the system, the basic technology such as the development of UNSM tooling is developed and the mechanical properties and fatigue performance of before and after UNSM treatment of reactor nozzle material made of Ni-based alloys using the specimen are compared and evaluated. The inner diameter of the nozzle was treated by a newly developed UNSM treatment under the optimized treatment parameters. It was found that the mechanical properties and fatigue performance of nozzle were improved in comparison with the untreated nozzle, which may be attributed to the increase in hardness, induced compressive residual stress.

Keywords: control element drive mechanism nozzle, fatigue, Ni-based alloy, ultrasonic nanocrystal surface modification, UNSM

Procedia PDF Downloads 88
926 Micromechanical Analysis of Interface Properties Effects on Transverse Tensile Response of Fiber-Reinforced Composites

Authors: M. Naderi, N. Iyyer, K. Goel, N. Phan

Abstract:

A micromechanical analysis of the influence of fiber-matrix interface fracture properties on the transverse tensile response of fiber-reinforced composite is investigated. Augmented finite element method (AFEM) is used to provide high-fidelity damage initiation and propagation along the micromechanical analysis. Effects of fiber volume fraction and fiber shapes are also studies in representative volume elements (RVE) to capture the stochastic behavior of the composite under loading. In addition, defects and voids influence on the composite response are investigated in micromechanical analysis. The results reveal that the response of RVE with constant interface properties overestimates the composite transverse strength. It is also seen that the damage initiation and propagation locations are controlled by the distributions of fracture properties, fibers’ shapes, and defects.

Keywords: cohesive model, fracture, computational mechanics, micromechanics

Procedia PDF Downloads 268