Search results for: copper metal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2952

Search results for: copper metal

2652 Wear Measurement of Thermomechanical Parameters of the Metal Carbide

Authors: Riad Harouz, Brahim Mahfoud

Abstract:

The threads and the circles on reinforced concrete are obtained by process of hot rolling with pebbles finishers in metal carbide which present a way of rolling around the outside diameter. Our observation is that this throat presents geometrical wear after the end of its cycle determined in tonnage. In our study, we have determined, in a first step, experimentally measurements of the wear in terms of thermo-mechanical parameters (Speed, Load, and Temperature) and the influence of these parameters on the wear. In the second stage, we have developed a mathematical model of lifetime useful for the prognostic of the wear and their changes.

Keywords: lifetime, metal carbides, modeling, thermo-mechanical, wear

Procedia PDF Downloads 279
2651 Applied Mathematical Approach on “Baut” Special High Performance Metal Aggregate by Formulation and Equations

Authors: J. R. Bhalla, Gautam, Gurcharan Singh, Sanjeev Naval

Abstract:

Mathematics is everywhere behind the every things on the earth as well as in the universe. Predynastic Egyptians of the 5th millennium BC pictorially represented geometric designs. Now a day’s we can made and apply an equation on a complex geometry through applied mathematics. Here we work and focus on to create a formula which apply in the field of civil engineering in new concrete technology. In this paper our target is to make a formula which is applied on “BAUT” Metal Aggregate. In this paper our approach is to make formulation and equation on special “BAUT” Metal Aggregate by Applied Mathematical Study Case 1. BASIC PHYSICAL FORMULATION 2. ADVANCE EQUATION which shows the mechanical performance of special metal aggregates for concrete technology. In case 1. Basic physical formulation shows the surface area and volume manually and in case 2. Advance equation shows the mechanical performance has been discussed, the metal aggregates which had outstandingly qualities to resist shear, tension and compression forces. In this paper coarse metal aggregates is 20 mm which used for making high performance concrete (H.P.C).

Keywords: applied mathematical study case, special metal aggregates, concrete technology, basic physical formulation, advance equation

Procedia PDF Downloads 339
2650 QTAIM View of Metal-Metal Bonding in Trinuclear Mixed-Metal Bridged Ligand Clusters Containing Ruthenium and Osmium

Authors: Nadia Ezzat Al-Kirbasee, Ahlam Hussein Hassan, Shatha Raheem Helal Alhimidi, Doaa Ezzat Al-Kirbasee, Muhsen Abood Muhsen Al-Ibadi

Abstract:

Through DFT/QTAIM calculations, we have provided new insights into the nature of the M-M, M-H, M-O, and M-C bonds of the (Cp*Ru)n(Cp*Os)3−n(μ3-O)2(μ-H)(Cp* = η5-C5Me5, n= 3,2,1,0). The topological analysis of the electron density reveals important details of the chemical bonding interactions in the clusters. Calculations confirm the absence of bond critical points (BCP) and the corresponding bond paths (BP) between Ru-Ru, Ru-Os, and Os-Os. The position of bridging hydrides and Oxo atoms coordinated to Ru-Ru, Ru-Os, and Os-Os determines the distribution of the electron densities and which strongly affects the formation of the bonds between these transition metal atoms. On the other hand, the results confirm that the four clusters contain a 6c–12e and 4c–2e bonding interaction delocalized over M3(μ-H)(μ-O)2 and M3(μ-H), respectively, as revealed by the non-negligible delocalization indexes calculations. The small values for electron density ρ(b) above zero, together with the small values, again above zero, for laplacian ∇2ρ(b) and the small negative values for total energy density H(b) are shown by the Ru-H, Os-H, Ru-O, and Os-O bonds in the four clusters are typical of open shell interactions. Also, the topological data for the bonds between Ru and Os atoms with the C atoms of the pentamethylcyclopentadienyl (Cp*) ring ligands are basically similar and show properties very consistent with open shell interactions in the QTAIM classification.

Keywords: metal-metal and metal-ligand interactions, organometallic complexes, topological analysis, DFT and QTAIM analyses

Procedia PDF Downloads 65
2649 Impact of Heavy Metal Toxicity on Metabolic Changes in the Diazotrophic Cyanobacterium Anabaena PCC 7120

Authors: Rishi Saxena

Abstract:

Cyanobacteria is a photosynthetic prokaryote, and these obtain their energy through photosynthesis. In this paper, we studied the effect of iron on metabolic changes in the diazotrophic cyanobacterium Anabaena PCC 7120. Nowadays, metal contamination due to natural and anthropogenic sources is a global environment concern. Iron induced changes in growth, N2-fixation, CO2 fixation and photosynthetic activity were studied in a diazotrophic cyanobacterium Anabaena PCC 7120. Iron at 50 uM concentration supported the maximum growth, heterocyst frequency, CO2 fixation, photosystem I (PS I), photosystem II (PS II) and nitrogenase activities in the organism. Higher concentration of iron inhibited these processes. Chl a and PS II activities were more sensitive to iron than the protein and PS I activity. Here, it is also mentioned that heavy metal induced altered macromolecules metabolism and changes in the central dogma of life (DNA→ mRNA → Protein). And also recent advances have been made in understanding heavy metal-cyanobacteria interaction and their application for metal detoxification.

Keywords: cyanobacterium anabaena 7120, nitrogen fixation, photosystem I (PS I), photosystem II (PS II)

Procedia PDF Downloads 104
2648 Structural Properties of CuCl, CuBr, and CuI Compounds under Hydrostatic Pressure

Authors: S. Louhibi-Fasla, H. Rekab Djabri, H. Achour

Abstract:

The aim of this work is to investigate the structural phase-transitions and electronic properties of copper halides. Our calculations were performed within the PLW extension to the first principle FPLMTO method, which enables an accurate treatment of all kinds of structures including the open ones. Results are given for lattice parameters, bulk modulus and its first derivatives in five different surface phases, and are compared with the available theoretical and experimental data. In the zinc-blende (B3) and PbO (B10) phases, the fundamental gap remains direct with both the top of VB and the bottom of CB located at Γ.

Keywords: FPLMTO, structural properties, Copper halides, phase transitions, ground state phase

Procedia PDF Downloads 401
2647 Technological Innovations as a Potential Vehicle for Supply Chain Integration on Basic Metal Industries

Authors: Alie Wube Dametew, Frank Ebinger

Abstract:

This study investigated the roles of technological innovation on basic metal industries and then developed technological innovation framework for enhancing sustainable competitive advantage in the basic metal industries. The previous research work indicates that technological innovation has critical impact in promoting local industries to improve their performance and achieve sustainable competitive environments. The filed observation, questioner and expert interview result from basic metal industries indicate that the technological capability of local industries to invention, adoption, modification, improving and use a given innovative technology is very poor. As the result, this poor technological innovation was occurred due to improper innovation and technology transfer framework, non-collaborative operating environment between foreign and local industries, very weak national technology policies, problems research and innovation centers, the common miss points on basic metal industry innovation systems were investigated in this study. One of the conclusions of the article is that, through using the developed technological innovation framework in this study, basic metal industries improve innovation process and support an innovative culture for sector capabilities and achieve sustainable competitive advantage.

Keywords: technological innovation, competitive advantage, sustainable, basic metal industry, conceptual model, sustainability, supply chain integration

Procedia PDF Downloads 217
2646 Heavy Metals among Female Adolescents Attending Secondary Schools in Kano, Nigeria

Authors: I. Yunusa, M. A. Ibrahim, A. H. Yakasai, L. U. S. Ezeanyika

Abstract:

This study was conducted to examine the level of heavy metals among 192 apparently healthy female adolescents randomly selected from three different boarding secondary schools in the urban area of the most populated city in north-western part of Nigeria. Atomic absorption spectrometry (AAS) was used to determine the plasma levels of the heavy metals which include cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb) and zinc (Zn). Our findings revealed the following mean±SD values for each of the heavy metal; 0.11±0.01µg Cd/L, 0.09 ± 0.02µg Co/L, 0.19 ± 0.02 µg Cr/L, 0.91 ± 0.02 µg Cu/L, 1.53 ± 0.31 µg Fe/L, 0.01 ± 0.04 µg Mn/L, 0.3.8 ± 0.04µg Mo/L, 0.04±0.01µg Ni/L, 0.04 ± 0.01µg Pb/L and 2.80 ± 0.24µg Zn/L respectively. It was concluded that toxicity from heavy metals did not exist among female adolescents.

Keywords: heavy metals, female, adolescents, Nigeria

Procedia PDF Downloads 357
2645 Development of new Ecological Cleaning Process of Metal Sheets

Authors: L. M. López López, J. V. Montesdeoca Contreras, A. R. Cuji Fajardo, L. E. Garzón Muñoz, J. I. Fajardo Seminario

Abstract:

In this article a new method of cleaning process of metal sheets for household appliances was developed, using low-pressure cold plasma. In this context, this research consist in analyze the results of metal sheets cleaning process using plasma and compare with pickling process to determinate the efficiency of each process and the level of contamination produced. Surface Cleaning was evaluated by measuring the contact angle with deionized water, diiodo methane and ethylene glycol, for the calculus of the surface free energy by means of the Fowkes theories and Wu. Showing that low-pressure cold plasma is very efficient both in cleaning process how in environment impact.

Keywords: efficient use of plasma, ecological impact of plasma, metal sheets cleaning means, plasma cleaning process.

Procedia PDF Downloads 327
2644 The Influence of Ligands Molecular Structure on the Antibacterial Activity of Some Metal Complexes

Authors: Sanja O. Podunavac-Kuzmanović, Lidija R. Jevrić, Strahinja Z. Kovačević

Abstract:

In last decade, metal-organic complexes have captured intensive attention because of their wide range of biological activities such as antibacterial, antifungal, anticancerous, antimicrobial and antiHIV. Therefore, it is of great importance for the development of coordination chemistry to explore the assembly of functional organic ligands with metal ion and to investigate the relationship between the structure and property. In view of our studies, we reasoned that benzimidazoles complexed to metal ions could act as a potent antibacterial agents. Thus, we have bioassayed the inhibitory potency of benzimidazoles and their metal salts (Co or Ni) against Gram negative bacteria Escherichia coli. In order to validate our in vitro study, we performed in silico studies using molecular docking software’s. The investigated compounds and their metal complexes (Co, Ni) showed good antibacterial activity against Escherichia coli. In silico docking studies of the synthesized compounds suggested that complexed benzimidazoles have a greater binding affinity and enhanced antibacterial activity in comparison with noncomplexed ligands. In view of their enhanced inhibitory properties we propose that the studied complexes can be used as potential pharmaceuticals. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina.

Keywords: benzimidazoles, complexes, antibacterial, Escherichia coli, metal

Procedia PDF Downloads 287
2643 Application of Nanofibers in Heavy Metal (HM) Filtration

Authors: Abhijeet Kumar, Palaniswamy N. K.

Abstract:

Heavy metal contamination in water sources endangers both the environment and human health. Various water filtration techniques have been employed till now for purification and removal of hazardous metals from water. Among all the existing methods, nanofibres have emerged as a viable alternative for effective heavy metal removal in recent years because of their unique qualities, such as large surface area, interconnected porous structure, and customizable surface chemistry. Among the numerous manufacturing techniques, solution blow spinning has gained popularity as a versatile process for producing nanofibers with customized properties. This paper seeks to offer a complete overview of the use of nanofibers for heavy metal filtration, particularly those produced using solution blow spinning. The review discusses current advances in nanofiber materials, production processes, and heavy metal removal performance. Furthermore, the field's difficulties and future opportunities are examined in order to direct future research and development activities.

Keywords: heavy metals, nanofiber composite, filter membranes, adsorption, impaction

Procedia PDF Downloads 40
2642 Increased Circularity in Metals Production Using the Ausmelt TSL Process

Authors: Jacob Wood, David Wilson, Stephen Hughes

Abstract:

The Ausmelt Top Submerged Lance (TSL) Process has been widely applied for the processing of both primary and secondary copper, nickel, lead, tin, and zinc-bearing feed materials. Continual development and evolution of the technology over more than 30 years has resulted in a more intense smelting process with higher energy efficiency, improved metal recoveries, lower operating costs, and reduced fossil fuel consumption. This paper covers a number of recent advances to the technology, highlighting their positive impacts on smelter operating costs, environmental performance, and contribution towards increased circularity in metals production.

Keywords: ausmelt TSL, smelting, circular economy, energy efficiency

Procedia PDF Downloads 196
2641 Coagulation-flocculation Process with Metal Salts, Synthetic Polymers and Biopolymers for the Removal of Trace Metals (Cu, Pb, Ni, Zn) from Wastewater

Authors: Andrew Hargreaves, Peter Vale, Jonathan Whelan, Carlos Constantino, Gabriela Dotro, Pablo Campo

Abstract:

As a consequence of their potential to cause harm, there are strong regulatory drivers that require metals to be removed as part of the wastewater treatment process. Bioavailability-based standards have recently been specified for copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) and are expected to reduce acceptable metal concentrations. In order to comply with these standards, wastewater treatment works may require new treatment types to enhance metal removal and it is, therefore, important to examine potential treatment options. A substantial proportion of Cu, Pb, Ni and Zn in effluent is adsorbed to and/or complexed with macromolecules (eg. proteins, polysaccharides, aminosugars etc.) that are present in the colloidal size fraction. Therefore, technologies such as coagulation-flocculation (CF) that are capable of removing colloidal particles have good potential to enhance metals removal from wastewater. The present study investigated the effectiveness of CF at removing trace metals from humus effluent using the following coagulants; ferric chloride (FeCl3), the synthetic polymer polyethyleneimine (PEI), and the biopolymers chitosan and Tanfloc. Effluent samples were collected from a trickling filter treatment works operating in the UK. Using jar tests, the influence of coagulant dosage and the velocity and time of the slow mixing stage were studied. Chitosan and PEI had a limited effect on the removal of trace metals (<35%). FeCl3 removed 48% Cu, 56% Pb and 41% Zn at the recommended dose of 0.10 mg/L. At the recommended dose of 0.25 mg/L Tanfloc removed 77% Cu, 68% Pb, 18% Ni and 42% Zn. The dominant mechanism for particle removal by FeCl3 was enmeshment in the precipitates (i.e. sweep flocculation) whereas, for Tanfloc, inter-particle bridging was the dominant removal mechanism. Overall, FeCl3 and Tanfloc were found to be most effective at removing trace metals from wastewater.

Keywords: coagulation-flocculation, jar test, trace metals, wastewater

Procedia PDF Downloads 216
2640 Electrochemistry of Metal Chalcogenides Semiconductor Materials; Theory and Practical Applications

Authors: Mahmoud Elrouby

Abstract:

Metal chalcogenide materials have wide spectrum of properties, for that these materials can be used in electronics, optics, magnetics, solar energy conversion, catalysis, passivation, ion sensing, batteries, and fuel cells. This work aims to, how can obtain these materials via electrochemical methods simply for further applications. The work regards in particular the systems relevant to the sulphur sub-group elements, i.e., sulphur, selenium, and tellurium. The role of electrochemistry in synthesis, development, and characterization of the metal chalcogenide materials and related devices is vital and important. Electrochemical methods as preparation tool offer the advantages of soft chemistry to access bulk, thin, nano film and epitaxial growth of a wide range of alloys and compounds, while as a characterization tool provides exceptional assistance in specifying the physicochemical properties of materials. Moreover, quite important applications and modern devices base their operation on electrochemical principles. Thereupon, our scope in the first place was to organize existing facts on the electrochemistry of metal chalcogenides regarding their synthesis, properties, and applications.

Keywords: electrodeposition, metal chacogenides, semiconductors, applications

Procedia PDF Downloads 267
2639 Therapeutical Role of Copper Oxide Nanoparticles (CuO NPs) for Breast Cancer Therapy

Authors: Dipranjan Laha, Parimal Karmakar

Abstract:

Metal oxide nanoparticles are well known to generate oxidative stress and deregulate normal cellular activities. Among these, transition metals copper oxide nanoparticles (CuO NPs) are more compelling than others and able to modulate different cellular responses. In this work, we have synthesized and characterized CuO NPs by various biophysical methods. These CuO NPs (~30 nm) induce autophagy in human breast cancer cell line, MCF7 in a time and dose-dependent manner. Cellular autophagy was tested by MDC staining, induction of green fluorescent protein light chain 3 (GFP-LC3B) foci by confocal microscopy, transfection of pBABE-puro mCherry-EGFP-LC3B plasmid and western blotting of autophagy marker proteins LC3B, beclin1, and ATG5. Further, inhibition of autophagy by 3-Methyladenine (3-MA) decreased LD50 doses of CuO NPs. Such cell death was associated with the induction of apoptosis as revealed by FACS analysis, cleavage of PARP, dephosphorylation of Bad and increased cleavage product of caspase3. siRNA-mediated inhibition of autophagy-related gene beclin1 also demonstrated similar results. Finally, induction of apoptosis by 3-MA in CuO NPs treated cells were observed by TEM. This study indicates that CuO NPs are a potent inducer of autophagy which may be a cellular defense against the CuO NPs mediated toxicity and inhibition of autophagy switches the cellular response into apoptosis. A combination of CuO NPs with the autophagy inhibitor is essential to induce apoptosis in breast cancer cells. Acknowledgments: The authors would like to acknowledge for financial support for this research work to the Department of Biotechnology (No. BT/PR14661/NNT/28/494/2010), Government of India.

Keywords: nanoparticle, autophagy, apoptosis, siRNA-mediated inhibition

Procedia PDF Downloads 419
2638 Effect of Nano-Copper Oxide Synthesized by Solution-Based Chemical Precipitation Method on Antibacterial Polyester Nanocopper Oxide Composite

Authors: Jordy Herfandi, Faris Naufal, Anne Zulfia Syahrial

Abstract:

Antibacterial materials have become future textile materials due to the escalation of people’s awareness regarding the importance of maintaining health. Textile materials with antibacterial properties are examples in application which has positive results in various aspects. In this research polyester nano-copper oxide composite with nanoparticle is synthesized by solution-based chemical precipitation method from Cu(NO3)2 solution. Parameters such as precursor concentration is varied to determine which composition would result in effective properties of antibacterial composite. The antibacterial property is observed using disk diffusion method and SEM observation is conducted on each specimen. The composites produced are able to inhibit the growth of both positive gram bacteria (i.e. S. aureus) and negative gram bacteria (i.e. E. coli), thus, highly capable of helping to prevent the spread of disease.

Keywords: copper oxide nanoparticle, antibacterial, solution-based chemical precipitation, polyester composite

Procedia PDF Downloads 369
2637 Synthesis of Metal Curcumin Complexes with Iron(III) and Manganese(II): The Effects on Alzheimer's Disease

Authors: Emel Yildiz, Nurcan Biçer, Fazilet Aksu, Arash Alizadeh Yegani

Abstract:

Plants provide the wealth of bioactive compounds, which exert a substantial strategy for the treatment of neurological disorders such as Alzheimer's disease. Recently, a lot of studies have explored the medicinal properties of curcumin, including antitumoral, antimicrobial, anti-inflammatory, antioxidant, antiviral, and anti-Alzheimer's disease effects. Metal complexes of curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) were synthesized with Mn(II) and Fe(III). The structures of synthesized metal complexes have been characterized by using spectroscopic and analytic methods such as elemental analysis, magnetic susceptibility, FT-IR, AAS, TG and argentometric titration. It was determined that the complexes have octahedral geometry. The effects of the metal complexes on the disorder of memory, which is an important symptom of Alzheimer's Disease were studied on lab rats with Plus-Maze Tests at Behavioral Pharmacology Laboratory.

Keywords: curcumin, Mn(II), Fe(III), Alzheimer disease, beta amyloid 25-35

Procedia PDF Downloads 279
2636 Speciation and Bioavailability of Heavy Metals in Greenhouse Soils

Authors: Bulent Topcuoglu

Abstract:

Repeated amendments of organic matter and intensive use of fertilizers, metal-enriched chemicals and biocides may cause soil and environmental pollution in greenhouses. Specially, the impact of heavy metal pollution of soils on food metal content and underground water quality has become a public concern. Due to potential toxicity of heavy metals to human life and environment, determining the chemical form of heavy metals in greenhouse soils is an important approach of chemical characterization and can provide useful information on its mobility and bioavailability. A sequential extraction procedure was used to estimate the availability of heavy metals (Zn, Cd, Ni, Pb and Cr) in greenhouse soils of Antalya Aksu. Zn was predominantly associated with Fe-Mn oxide fraction, major portion of Cd associated with carbonate and organic matter fraction, a major portion of (>65 %) Ni and Cr were largely associated with Fe-Mn oxide and residual fractions and Pb was largely associated with organic matter and Fe-Mn oxide fractions. Results of the present study suggest that the mobility and bioavailability of metals probably increase in the following order: Cr < Pb < Ni < Cd < Zn. Among the elements studied, Zn and Cd appeared to be the most readily soluble and potentially bioavailable metals and these metals may carry a potential risk for metal transfer in food chain and contamination to ground water.

Keywords: metal speciation, metal mobility, greenhouse soils, biosystems engineering

Procedia PDF Downloads 380
2635 Gastroprotective Effect of Copper Complex On Indomethacin-Induced Gastric Ulcer In Rats. Histological and Immunohistochemical Study

Authors: Heba M. Saad Eldien, Ola Abdel-Tawab Hussein, Ahmed Yassein Nassar

Abstract:

Background: Indomethacin is a non-steroidal anti inflammatory drug. Indomethacin induces an injury to gastrointestinal mucosa in experimental animals and humans and their use is associated with a significant risk of hemorrhage, erosions and perforation of both gastric and intestinal ulcers. The anti-inflammatory action of copper complexes is an important activity of their anti-ulcer effect achieved by their intermediary role as a transport form of copper that allow activation of the several copper-dependent enzymes. Therefore, several copper complexes were synthesized and investigated as promising alternative anti-ulcer therapy. Aim of the work: The purpose of this study was to evaluate a copper chelating complex consisting of egg albumin and copper as one of the copper peptides that can be used as anti-inflammatory agent and effective in ameliorates the hazards of the indomethacin on the histological structure of the fundus of the stomach that could be added to raise the efficacy of the currently used simple and cheap gastric anti-inflammatory drug mucogel. Material &methods: This study was carried out on 40 adult male albino rats,divided equally into 4 groups;Group I(control group) received distilled water,Group II(indomethacin treated group) received (25 mg/kg body weight, oral intubation) once, Group III (mucogel treated group)2 mL/rat once daily, oral incubation, Group IV(copper complex group) 1 mL /rat of 30 gm of copper albumin complex was mixed uniformly with mucogel to 100 mL. Treatment has been started six hour after Induction of Ulcers and continued till the 3rd day. The animals sacrificed and was processed for light, transmission electron microscopy(TEM) and immunostaining for inducible nitric oxide synthase(iNOS). Results: Fundic mucosa of group II, showed exfoliation of epithelial cells lining the gland, discontinuity of surface epithelial cells (ulcer formation), vacuolation and detachment of cells, eosinophilic infiltration and congestion of blood vessels in the lamina propria and submucosa. There was thickening and disarrangement of mucosa, weak positive reaction for PAS and marked increase in the collagen fibers lamina propria and the submucosa of the fundus. TEM revealed degeneration of cheif and parietal cells.Marked increase positive reactive of iNOS in all cells of the fundic gland. Group III showed reconstruction of gastric gland with cystic dilatation and vacuolation, moderate decrease of collagen fibers, reduced the intensity of iNOS while in Group IV healthy mucosa with normal surface lining epithelium and fundic glands, strong positive reaction for PAS, marked decrease of collagen fibers and positive reaction for iNOS. TEM revealed regeneration of cheif and parietal cells. Conclusion: Co treatment of copper-albumin complex seems to be useful for gastric ulcer treatment and ameliorates most of hazards of indomethacin.

Keywords: copper complex, gastric ulcer, indomethacin, rat

Procedia PDF Downloads 312
2634 Biosorption of Cu (II) and Zn (II) from Real Wastewater onto Cajanus cajan Husk

Authors: Mallappa A. Devani, John U. Kennedy Oubagaranadin, Basudeb Munshi

Abstract:

In this preliminary work, locally available husk of Cajanus cajan (commonly known in India as Tur or Arhar), a bio-waste, has been used in its physically treated and chemically activated form for the removal of binary Cu (II) and Zn(II) ions from the real waste water obtained from an electroplating industry in Bangalore, Karnataka, India and from laboratory prepared binary solutions having almost similar composition of the metal ions, for comparison. The real wastewater after filtration and dilution for five times was used for biosorption studies at the normal pH of the solutions at room temperature. Langmuir's binary model was used to calculate the metal uptake capacities of the biosorbents. It was observed that Cu(II) is more competitive than Zn(II) in biosorption. In individual metal biosorption, Cu(II) uptake was found to be more than that of the Zn(II) and a similar trend was observed in the binary metal biosorption from real wastewater and laboratory prepared solutions. FTIR analysis was carried out to identify the functional groups in the industrial wastewater and EDAX for the elemental analysis of the biosorbents after experiments.

Keywords: biosorption, Cajanus cajan, multi metal remediation, wastewater

Procedia PDF Downloads 361
2633 Numerical Analysis of Real-Scale Polymer Electrolyte Fuel Cells with Cathode Metal Foam Design

Authors: Jaeseung Lee, Muhammad Faizan Chinannai, Mohamed Hassan Gundu, Hyunchul Ju

Abstract:

In this paper, we numerically investigated the effect of metal foams on a real scale 242.57cm2 (19.1 cm × 12.7 cm) polymer electrolyte membrane fuel cell (PEFCs) using a three-dimensional two-phase PEFC model to substantiate design approach for PEFCs using metal foam as the flow distributor. The simulations were conducted under the practical low humidity hydrogen, and air gases conditions in order to observe the detailed operation result in the PEFCs using the serpentine flow channel in the anode and metal foam design in the cathode. The three-dimensional contours of flow distribution in the channel, current density distribution in the membrane and hydrogen and oxygen concentration distribution are provided. The simulation results revealed that the use of highly porous and permeable metal foam can be beneficial to achieve a more uniform current density distribution and better hydration in the membrane under low inlet humidity conditions. This study offers basic directions to design channel for optimal water management of PEFCs.

Keywords: polymer electrolyte fuel cells, metal foam, real-scale, numerical model

Procedia PDF Downloads 213
2632 Synthesis of Novel Nanostructure Copper(II) Metal-Organic Complex for Photocatalytic Degradation of Remdesivir Antiviral COVID-19 from Aqueous Solution: Adsorption Kinetic and Thermodynamic Studies

Authors: Sam Bahreini, Payam Hayati

Abstract:

Metal-organic coordination [Cu(L)₄(SCN)₂] was synthesized applying ultrasonic irradiation, and its photocatalytic performance for the degradation of Remdesivir (RS) under sunlight irradiation was systematically explored for the first time in this study. The physicochemical properties of the synthesized photocatalyst were investigated using Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), powder x-ray diffraction (PXRD), energy-dispersive x-ray (EDX), thermal gravimetric analysis (TGA), diffuse reflectance spectroscopy (DRS) techniques. Systematic examinations were carried out by changing irradiation time, temperature, solution pH value, contact time, RS concentration, and catalyst dosage. The photodegradation kinetic profiles were modeled in pseudo-first order, pseudo-second-order, and intraparticle diffusion models reflected that photodegradation onto [Cu(L)₄(SCN)₂] catalyst follows pseudo-first order kinetic model. The fabricated [Cu(L)₄(SCN)₂] nanostructure bandgap was determined as 2.60 eV utilizing the Kubelka-Munk formula from the diffuse reflectance spectroscopy method. Decreasing chemical oxygen demand (COD) (from 70.5 mgL-1 to 36.4 mgL-1) under optimal conditions well confirmed mineralizing of the RS drug. The values of ΔH° and ΔS° was negative, implying the process of adsorption is spontaneous and more favorable in lower temperatures.

Keywords: Photocatalytic degradation, COVID-19, density functional theory (DFT), molecular electrostatic potential (MEP)

Procedia PDF Downloads 140
2631 Removal of Heavy Metals from Water in the Presence of Organic Wastes: Fruit Peels

Authors: Özge Yılmaz Gel, Berk Kılıç, Derin Dalgıç, Ela Mia Sevilla Levi, Ömer Aydın

Abstract:

In this experiment, our goal was to remove heavy metals from water. Most recent studies have used removing toxic heavy elements: Cu⁺², Cr⁺³ and Fe⁺³ ions from aqueous solutions has been previously investigated with different kinds of plants like kiwi and tangerines. However, in this study, three different fruit peels were used. We tested banana, peach, and potato peels to remove heavy metal ions from their solution. The first step of the experiment was to wash the peels with distilled water and then dry the peels in an oven for 48 hrs at 80°C. Once the peels were washed and dried, 0.2 grams were weighed and added into 200 mL of %0.1 percent heavy metal solutions by mass. The mixing process was done via a magnetic stirrer. Each sample was taken in 15-minute intervals, and absorbance changes of the solutions were detected using a UV-Vis Spectrophotometer. Among the used waste products, banana peel was the most efficient one. Moreover, the amount of fruit peel, pH values of the initial heavy metal solution, and initial concentration of heavy metal solutions were investigated to determine the effect of fruit peels.

Keywords: absorbance, heavy metal, removal of heavy metals, fruit peels

Procedia PDF Downloads 56
2630 Surpassing Antibiotic Resistance through Synergistic Effects of Polyethyleneimine-Silver Nanoparticle Complex Coated Mesoporous Silica Trio-Nanoconstructs

Authors: Ranjith Kumar Kankala, Wei-Zhi Lin, Chia-Hung Lee

Abstract:

Antibiotic resistance in bacteria has become an emergency situation clinically. To improve the efficacy of antibiotics in resistant strains, advancement of nanoparticles is inevitable than ever. Herewith, we demonstrate a design by immobilizing tetracycline (TET) in copper substituted mesoporous silica nanoparticles (Cu-MSNs) through a pH-sensitive coordination link, enabling its release in the acidic environment. Subsequently, MSNs are coated with silver nanoparticles stabilized polyethyleneimine (PEI-SNP) to act against drug-resistant (MDR) bacterial strains. Silver ions released from SNP are capable of sensitizing the resistant strains and facilitate the generation of free radicals capable of damaging the cell components. In addition, copper ions in the framework are also capable of generating free radicals through Fenton-like reaction. Furthermore, the nanoparticles are well-characterized physically, and various antibacterial efficacious tests against isolated multidrug resistant bacterial strain were highly commendable. However, this formulation has no significant toxic effect on normal mammalian fibroblast cells accounting its high biocompatibility. These MSN trio-hybrids, i.e., SNP, tetracycline, and copper ions result in synergistic effects, and their advancement could bypass resistance and allow synergism for effective treatment of antibiotic clinically.

Keywords: antibiotic resistance, copper, mesoporous silica nanoparticles, Ph-sensitive release, polyethyleneimine, silver, tetracycline

Procedia PDF Downloads 173
2629 Determination of Mineral Elements in Some Coarse Grains Used as Staple Food in Kano, Nigeria

Authors: M. I. Mohammed, U. M. Ahmad

Abstract:

Analyses of mineral elements were carried out on some coarse grains used as staple food in Kano. The levels of Magnesium, Calcium, Manganese, Iron, Copper and Zinc were determined using atomic absorption spectrophotometer (AAS), and that of Sodium and Potassium were obtained using flame photometer (FES). The result of the study shows that the mean results of the mineral elements ranged from 62.50±0.55 - 84.82±0.74mg/kg sodium, 73.33±0.35 - 317±0.10mg/kg magnesium, 89.22±0.26 - 193.33±0.19mg/kg potassium, 70.00±0.52 - 186.67±0.29mg/kg calcium, 1.00±0.11 - 20.50±1.30mg/kg manganese, 25.00±0.11 - 80.50±0.36mg/kg iron. 4.00±0.08 - 13.00±0.24mg/kg copper and 15.00±0.34 - 50.50±0.24 zinc. There was significant difference (p < 0.05) in levels of sodium, potassium and calcium whereas no significant difference (p > 0.05) occurs in levels of magnesium, manganese, copper and zinc. In comparison with Recommended Daily Allowances of essential and trace metals set by international standard organizations, the coarse grains analysed in this work contribute little to the provision of essential and trace elements requirements.

Keywords: mineral elements, coarse grains, staple food, Kano, Nigeria

Procedia PDF Downloads 254
2628 Formation of Protective Aluminum-Oxide Layer on the Surface of Fe-Cr-Al Sintered-Metal-Fibers via Multi-Stage Thermal Oxidation

Authors: Loai Ben Naji, Osama M. Ibrahim, Khaled J. Al-Fadhalah

Abstract:

The objective of this paper is to investigate the formation and adhesion of a protective aluminum-oxide (Al2O3, alumina) layer on the surface of Iron-Chromium-Aluminum Alloy (Fe-Cr-Al) sintered-metal-fibers. The oxide-scale layer was developed via multi-stage thermal oxidation at 930 oC for 1 hour, followed by 1 hour at 960 oC, and finally at 990 oC for 2 hours. Scanning Electron Microscope (SEM) images show that the multi-stage thermal oxidation resulted in the formation of predominantly Al2O3 platelets-like and whiskers. SEM images also reveal non-uniform oxide-scale growth on the surface of the fibers. Furthermore, peeling/spalling of the alumina protective layer occurred after minimum handling, which indicates weak adhesion forces between the protective layer and the base metal alloy.  Energy Dispersive Spectroscopy (EDS) analysis of the heat-treated Fe-Cr-Al sintered-metal-fibers confirmed the high aluminum content on the surface of the protective layer, and the low aluminum content on the exposed base metal alloy surface. In conclusion, the failure of the oxide-scale protective layer exposes the base metal alloy to further oxidation, and the fragile non-uniform oxide-scale is not suitable as a support for catalysts.

Keywords: high-temperature oxidation, iron-chromium-aluminum alloy, alumina protective layer, sintered-metal-fibers

Procedia PDF Downloads 173
2627 The Catalytic Activity of CU2O Microparticles

Authors: Kanda Wongwailikhit

Abstract:

Copper (I) oxide microparticles with the morphology of cubic and hollow sphere were synthesized with the assistance of a surfactant as the shape controller. Both particles were then subjected to a study of the catalytic activity and the results of shape effects of catalysts on rate of catalytic reaction was observed. The decolorizing reaction of crystal violet and sodium hydroxide was chosen and the decrease of reactant with respect to time was measured using a spectrophotometer. The result revealed that morphology of the crystal had no effect on the catalytic activity for the crystal violet reaction but contributed to total surface area predominantly.

Keywords: copper (I) oxide, catalytic activity, crystal violet

Procedia PDF Downloads 472
2626 Experimental Study on Mechanical Properties of Commercially Pure Copper Processed by Severe Plastic Deformation Technique-Equal Channel Angular Extrusion

Authors: Krishnaiah Arkanti, Ramulu Malothu

Abstract:

The experiments have been conducted to study the mechanical properties of commercially pure copper processing at room temperature by severe plastic deformation using equal channel angular extrusion (ECAE) through a die of 90oangle up to 3 passes by route BC i.e. rotating the sample in the same direction by 90o after each pass. ECAE is used to produce from existing coarse grains to ultra-fine, equiaxed grains structure with high angle grain boundaries in submicron level by introducing a large amount of shear strain in the presence of hydrostatic pressure into the material without changing billet shape or dimension. Mechanical testing plays an important role in evaluating fundamental properties of engineering materials as well as in developing new materials and in controlling the quality of materials for use in design and construction. Yield stress, ultimate tensile stress and ductility are structure sensitive properties and vary with the structure of the material. Microhardness and tensile tests were carried out to evaluate the hardness, strength and ductility of the ECAE processed materials. The results reveal that the strength and hardness of commercially pure copper samples improved significantly without losing much ductility after each pass.

Keywords: equal channel angular extrusion, severe plastic deformation, copper, mechanical properties

Procedia PDF Downloads 155
2625 Effect of Vibration Amplitude and Welding Force on Weld Strength of Ultrasonic Metal Welding

Authors: Ziad. Sh. Al Sarraf

Abstract:

Ultrasonic metal welding has been the subject of ongoing research and development, most recently concentrating on metal joining in miniature devices, for example to allow solder-free wire bonding. As well as at the small scale, there are also opportunities to research the joining of thicker sheet metals and to widen the range of similar and dissimilar materials that can be successfully joined using this technology. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal spot welding device. The ultrasonic metal spot welding horn is modelled using finite element analysis (FEA) and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered effectively to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. The results show how the weld strength is particularly sensitive to the combination of clamping force and ultrasonic vibration amplitude of the welding tip, but there are optimal combinations of these and also limits that must be clearly identified.

Keywords: ultrasonic welding, vibration amplitude, welding force, weld strength

Procedia PDF Downloads 343
2624 Study of the Adsorption of Metal Ions Ag+ Mg2+, Ni2+ by the Chemical and Electrochemical Polydibenzoether Crown

Authors: Dalila Chouder, Djaafer Benachour

Abstract:

This work concerns the study of the adsorption of metal ions Ag +, Mg +, and Ni2+ in aqueous medium by polydibenzoether-ROWN based on three factors: Temperature, time and concentration. The polydibenzoether crown was synthesized by two means: Chemical and electrochemical. The behavior of the two polymers has been different, and turns out very interesting for chemical polydibenzoether crown has identified conditions. Chemical and électronique polydibenzoether crown have different extraction screw vi property of adsoption of ions fifférents, this study also shows that plyméres doped may have an advantageous electrical conductivity.

Keywords: polymerization, electrochemical, conductivity, complexing metal ions

Procedia PDF Downloads 241
2623 Modified Fe₃O₄ Nanoparticles for Electrochemical Sensing of Heavy Metal Ions Pb²⁺, Hg²⁺, and Cd²⁺ in Water

Authors: Megha, Diksha, Seema Rani, Balwinder Kaur, Harminder Kaur

Abstract:

Fe₃O₄@SiO₂@SB functionalized magnetic nanoparticles were synthesized and used to detect heavy metal ions such as Pb²⁺, Hg²⁺, and Cd²⁺ in water. The formation of Fe₃O₄@SiO₂@SB nanocatalyst was confirmed by XRD, SEM, TEM, and IR. The simultaneous determination of analyte cations was carried out using square wave anodic stripping voltammetry (SWASV). Investigation and optimisation were done to study how experimental variables affected the performance of the modified magnetic electrode. Pb²⁺, Hg²⁺, and Cd²⁺ were successfully detected using the designed sensor in the presence of various possibly interfering ions. The recovery rate was found to be 97.5% for Pb²⁺, 96.2% for Hg²⁺, 103.5% for Cd²⁺. The electrochemical sensor was also employed to determine the presence of heavy metal ions in drinking water samples, which are well below the World Health Organization (WHO) guidelines.

Keywords: magnetic nanoparticles, heavy metal ions, electrochemical sensor, environmental water samples

Procedia PDF Downloads 45