Search results for: discharge pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4707

Search results for: discharge pressure

4377 Prediction of Excess Pore Pressure Variation of Reinforced Silty Sand by Stone Columns During Liquefaction

Authors: Zeineb Ben Salem, Wissem Frikha, Mounir Bouassida

Abstract:

Liquefaction has been responsible for tremendous amounts of damage in historical earthquakes around the world. The installation of stone columns is widely adopted to prevent liquefaction. Stone columns provide a drainage path, and due to their high permeability, allow for the quick dissipation of earthquake generated excess pore water pressure. Several excess pore pressure generation models in silty sand have been developed and calibrated based on the results of shaking table and centrifuge tests focusing on the effect of silt content on liquefaction resistance. In this paper, the generation and dissipation of excess pore pressure variation of reinforced silty sand by stone columns during liquefaction are analyzedwith different silt content based on test results. In addition, the installation effect of stone columns is investigated. This effect is described by a decrease in horizontal permeability within a disturbed zone around the column. Obtained results show that reduced soil permeability and a larger disturbed zone around the stone column increases the generation of excess pore pressure during the cyclic loading and decreases the dissipation rate after cyclic loading. On the other hand, beneficial effects of silt content were observed in the form of a decrease in excess pore water pressure.

Keywords: stone column, liquefaction, excess pore pressure, silt content, disturbed zone, reduced permeability

Procedia PDF Downloads 126
4376 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves

Authors: Kamal Upadhyay, Zhou Hua, Yu Rui

Abstract:

This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.

Keywords: streamline, cavitation, optimization, computational fluid dynamics

Procedia PDF Downloads 109
4375 Plasma-Induced Modification of Biomolecules: A Tool for Analysis of Protein Structures

Authors: Yuting Wu, Faraz Choudhury, Daniel Benjamin, James Whalin, Joshua Blatz, Leon Shohet, Michael Sussman, Mark Richards

Abstract:

Plasma-Induced Modification of Biomolecules (PLIMB) has been developed as a technology, which, together with mass spectrometry, measures three-dimensional structural characteristics of proteins. This technique uses hydroxyl radicals generated by atmospheric-pressure plasma discharge to react with the solvent-accessible side chains of protein in an aqueous solution. In this work, we investigate the three-dimensional structure of hemoglobin and myoglobin using PLIMB. Additional modifications to these proteins, such as oxidation, fragmentations, and conformational changes caused by PLIMB are also explored. These results show that PLIMB, coupled with mass spectrometry, is an effective way to determine solvent access to hemoproteins. Furthermore, we show that many factors, including pH and the electrical parameters used to generate the plasma, have a significant influence on solvent accessibility.

Keywords: plasma, hemoglobin, myoglobin, solvent access

Procedia PDF Downloads 161
4374 Gas-Liquid Two Phase Flow Phenomenon in Near Horizontal Upward and Downward Inclined Pipe Orientations

Authors: Afshin J. Ghajar, Swanand M. Bhagwat

Abstract:

The main purpose of this work is to experimentally investigate the effect of pipe orientation on two phase flow phenomenon. Flow pattern, void fraction and two phase pressure drop is measured in a polycarbonate pipe with an inside diameter of 12.7mm for inclination angles ranging from -20° to +20° using air-water fluid combination. The experimental data covers all flow patterns and the entire range of void fraction typically observed in two phase flow. The effect of pipe orientation on void fraction and two phase pressure drop is justified with reference to the change in flow structure and two phase flow behavior. In addition to this, the top performing void fraction and two phase pressure drop correlations available in the literature are presented and their performance is assessed against the experimental data in the present study and that available in the literature.

Keywords: flow patterns, inclined two phase flow, pressure drop, void fraction

Procedia PDF Downloads 650
4373 Effects of Aerobic Dance Circuit Training Programme on Blood Pressure Variables of Obese Female College Students in Oyo State, Nigeria

Authors: Isiaka Oladele Oladipo, Olusegun Adewale Ajayi

Abstract:

The blood pressure fitness of female college students has been implicated in sedentary lifestyles. This study was designed to determine the effects of the Aerobic Dance Circuit Training Programme (ADCT) on blood pressure variables (Diastolic Blood Pressure (DBP) and Systolic Blood Pressure (SBP). Participants’ Pretest-Posttest control group quasi-experimental design using a 2x2x4 factorial matrix was adopted, while one (1) research question and two (2) research hypotheses were formulated. Seventy (70) untrained obese students-volunteers age 21.10±2.46 years were purposively selected from Oyo town, Nigeria; Emmanuel Alayande College of Education (experimental group and Federal College of Education (special) control group. The participants’ BMI, weight (kg), height (m), systolic bp(mmHg), and diastolic bp (mmHg) were measured before and completion of ADCT. Data collected were analysed using a pie chart, graph, percentage, mean, frequency, and standard deviation, while a t-test was used to analyse the stated hypotheses set at the critical level of 0.05. There were significant mean differences in baseline and post-treatment values of blood pressure variables in terms of SBP among the experimental group 136.49mmHg and 131.66mmHg; control group 130.82mmHg and 130.56mmHg (crit-t=2.00, cal.t=3.02, df=69, p<.0, the hypothesis was rejected; while DBP experimental group 88.65mmHg and 82.21mmHg; control group 69.91mmHg and 72.66mmHg (crit-t=2.00, cal.t=1.437, df=69, p>.05) in which the hypothesis was accepted). It was revealed from the findings that participants’ SBP decrease from week 4 to week 12 of ADCT indicated an effective reduction in blood pressure variables of obese female students. Therefore, the study confirmed that the use of ADCT is safe and effective in the management of blood pressure for the healthy benefit of obesity.

Keywords: aerobic dance circuit training, fitness lifestyles, obese college female students, systolic blood pressure, diastolic blood pressure

Procedia PDF Downloads 51
4372 Condensation Heat Transfer and Pressure Drop of R-134a Flowing inside Dimpled Tubes

Authors: Kanit Aroonrat, Somchai Wongwises

Abstract:

A heat exchanger is one of the vital parts in a wide variety of applications. The tube with surface modification is generally referred to as an enhanced tube. With this, the thermal performance of the heat exchanger is improved. A dimpled tube is one of many kinds of enhanced tube. The heat transfer and pressure drop of two-phase flow inside dimpled tubes have received little attention in the literature, despite of having an important role in the development of refrigeration and air conditioning systems. As a result, the main aim of this study is to investigate the condensation heat transfer and pressure drop of refrigerant-134a flowing inside dimpled tubes. The test section is a counter-flow double-tube heat exchanger, which the refrigerant flows in the inner tube and water flows in the annulus. The inner tubes are one smooth tube and three dimpled tubes with different helical pitches. All test tubes are made from copper with an inside diameter of 8.1 mm and length of 1500 mm. The experiments are conducted over mass fluxes ranging from 300 to 500 kg/m²s, heat flux ranging from 10 to 20 kW/m², and condensing temperature ranging from 40 to 50 ˚C. The results show that all dimpled tubes provide higher heat transfer coefficient and frictional pressure drop compared to the smooth tube. In addition, the heat transfer coefficient and frictional pressure drop increase with decreasing of helical pitch. It can be observed that the dimpled tube with lowest helical pitch yields the heat transfer enhancement in the range of 60-89% with the frictional pressure drop increase of 289-674% in comparison to the smooth tube.

Keywords: condensation, dimpled tube, heat transfer, pressure drop

Procedia PDF Downloads 191
4371 Effect of Adverse Pressure Gradient on a Fluctuating Velocity over the Co-Flow Jet Airfoil

Authors: Morteza Mirhosseini, Amir B. Khoshnevis

Abstract:

The boundary layer separation and new active flow control of a NACA 0025 airfoil were studied experimentally. This new flow control is sometimes known as a co-flow jet (cfj) airfoil. This paper presents the fluctuating velocity in a wall jet over the co-flow jet airfoil subjected to an adverse pressure gradient and a curved surface. In these results, the fluctuating velocity at the inner part increasing by increased the angle of attack up to 12o and this has due to the jet energized, while the angle of attack 20o has different. The airfoil cord based Reynolds number has 105.

Keywords: adverse pressure gradient, fluctuating velocity, wall jet, co-flow jet airfoil

Procedia PDF Downloads 460
4370 Application of Hydrologic Engineering Centers and River Analysis System Model for Hydrodynamic Analysis of Arial Khan River

Authors: Najeeb Hassan, Mahmudur Rahman

Abstract:

Arial Khan River is one of the main south-eastward outlets of the River Padma. This river maintains a meander channel through its course and is erosional in nature. The specific objective of the research is to study and evaluate the hydrological characteristics in the form of assessing changes of cross-sections, discharge, water level and velocity profile in different stations and to create a hydrodynamic model of the Arial Khan River. Necessary data have been collected from Bangladesh Water Development Board (BWDB) and Center for Environment and Geographic Information Services (CEGIS). Satellite images have been observed from Google earth. In this study, hydrodynamic model of Arial Khan River has been developed using well known steady open channel flow code Hydrologic Engineering Centers and River Analysis System (HEC-RAS) using field surveyed geometric data. Cross-section properties at 22 locations of River Arial Khan for the years 2011, 2013 and 2015 were also analysed. 1-D HEC-RAS model has been developed using the cross sectional data of 2015 and appropriate boundary condition is being used to run the model. This Arial Khan River model is calibrated using the pick discharge of 2015. The applicable value of Mannings roughness coefficient (n) is adjusted through the process of calibration. The value of water level which ties with the observed data to an acceptable accuracy is taken as calibrated model. The 1-D HEC-RAS model then validated by using the pick discharges from 2009-2018. Variation in observed water level in the model and collected water level data is being compared to validate the model. It is observed that due to seasonal variation, discharge of the river changes rapidly and Mannings roughness coefficient (n) also changes due to the vegetation growth along the river banks. This river model may act as a tool to measure flood area in future. By considering the past pick flow discharge, it is strongly recommended to improve the carrying capacity of Arial Khan River to protect the surrounding areas from flash flood.

Keywords: BWDB, CEGIS, HEC-RAS

Procedia PDF Downloads 152
4369 Power Recovery in Egyptian Natural Gas Pressure Reduction Stations Using Turboexpander Systems

Authors: Kamel A. Elshorbagy, Mohamed A. Hussein, Rola S. Afify

Abstract:

Natural gas pressure reduction is typically achieved using pressure reducing valves, where isenthalpic expansion takes place with considerable amount of wasted energy in an irreversible throttling process of the gas. Replacing gas-throttling process by an expansion process in a turbo expander (TE) converts the pressure of natural gas into mechanical energy transmitted to a loading device (i.e. an electric generator). This paper investigates the performance of a turboexpander system for power recovery at natural gas pressure reduction stations. There is a considerable temperature drop associated with the turboexpander process. Essential preheating is required, using gas fired boilers, to avoid undesirable effects of a low outlet temperature. Various system configurations were simulated by the general flow sheet simulator HYSYS and factors affecting the overall performance of the systems were investigated. Power outputs and fuel requirements were found using typical gas flow variation data. The simulation was performed for two case studies in which real input data are used. These case studies involve a domestic (commercial) and an industrial natural gas pressure reduction stations in Egypt. Economic studies of using the turboexpander system in both of the two natural gas pressure reduction stations are conducted using precise data obtained through communication with several companies working in this field. The results of economic analysis, for the two case studies, prove that using turboexpander systems in Egyptian natural gas reduction stations can be a successful project for energy conservation.

Keywords: natural gas, power recovery, reduction stations, turboexpander systems

Procedia PDF Downloads 282
4368 Experimental Study of Heat Transfer and Pressure Drop in Serpentine Channel Water Cooler Heat Sink

Authors: Hao Xiaohong, Wu Zongxiang, Chen Xuefeng

Abstract:

With the high power density and high integration of electronic devices, their heat flux has been increasing rapidly. Therefore, an effective cooling technology is essential for the reliability and efficient operation of electronic devices. Liquid cooling is studied increasingly widely for its higher heat transfer efficiency. Serpentine channels are superior in the augmentation of single-phase convective heat transfer because of their better channel velocity distribution. In this paper, eight different frame sizes water-cooled serpentine channel heat sinks are designed to study the heat transfer and pressure drop characteristics. With water as the working fluid, experiment setup is established and the results showed the effect of different channel width, fin thickness and number of channels on thermal resistance and pressure drop.

Keywords: heat transfer, experiment, serpentine heat sink, pressure drop

Procedia PDF Downloads 429
4367 Corporate Voluntary Greenhouse Gas Emission Reporting in United Kingdom: Insights from Institutional and Upper Echelons Theories

Authors: Lyton Chithambo

Abstract:

This paper reports the results of an investigation into the extent to which various stakeholder pressures influence voluntary disclosure of greenhouse-gas (GHG) emissions in the United Kingdom (UK). The study, which is grounded on institutional theory, also borrows from the insights of upper echelons theory and examines whether specific managerial (chief executive officer) characteristics explain and moderates various stakeholder pressures in explaining GHG voluntary disclosure. Data were obtained from the 2011 annual and sustainability reports of a sample of 216 UK companies on the FTSE350 index listed on the London Stock Exchange. Generally the results suggest that there is no substantial shareholder and employee pressure on a firm to disclose GHG information but there is significant positive pressure from the market status of a firm with those firms with more market share disclosing more GHG information. Consistent with the predictions of institutional theory, we found evidence that coercive pressure i.e. regulatory pressure and mimetic pressures emanating in some industries notably industrials and consumer services have a significant positive influence on firms’ GHG disclosure decisions. Besides, creditor pressure also had a significant negative relationship with GHG disclosure. While CEO age had a direct negative effect on GHG voluntary disclosure, its moderation effect on stakeholder pressure influence on GHG disclosure was only significant on regulatory pressure. The results have important implications for both policy makers and company boards strategizing to reign in their GHG emissions.

Keywords: greenhouse gases, voluntary disclosure, upper echelons theory, institution theory

Procedia PDF Downloads 210
4366 Modeling of Steady State Creep in Thick-Walled Cylinders under Internal Pressure

Authors: Tejeet Singh, Ishavneet Singh

Abstract:

The present study focused on carrying out the creep analysis in an isotropic thick-walled composite cylindrical pressure vessel composed of aluminum matrix reinforced with silicon-carbide in particulate form. The creep behavior of the composite material has been described by the threshold stress based creep law. The values of stress exponent appearing in the creep law were selected as 3, 5 and 8. The constitutive equations were developed using well known von-Mises yield criteria. Models were developed to find out the distributions of creep stress and strain rate in thick-walled composite cylindrical pressure vessels under internal pressure. In order to obtain the stress distributions in the cylinder, the equilibrium equation of the continuum mechanics and the constitutive equations are solved together. It was observed that the radial stress, tangential stress and axial stress increases along with the radial distance. The cross-over was also obtained almost at the middle region of cylindrical vessel for tangential and axial stress for different values of stress exponent. The strain rates were also decreasing in nature along the entire radius.

Keywords: steady state creep, composite, cylinder, pressure

Procedia PDF Downloads 391
4365 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production

Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia

Abstract:

Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.

Keywords: direct steam generation, parabolic trough collectors, Ppressure drop, empirical models

Procedia PDF Downloads 117
4364 Effect of Needle Height on Discharge Coefficient and Cavitation Number

Authors: Mohammadreza Nezamirad, Sepideh Amirahmadian, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi

Abstract:

Cavitation inside diesel injector nozzle is investigated using Reynolds-Stress-Navier Stokes equations. Schnerr-Sauer cavitation model is used for modeling cavitation inside diesel injector nozzle. The carrying fluid utilized in the current study is diesel fuel. The flow is verified at the beginning by comparing with the previous experimental data, and it was found that K-Epsilon turbulent model could lead to a better accuracy comparing to K-Omega turbulent model. Moreover, the mass flow rate obtained numerically is compared with the experimental value, and the discrepancy was found to be less than 5 percent which shows the accuracy of the current results. Finally, a real-size four-hole nozzle is investigated, and the flow inside it is visualized based on velocity profile, discharge coefficient, and cavitation number. It was found that the mesh density could be reduced significantly by utilizing periodic boundary conditions. Velocity contour at the mid nozzle showed that the maximum value of velocity occurs at the end of the needle before entering the orifice area. Last but not least, at the same boundary conditions, when different needle heights were utilized, it was found that as needle height increases with an increase in cavitation number, discharge coefficient increases, while the mentioned increases are more tangible at smaller values of needle heights.

Keywords: cavitation, diesel fuel, CFD, real size nozzle, mass flow rate

Procedia PDF Downloads 121
4363 A Review of the Relation between Thermofludic Properties of the Fluid in Micro Channel Based Cooling Solutions and the Shape of Microchannel

Authors: Gurjit Singh, Gurmail Singh

Abstract:

The shape of microchannels in microchannel heat sinks can have a significant impact on both heat transfer and fluid flow properties. Heat Transfer, pressure drop, and Some effects of microchannel shape on these properties. The shape of microchannels can affect the heat transfer performance of microchannel heat sinks. Channels with rectangular or square cross-sections typically have higher heat transfer coefficients compared to circular channels. This is because rectangular or square channels have a larger wetted perimeter per unit cross-sectional area, which enhances the heat transfer from the fluid to the channel walls. The shape of microchannels can also affect the pressure drop across the heat sink. Channels with a rectangular cross-section usually have higher pressure drop than circular channels. This is because the corners of rectangular channels create additional flow resistance, which leads to a higher pressure drop. Overall, the shape of microchannels in microchannel heat sinks can have a significant impact on the heat transfer and fluid flow properties of the heat sink. The optimal shape of microchannels depends on the specific application and the desired balance between heat transfer performance and pressure drop.

Keywords: heat transfer, microchannel heat sink, pressure drop, chape of microchannel

Procedia PDF Downloads 58
4362 Prediction Study of a Corroded Pressure Vessel Using Evaluation Measurements and Finite Element Analysis

Authors: Ganbat Danaa, Chuluundorj Puntsag

Abstract:

The steel structures of the Oyu-Tolgoi mining Concentrator plant are corroded during operation, which raises doubts about the continued use of some important structures of the plant, which is one of the problems facing the plant's regular operation. As a part of the main operation of the plant, the bottom part of the pressure vessel, which plays an important role in the reliable operation of the concentrate filter-drying unit, was heavily corroded, so it was necessary to study by engineering calculations, modeling, and simulation using modern advanced engineering programs and methods. The purpose of this research is to investigate whether the corroded part of the pressure vessel can be used normally in the future using advanced engineering software and to predetermine the remaining life of the time of the pressure vessel based on engineering calculations. When the thickness of the bottom part of the pressure vessel was thinned by 0.5mm due to corrosion detected by non-destructive testing, finite element analysis using ANSYS WorkBench software was used to determine the mechanical stress, strain and safety factor in the wall and bottom of the pressure vessel operating under 2.2 MPa working pressure, made conclusions on whether it can be used in the future. According to the recommendations, by using sand-blast cleaning and anti-corrosion paint, the normal, continuous and reliable operation of the Concentrator plant can be ensured, such as ordering new pressure vessels and reducing the installation period. By completing this research work, it will be used as a benchmark for assessing the corrosion condition of steel parts of pressure vessels and other metallic and non-metallic structures operating under severe conditions of corrosion, static and dynamic loads, and other deformed steels to make analysis of the structures and make it possible to evaluate and control the integrity and reliable operation of the structures.

Keywords: corrosion, non-destructive testing, finite element analysis, safety factor, structural reliability

Procedia PDF Downloads 25
4361 Prevalence, Awareness and Control of Hypertension among the University of Venda Academic Staff, South Africa

Authors: Thizwilondi Madzaga, Jabu Tsakani Mabunda, Takalani Tshitangano

Abstract:

Hypertension is a global public health problem. In most cases, hypertension individuals are not aware of their condition, and they only detected it accidentally during public awareness programmes. The aim of the study was to determine the prevalence, awareness and control of hypertension among University of Venda academic staff. UNIVEN is situated in Thohoyandou, South Africa. A cross-sectional study was conducted to determine the prevalence, awareness and control of hypertension among University of Venda academic staff. Slovin’s formula was used to randomly select 179 academic staff (male=104 and female=75). WHO stepwise Questionnaire version 23.0 was used to get information on demographic information. Blood pressure was measured twice after five minutes rest using electronic blood pressure monitor. In this study, hypertension referred to self-reported to be on hypertension medication or having blood pressure equal or exceeding 140 over 90 mmHg. Statistical Package of Social Sciences version 23.0 was used to analyse data. Prevalence of hypertension was 20% and 46% prehypertension. Only 34% had a normal blood pressure. About 34% were not sure of their current blood pressure status (within 12 months). About 10% of the total respondents had been previously diagnosed with hypertension and half of them who were hypertensive were not aware that they had it. Among those who were aware that they are hypertensive, about 90% were on treatment whereas 10% had stopped taking treatment. About 13% of those who were on treatment had controlled blood pressure. There is a need for health education programmes to increase hypertension awareness.

Keywords: academic staff, awareness, control, hypertension, prevalence

Procedia PDF Downloads 307
4360 Asthma Nurse Specialist Improves the Management of Acute Asthma in a University Teaching Hospital: A Quality Improvement Project

Authors: T. Suleiman, C. Mchugh, H. Ranu

Abstract:

Background; Asthma continues to be associated with poor patient outcomes, including mortality. An audit of the management of acute asthma admissions in our hospital in 2020 found poor compliance with National Asthma and COPD Audit Project (NACAP) standards which set out to improve inpatient asthma care. Clinical nurse specialists have been shown to improve patient care across a range of specialties. In September 2021, an asthma Nurse Specialist (ANS) was employed in our hospital. Aim; To re-audit management of acute asthma admissions using NACAP standards and assess for quality improvement post-employment of an ANS. Methodology; NACAP standards are wide-reaching; therefore, we focused on ‘specific elements of good practice’ in addition to the provision of inhaled corticosteroids (ICS) on discharge. Medical notes were retrospectively requested from the hospital coding department and selected as per NACAP inclusion criteria. Data collection and entry into the NACAP database were carried out. As this was a clinical audit, ethics approval was not required. Results; Cycle 1 (pre-ANS) and 2 (post-ANS) of the audit included 20 and 32 patients, respectively, with comparable baseline demographics. No patients had a discharge bundle completed on discharge in cycle 1 vs. 84% of cases in cycle 2. Regarding specific components of the bundle, 25% of patients in cycle 1 had their inhaler technique checked vs. 91% in cycle 2. Furthermore, 80% of patients had maintenance medications reviewed in cycle 1 vs. 97% in cycle 2. Medication adherence was addressed in 20% of cases in cycle 1 vs. 88% of cases in cycle 2. Personalized asthma action plans were not issued or reviewed in any cases in cycle 1 as compared with 84% of cases in cycle 2. Triggers were discussed in 30% of cases in cycle 1 vs. 88% of cases in cycle 2. Tobacco dependence was addressed in 44% of cases in cycle 1 vs. 100% of cases in cycle 2. No patients in cycle 1 had community follow-up requested within 2 days vs. 81% of the patients in cycle 2. Similarly, 20% of the patients in cycle 1 vs. 88% of the patients in cycle 2 had a 4-week asthma clinic follow-up requested. 75% of patients in cycle 1 were the recipient of ICS on discharge compared with 94% of patients in cycle 2. Conclusion; Our quality improvement project demonstrates the utility of an ANS in improving performance in the management of acute asthma admissions, evidenced here through concordance with NACAP standards. Asthma is a complex condition with biological, psychological, and sociological components; therefore, ANS is a suitable intervention to improve concordance with guidelines. ANS likely impacted performance directly, for example, by checking inhaler technique, and indirectly as a safety net ensuring doctors included ICS on discharge.

Keywords: asthma, nurse specialist, clinical audit, quality improvement

Procedia PDF Downloads 355
4359 Outstanding Lubricant Using Fluorographene as an Extreme Pressure Additive

Authors: Adriana Hernandez-Martinez, Edgar D. Ramon-Raygoza

Abstract:

Currently, there has been a great interest, during the last years, on graphene due to its lubricant properties on friction and antiwear processes. Likewise, fluorographene has also been gaining renown due to its excellent chemical and physical properties which have been mostly applied in the electronics industry. Nevertheless, its tribological properties haven’t been analyzed thoroughly. In this paper, fluorographene was examined as an extreme pressure additive and the nano lubricant made with a cutting fluid and fluorographene in the range of 0.01-0.5% wt, which proved to withstand 53.78% more pounds than the conventional product and 7.12% more than the nano lubricant with graphene in a range between 0.01-0.5% wt. Said extreme pressure test was carried out with a Pin and Vee Block Tribometer following an ASTM D3233A test. The fluorographene used has a low C/F ratio, which reflects a greater presence of atomic fluorine and its low oxygen percentage, supports the substitution of oxygen-containing groups by fluorine. XPS Spectra shows high atomic fluorine content of 56.12%, and SEM analysis details the formation of long and clear crystalline structures, in the fluorographene used.

Keywords: extreme pressure additive, fluorographene, nanofluids, nanolubricant

Procedia PDF Downloads 98
4358 Prediction of Trailing-Edge Noise under Adverse-Pressure Gradient Effect

Authors: Li Chen

Abstract:

For an aerofoil or hydrofoil in high Reynolds number flows, broadband noise is generated efficiently as the result of the turbulence convecting over the trailing edge. This noise can be related to the surface pressure fluctuations, which can be predicted by either CFD or empirical models. However, in reality, the aerofoil or hydrofoil often operates at an angle of attack. Under this situation, the flow is subjected to an Adverse-Pressure-Gradient (APG), and as a result, a flow separation may occur. This study is to assess trailing-edge noise models for such flows. In the present work, the trailing-edge noise from a 2D airfoil at 6 degree of angle of attach is investigated. Under this condition, the flow is experiencing a strong APG, and the flow separation occurs. The flow over the airfoil with a chord of 300 mm, equivalent to a Reynold Number 4x10⁵, is simulated using RANS with the SST k-ɛ turbulent model. The predicted surface pressure fluctuations are compared with the published experimental data and empirical models, and show a good agreement with the experimental data. The effect of the APG on the trailing edge noise is discussed, and the associated trailing edge noise is calculated.

Keywords: aero-acoustics, adverse-pressure gradient, computational fluid dynamics, trailing-edge noise

Procedia PDF Downloads 310
4357 Study of Cavitation Erosion of Pump-Storage Hydro Power Plant Prototype

Authors: Tine Cencič, Marko Hočevar, Brane Širok

Abstract:

An experimental investigation has been made to detect cavitation in pump–storage hydro power plant prototype suffering from cavitation in pump mode. Vibrations and acoustic emission on the housing of turbine bearing and pressure fluctuations in the draft tube were measured and the corresponding signals have been recorded and analyzed. The analysis was based on the analysis of high-frequency content of measured variables. The pump-storage hydro power plant prototype has been operated at various input loads and Thoma numbers. Several estimators of cavitation were evaluated according to coefficient of determination between Thoma number and cavitation estimators. The best results were achieved with a compound discharge coefficient cavitation estimator. Cavitation estimators were evaluated in several intervals of frequencies. Also, a prediction of cavitation erosion was made in order to choose the appropriate maintenance and repair periods.

Keywords: cavitation erosion, turbine, cavitation measurement, fluid dynamics

Procedia PDF Downloads 378
4356 Strength Parameters and the Rate Process Theory Applied to Compacted Fadama Soils

Authors: Samuel Akinlabi Ola, Emeka Segun Nnochiri, Stephen Kayode Aderomose, Paul Ayesemhe Edoh

Abstract:

Fadama soils of Northern Nigeria are generally a problem soil for highway and geotechnical engineers. There has been no consistent conclusion on the effect of the strain rate on the shear strength of soils, thus necessitating the need to clarify this issue with various types of soil. Consolidated undrained tests with pore pressure measurements were conducted at optimum moisture content and maximum dry density using standard proctor compaction. Back pressures were applied to saturate the soil. The shear strength parameters were determined. Analyzing the results and model studies using the Rate Process Theory, functional relationships between the deviator stress and strain rate were determined and expressed mathematically as deviator stress = β0+ β1 log(strain rate) at each cell pressure where β0 and β1 are constants. Also, functional relationships between the pore pressure coefficient Āf and the time to failure were determined and expressed mathematically as pore pressure coefficient, Āf = ψ0+ѱ1log (time to failure) where ψ0 and ѱ1 are constants. For cell pressure between 69 – 310 kN/m2 (10 - 45psi) the constants found for Fadama soil in this study are ψ0=0.17 and ѱ1=0.18. The study also shows the dependence of the angle of friction (ø’) on the rate of strain as it increases from 22o to 25o for an increase in the rate of strain from 0.08%/min to 1.0%/min. Conclusively, the study also shows that within the strain rate utilized in the research, the deviator strength increased with the strain rate while the excess pore water pressure decreased with an increase in the rate of strain.

Keywords: deviator stress, Fadama soils, pore pressure coefficient, rate process

Procedia PDF Downloads 39
4355 The Physiological Effect of Cold Atmospheric Pressure Plasma on Cancer Cells, Cancer Stem Cells, and Adult Stem Cells

Authors: Jeongyeon Park, Yeo Jun Yoon, Jiyoung Seo, In Seok Moon, Hae Jun Lee, Kiwon Song

Abstract:

Cold Atmospheric Pressure Plasma (CAPP) is defined as a partially ionized gas with electrically charged particles at room temperature and atmospheric pressure. CAPP generates reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has potential as a new apoptosis-promoting cancer therapy. With an annular type dielectric barrier discharge (DBD) CAPP-generating device combined with a helium (He) gas feeding system, we showed that CAPP selectively induced apoptosis in various cancer cells while it promoted proliferation of the adipose tissue-derived stem cell (ASC). The apoptotic effect of CAPP was highly selective toward p53-mutated cancer cells. The intracellular ROS was mainly responsible for apoptotic cell death in CAPP-treated cancer cells. CAPP induced apoptosis even in doxorubicin-resistant cancer cell lines, demonstrating the feasibility of CAPP as a potent cancer therapy. With the same device and exposure conditions to cancer cells, CAPP stimulated proliferation of the ASC, a kind of mesenchymal stem cell that is capable of self-renewing and differentiating into adipocytes, chondrocytes, osteoblasts and neurons. CAPP-treated ASCs expressed the stem cell markers and differentiated into adipocytes as untreated ASCs. The increase of proliferation by CAPP in ASCs was offset by a NO scavenger but was not affected by ROS scavengers, suggesting that NO generated by CAPP is responsible for the activated proliferation in ASCs. Usually, cancer stem cells are reported to be resistant to known cancer therapies. When we applied CAPP of the same device and exposure conditions to cancer cells to liver cancer stem cells (CSCs) that express CD133 and epithelial cell adhesion molecule (EpCAM) cancer stem cell markers, apoptotic cell death was not examined. Apoptotic cell death of liver CSCs was induced by the CAPP generated from a device with an air-based flatten type DBD. An exposure of liver CSCs to CAPP decreased the viability of liver CSCs to a great extent, suggesting plasma be used as a promising anti-cancer treatment. To validate whether CAPP can be a promising anti-cancer treatment or an adjuvant modality to eliminate remnant tumor in cancer surgery of vestibular schwannoma, we applied CAPP to mouse schwannoma cell line SC4 Nf2 ‑/‑ and human schwannoma cell line HEI-193. A CAPP treatment leads to anti-proliferative effect in both cell lines. We are currently studying the molecular mechanisms of differential physiological effect of CAPP; the proliferation of ASCs and apoptosis of various cancer cells and CSCs.

Keywords: cold atmospheric pressure plasma, apoptosis, proliferation, cancer cells, adult stem cells

Procedia PDF Downloads 256
4354 Current Status of 5A Lab6 Hollow Cathode Life Tests in Lanzhou Institute of Physics, China

Authors: Yanhui Jia, Ning Guo, Juan Li, Yunkui Sun, Wei Yang, Tianping Zhang, Lin Ma, Wei Meng, Hai Geng

Abstract:

The current statuses of lifetime test of LaB6 hollow cathode at the Lanzhou institute of physics (LIP), China, was described. 5A LaB6 hollow cathode was designed for LIPS-200 40mN Xenon ion thruster and it could be used for LHT-100 80 mN Hall thruster, too. Life test of the discharge and neutralizer modes of LHC-5 hollow cathode were stared in October 2011, and cumulative operation time reached 17,300 and 16,100 hours in April 2015, respectively. The life of cathode was designed more than 11,000 hours. Parameters of discharge and key structure dimensions were monitored in different stage of life test indicated that cathodes were health enough. The test will continue until the cathode cannot work or operation parameter is not in normally. The result of the endurance test of cathode demonstrated that the LaB6 hollow cathode is satisfied for the required of thruster in life and performance.

Keywords: LaB6, hollow cathode, thruster, lifetime test, electric propulsion

Procedia PDF Downloads 569
4353 Characterization of Brewery Wastewater Composition

Authors: Abimbola M. Enitan, Josiah Adeyemo, Sheena Kumari, Feroz M. Swalaha, Faizal Bux

Abstract:

With the competing demand on water resources and water reuse, discharge of industrial effluents into the aquatic environment has become an important issue. Much attention has been placed on the impact of industrial wastewater on water bodies worldwide due to the accumulation of organic and inorganic matter in the receiving water bodies. The scope of the present work is to assess the physic-chemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus, and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of the peak period of beer production on the water usage.

Keywords: Brewery wastewater, environmental pollution, industrial effluents, physic-chemical composition

Procedia PDF Downloads 415
4352 Effects of Water Content on Dielectric Properties of Mineral Transformer Oil

Authors: Suwarno, M. Helmi Prakoso

Abstract:

Mineral oil is commonly used for high voltage transformer insulation. The insulation quality of mineral oil is affecting the operation process of high voltage transformer. There are many contaminations which could decrease the insulation quality of mineral oil. One of them is water. This research talks about the effect of water content on dielectric properties, physic properties, and partial discharge pattern on mineral oil. Samples were varied with 10 varieties of water content value. And then all samples were tested to measure the dielectric properties, physic properties, and partial discharge pattern. The result of this research showed that an increment of water content value would decrease the insulation quality of mineral oil.

Keywords: dielectric properties, high voltage transformer, mineral oil, water content

Procedia PDF Downloads 373
4351 Effect of Whole Body Vibration on Posture Stability and Planter Pressure in Patients with Diabetic Neuropathy

Authors: Azza M. Atya, Mahmoud M. Nasser

Abstract:

Background/ /Significance: Peripheral neuropathy is one of the long term serious complications of diabetes, which may attribute to postural instability and alteration of planter pressure. Whole body vibration (WBV) is a somatosensory stimulation type of exercise that has been emerged in sport training and rehabilitation of neuromuscular disorders. Purpose: The aim of this study was to investigate the effect of whole Body Vibration on antroposterior (AP), mediolateral (ML) posture stability and planter foot pressure in patients with diabetic neuropathy. Subjects: forty diabetic patients with moderate peripheral neuropathy aged from 35 to 50 years, were randomly assigned to WBV group (n=20) and control group (n=20). Methods and Materials: the WBV intervention consisted of three session weekly for 8 weeks (frequency 20 Hz, peak-to peak displacement 4mm, acceleration 3.5 g). Biodex balance system was used for postural stability assessment and the foot scan plate was used to measure the mean peak pressure under the first and lesser metatarsals. The main Outcome measures were antroposterior stability index (APSI), mediolateral stability index (MLSI), overall stability index (OSI),and mean peak foot pressure. Analyses: Statistical analysis was performed using the SPSS software package (SPSS for Windows Release 18.0). T-test was used to compare between the pre- and post-treatment values between and within groups. Results: For the 40 study participants (18male and 22 females) there were no between-group differences at baseline. At the end of 8 weeks, Subjects in WBV group experienced significant increase in postural stability with a reduction of mean peak of planter foot pressure (P<0.05) compared with the control group. Conclusion: The result suggests that WBV is an effective therapeutic modality for increasing postural stability and reducing planter pressure in patients with diabetic neuropathy.

Keywords: whole body vibration, diabetic neuropathy, posture stability, foot pressure

Procedia PDF Downloads 363
4350 Effects of Injector Nozzle Geometry on Spray Atomization Characteristics

Authors: Arya Pirooz

Abstract:

Air and fuel must be mixed correctly so that there is perfect combustion, which calls for fuel atomization by injection. In this study, the effects of different parameters such as number of orifices, length and diameter of orifices, diameter of nozzle sac and the angle of needle seat in injectors were investigated with the use of rate of injection and sac pressure. The unit pump of the OM-457 diesel engine was modelled on Avl-Hydsim. The results illustrate that the sac pressure decreased by 46% when the number of holes were doubled, although the rate of injection had an immense change. Also, the sac pressure increased up to 60% when the diameter of orifices decreased by 40% in spite of the semi-constant injection rate.

Keywords: injection, OM-457 engine, nozzle geometry, atomization

Procedia PDF Downloads 475
4349 Effect of Different Contact Rollers on the Surface Texture during the Belt Grinding Process

Authors: Amine Hamdi, Sidi Mohammed Merghache, Brahim Fernini

Abstract:

During abrasive machining of hard steels by belt grinding, the finished surface texture is influenced by the pressure between the abrasive belt and the workpiece; this pressure is the force applied by the contact roller on the workpiece. Therefore, the contact roller has an important role and has a direct impact on process efficiency. The objective of this article is to study and compare the influence of different contact rollers on the belt ground surface texture. The quality of the surface texture is characterized by eight roughness parameters (Ra, Rz, Rp, Rv, Rsk, Rku, Rsm, and Rdq) and five parameters of the bearing area curve (Rpk, Rk, Rvk, Mr1, and Mr2). The results of the experimental tests indicate a better surface texture obtained by the PA 6 polyamide roller (hardness 60 Shore D) compared to that obtained with other rollers of the same hardness or of different hardness. Simultaneously, optimum medium pressure between the belt and the workpiece allows chip removal without fracturing the abrasive grains. This generates a good surface texture.

Keywords: belt grinding, contact roller, pressure, abrasive belt, surface texture

Procedia PDF Downloads 150
4348 Thermomechanical Simulation of Equipment Subjected to an Oxygen Pressure and Heated Locally by the Ignition of Small Particles

Authors: Khaled Ayfi

Abstract:

In industrial oxygen systems at high temperature and high pressure, contamination by solid particles is one of the principal causes of ignition hazards. Indeed, gas can sweep away particles, generated by corrosion inside the pipes or during maintenance operations (welding residues, careless disassembly, etc.) and produce accumulations at places where the gas velocity decrease. Moreover, in such an environment rich in oxygen (oxidant), particles are highly reactive and can ignite system walls more actively and at higher temperatures. Oxidation based thermal effects are responsible for mechanical properties lost, leading to the destruction of the pressure equipment wall. To deal with this problem, a numerical analysis is done regarding a sample representative of a wall subjected to pressure and temperature. The validation and analysis are done comparing the numerical simulations results to experimental measurements. More precisely, in this work, we propose a numerical model that describes the thermomechanical behavior of thin metal disks under pressure and subjected to laser heating. This model takes into account the geometric and material nonlinearity and has been validated by the comparison of simulation results with experimental measurements.

Keywords: ignition, oxygen, numerical simulation, thermomechanical behavior

Procedia PDF Downloads 85