Search results for: bone
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 779

Search results for: bone

479 Molecular Docking and Synthesis of Nitrogen-Containing Bisphosphonates

Authors: S. Ghalem, M. Mesmoudi, I. Daoudand, H. Allali

Abstract:

The nitrogen-containing bisphosphonates (N-BPs) are well established as the treatments of choice for disorders of excessive bone resorption, myeloma and bone metastases, and osteoporosis. They inhibit farnesyl pyrophosphate synthase (FFPS), a key enzyme in the mevalonate pathway, resulting in inhibition of the prenylation of small GTP-binding proteins in osteoclasts and disruption of their cytoskeleton, adhesion/spreading, and invasion of cancer cells. A very few examples for synthesis of α-amino bisphosphonates based on several amino acids are known from the literature. In the present work, esters of aminoacid react with ketophsophonate (or their analog acid or acyl) to afford the desired products, α-iminophosphonates. The reaction of imine with dimethyl phosphate in the presence of catalytic amount of I2 give ester of α-aminobisphosphonate as sole product in good yield. Finally, we used computational docking methods to predict how several α-aminobisphosphonates bind to FPPS and how R and X influence. Pamidronate, β-aminobisphosphonate already marketed, was used as reference. These results are of interest since they represent a new and simple way to sythesize α-aminobisphosphonates with a free COOH group increased by R2 functionalisable and opening up the possibility of using the molecular docking to facilitate the design of other, novel FFPS inhibitors.

Keywords: drug research, cancer, α-amino bisphosphonates, molecular docking

Procedia PDF Downloads 241
478 The Role of a Biphasic Implant Based on a Bioactive Silk Fibroin for Osteochondral Tissue Regeneration

Authors: Lizeth Fuentes-Mera, Vanessa Perez-Silos, Nidia K. Moncada-Saucedo, Alejandro Garcia-Ruiz, Alberto Camacho, Jorge Lara-Arias, Ivan Marino-Martinez, Victor Romero-Diaz, Adolfo Soto-Dominguez, Humberto Rodriguez-Rocha, Hang Lin, Victor Pena-Martinez

Abstract:

Biphasic scaffolds in cartilage tissue engineering have been designed to influence not only the recapitulation of the osteochondral architecture but also to take advantage of the healing ability of bone to promote the implant integration with the surrounding tissue and then bone restoration and cartilage regeneration. This study reports the development and characterization of a biphasic scaffold based on the assembly of a cartilage phase constituted by fibroin biofunctionalized with bovine cartilage matrix; cellularized with differentiated pre-chondrocytes from adipose tissue stem cells (autologous) and well attached to a bone phase (bone bovine decellularized) to mimic the structure of the nature of native tissue and to promote the cartilage regeneration in a model of joint damage in pigs. Biphasic scaffolds were assembled by fibroin crystallization with methanol. The histological and ultrastructural architectures were evaluated by optical and scanning electron microscopy respectively. Mechanical tests were conducted to evaluate Young's modulus of the implant. For the biological evaluation, pre-chondrocytes were loaded onto the scaffolds and cellular adhesion, proliferation, and gene expression analysis of cartilage extracellular matrix components was performed. The scaffolds that were cellularized and matured for 10 days were implanted into critical 3 mm in diameter and 9-mm in depth osteochondral defects in a porcine model (n=4). Three treatments were applied per knee: Group 1: monophasic cellular scaffold (MS) (single chondral phase), group 2: biphasic scaffold, cellularized only in the chondral phase (BS1), group 3: BS cellularized in both bone and chondral phases (BS2). Simultaneously, a control without treatment was evaluated. After 4 weeks of surgery, integration and regeneration tissues were analyzed by x-rays, histology and immunohistochemistry evaluation. The mechanical assessment showed that the acellular biphasic composites exhibited Young's modulus of 805.01 kPa similar to native cartilage (400-800 kPa). In vitro biological studies revealed the chondroinductive ability of the biphasic implant, evidenced by an increase in sulfated glycosaminoglycan (GAGs) and type II collagen, both secreted by the chondrocytes cultured on the scaffold during 28 days. No evidence of adverse or inflammatory reactions was observed in the in vivo trial; however, In group 1, the defects were not reconstructed. In group 2 and 3 a good integration of the implant with the surrounding tissue was observed. Defects in group 2 were fulfilled by hyaline cartilage and normal bone. Group 3 defects showed fibrous repair tissue. In conclusion; our findings demonstrated the efficacy of biphasic and bioactive scaffold based on silk fibroin, which entwined chondroinductive features and biomechanical capability with appropriate integration with the surrounding tissue, representing a promising alternative for osteochondral tissue-engineering applications.

Keywords: biphasic scaffold, extracellular cartilage matrix, silk fibroin, osteochondral tissue engineering

Procedia PDF Downloads 124
477 Magnitude of Infection and Associated factor in Open Tibial Fractures Treated Operatively at Addis Ababa Burn Emergency and Trauma Center April, 2023

Authors: Tuji Mohammed Sani

Abstract:

Back ground: An open tibial fracture is an injury where the fractured bone directly communicates with the outside environment. Due to the specific anatomical features of the tibia (limited soft tissue coverage), more than quarter of its fractures are classified as open, representing the most common open long-bone injuries. Open tibial fractures frequently cause significant bone comminution, periosteal stripping, soft tissue loss, contamination and are prone to bacterial entry with biofilm formation, which increases the risk of deep bone infection. Objective: The main objective of the study was to determine Prevalence of infection and its associated factors in surgically treated open tibial fracture in Addis Ababa Burn Emergency and Trauma (AaBET) center. Method: A facility based retrospective cross-sectional study was conducted among patient treated for open tibial fracture at AaBET center from September 2018 to September 2021. The data was collected from patient’s chart using structured data collection form, and Data was entered and analyzed using SPSS version 26. Bivariable and multiple binary logistic regression were fitted. Multicollinearity was checked among candidate variables using variance inflation factor and tolerance, which were less than 5 and greater than 0.2, respectively. Model adequacy were tested using Hosmer-Lemeshow goodness of fitness test (P=0.711). AOR at 95% CI was reported, and P-value < 0.05 was considered statistically significant. Result: This study found that 33.9% of the study participants had an infection. Initial IV antibiotic time (AOR=2.924, 95% CI:1.160- 7.370) and time of wound closure from injury (AOR=3.524, 95% CI: 1.798-6.908), injury to admission time (AOR=2.895, 95% CI: 1.402 – 5.977). and definitive fixation method (AOR=0.244, 95% CI: 0.113 – 0.4508) were the factors found to have a statistically significant association with the occurrence of infection. Conclusion: The rate of infection in open tibial fractures indicates that there is a need to improve the management of open tibial fracture treated at AaBET center. Time from injury to admission, time from injury to first debridement, wound closure time, and initial Intra Venous antibiotic time from the injury are an important factor that can be readily amended to improve the infection rate. Whether wound closed before seven days or not were more important factor associated with occurrences of infection.

Keywords: infection, open tibia, fracture, magnitude

Procedia PDF Downloads 46
476 Impact of Treatment of Fragility Fractures Due to Osteoporosis as an Economic Burden Worldwide: A Systematic Review

Authors: Fabiha Tanzeem

Abstract:

BACKGROUND: Osteoporosis is a skeletal disease that is associated with a reduction in bone mass and microstructures of the bone and deterioration of bone tissue. Fragility fracture due to osteoporosis is the most significant complication of osteoporosis. The increasing prevalence of fragility fractures presents a growing burden on the global economy. There is a rapidly evolving need to improve awareness of the costs associated with these types of fractures and to review current policies and practices for the prevention and management of the disease. This systematic review will identify and describe the direct and indirect costs associated with osteoporotic fragility fractures from a global perspective from the included studies. The review will also find out whether the costs required for the treatment of fragility fractures due to osteoporosis impose an economic burden on the global healthcare system. METHODS: Four major databases were systematically searched for direct and indirect costs of osteoporotic fragility fracture studies in the English Language. PubMed, Cochrane Library, Embase and Google Scholar were searched for suitable articles published between 1990 and July 2020. RESULTS: The original search yielded 1166 papers; from these, 27 articles were selected for this review according to the inclusion and exclusion criteria. In the 27 studies, the highest direct costs were associated with the treatment of pelvic fractures, with the majority of the expenditure due to hospitalization and surgical treatments. It is also observed that most of the articles are from developed countries. CONCLUSION: This review indicates the significance of the economic burden of osteoporosis globally, although more research needs to be done in developing countries. In the treatment of fragility fractures, direct costs were the main reported expenditure in this review. The healthcare costs incurred globally can be significantly reduced by implementing measures to effectively prevent the disease. Raising awareness in children and adults by improving the quality of the information available and standardising policies and planning of services requires further research.

Keywords: systematic review, osteoporosis, cost of illness

Procedia PDF Downloads 138
475 Porous Titanium Scaffolds Fabricated by Metal Injection Moulding Using Potassium-Chloride and Space Holder

Authors: Ali Dehghan Manshadi, David H. StJohn, Matthew S. Dargusch, M. Qian

Abstract:

Biocompatible, highly porous titanium scaffolds were manufactured by metal injection moulding of spherical titanium powder (powder size: -45 µm) with potassium chloride (powder size: -250 µm) as a space holder. Property evaluation of scaffolds confirmed a high level of compatibility between their mechanical properties and those of human cortical bone. The optimum sintering temperature was found to be 1250°C producing scaffolds with more than 90% interconnected pores in the size range of 200-250 µm, yield stress of 220 MPa and Young’s modulus of 7.80 GPa, all of which are suitable for bone tissue engineering. Increasing the sintering temperature to 1300°C increased the Young’s modulus to 22.0 GPa while reducing the temperature to 1150°C reduced the yield stress to 120 MPa due to incomplete sintering. The residual potassium chloride was determined vs. sintering temperature. A comparison was also made between the porous titanium scaffolds fabricated in this study and the additively manufactured titanium lattices of similar porosity reported in the literature.

Keywords: titanium, metal injection moulding, mechanical properties, scaffolds

Procedia PDF Downloads 180
474 Cup-Cage Construct for Treatment of Severe Acetabular Bone Loss in Revision Total Hip Arthroplasty: Midterm Clinical and Radiographic Outcomes

Authors: Faran Chaudhry, Anser Daud, Doris Braunstein, Oleg Safir, Allan Gross, Paul Kuzyk

Abstract:

Background: Acetabular reconstruction in the context of massive acetabular bone loss is challenging. In rare scenarios where the extent of bone loss precludes shell placement (cup-cage), reconstruction at our center consisted of a cage combined with highly porous metal augments. This study evaluates survivorship, complications, and functional outcomes using this technique. Methods: A total of 131 cup-cage implants (129 patients) were included in our retrospective review of revisions of total hip arthroplasty from January 2003 to January 2022. Among these cases, 100/131 (76.3%) were women, the mean age at surgery time was 68.7 years (range, 29.0 to 92.0; SD, 12.4), and the mean follow-up was 7.7 years (range, 0.02 to 20.3; SD, 5.1). Kaplan-Meier survivorship analysis was conducted with failure defined as revision surgery and/or failure of the cup-cage reconstruction. Results: A total of 30 implants (23%) reached the study endpoint involving all-cause revision. Overall survivorship was 74.8% at 10 years and 69.8% at 15 years. Reasons for revision included infection 12/131 (9.1%), dislocation 10/131 (7.6%), aseptic loosening of cup and/or cage 5/131 (3.8%), and aseptic loosening of the femoral stem 2/131 (1.5%). The mean LLD improved from 12.2 ± 15.9 mm to 3.9 ± 11.8 (p<0.05). The horizontal and vertical hip centres on plain film radiographs were significantly improved (p<0.05). Functionally, there was a decrease in the number of patients requiring the use of gait aids, with fewer patients (34, 25.9%) using a cane, walker, or wheelchair post-operatively compared to pre-operatively (58, 44%). There was a significant increase in the number of independent ambulators from 24 to 47 (36%). Conclusion: The cup-cage construct is a reliable treatment option for the treatment of various acetabular defects. There are favourable survivorship, clinical and radiographic outcomes, with a satisfactory complication rate.

Keywords: revision total hip arthroplasty, acetabular defect, pelvic discontinuity, trabecular metal augment, cup-cage

Procedia PDF Downloads 32
473 Characteristics of Edible Film Made from Skin and Bone Fish Gelatin, Spotted Oceanic Triggerfish (Canthidermis maculata) and Tilapia Fish (Oreochromis niloticus)

Authors: Normalina Arpi, Fahrizal Fahrizal, Dewi Yunita

Abstract:

Edible films can increase the shelf life of various food products by acting as water, oxygen, and lipid barrier. Fish gelatin as a film-forming agent has unique characteristics but varies depending on fish species. The purpose of this research is to characterize edible film made using skin and bone fish gelatin with the addition of plasticizer. Gelatin of spotted oceanic triggerfish (Canthidermis maculata) and tilapia (Oreochromis niloticus) were used. Glycerol and sorbitol with concentration of 0.25 and 0.5 % were added as a plasticizer. Spotted oceanic triggerfish gelatin with sorbitol resulted film with higher tensile strength and oxygen permeability, whereas tilapia gelatin with glycerol produced an edible film with higher elongation and water vapor permeability. The edible film made of spotted oceanic triggerfish gelatin and 0.25% sorbitol had the best characteristics.

Keywords: edible film, fish gelatin , glycerol, sorbitol

Procedia PDF Downloads 131
472 Pre-Implementation of Total Body Irradiation Using Volumetric Modulated Arc Therapy: Full Body Anthropomorphic Phantom Development

Authors: Susana Gonçalves, Joana Lencart, Anabela Gregório Dias

Abstract:

Introduction: In combination with chemotherapy, Total Body Irradiation (TBI) is most used as part of the conditioning regimen prior to allogeneic hematopoietic stem cell transplantation. Conventional TBI techniques have a long application time but non-conformality of beam-application with the inability to individually spare organs at risk. Our institution’s intention is to start using Volumetric Modulated Arc Therapy (VMAT) techniques to increase homogeneity of delivered radiation. As a first approach, a dosimetric plan was performed on a computed tomography (CT) scan of a Rando Alderson antropomorfic phantom (head and torso), using a set of six arcs distributed along the phantom. However, a full body anthropomorphic phantom is essential to carry out technique validation and implementation. Our aim is to define the physical and chemical characteristics and the ideal manufacturing procedure of upper and lower limbs to our anthropomorphic phantom, for later validate TBI using VMAT. Materials and Methods: To study the better fit between our phantom and limbs, a CT scan of Rando Alderson anthropomorphic phantom was acquired. CT was performed on GE Healthcare equipment (model Optima CT580 W), with slice thickness of 2.5 mm. This CT was also used to access the electronic density of soft tissue and bone through Hounsfield units (HU) analysis. Results: CT images were analyzed and measures were made for the ideal upper and lower limbs. Upper limbs should be build under the following measures: 43cm length and 7cm diameter (next to the shoulder section). Lower limbs should be build under the following measures: 79cm length and 16.5cm diameter (next to the thigh section). As expected, soft tissue and bone have very different electronic density. This is important to choose and analyze different materials to better represent soft tissue and bone characteristics. The approximate HU values of the soft tissue and for bone shall be 35HU and 250HU, respectively. Conclusion: At the moment, several compounds are being developed based on different types of resins and additives in order to be able to control and mimic the various constituent densities of the tissues. Concurrently, several manufacturing techniques are being explored to make it possible to produce the upper and lower limbs in a simple and non-expensive way, in order to finally carry out a systematic and appropriate study of the total body irradiation. This preliminary study was a good starting point to demonstrate the feasibility of TBI with VMAT.

Keywords: TBI, VMAT, anthropomorphic phantom, tissue equivalent materials

Procedia PDF Downloads 49
471 Income Analysis of Beef Cattle Breeders for Traditional Profit-Sharing System, Tesang, in South Sulawesi Province

Authors: Sitti Nurani Sirajuddin, Muh. Aminawar, Siti Nurlaelah, Amidah Amrawaty

Abstract:

This study aimed to determine the income of beef cattle breeders from the traditional profit-sharing system named Tesang. This study was conducted in the province of South Sulawesi start from April to July 2014, used quantitative methods and data analysis is of income. The population is all beef cattle breeders who perform for the traditional profit-sharing system (Tesang) in Barru Regency and Bone Regency, province of South Sulawesi. Samples are beef cattle breeders who breeding the cattle with the traditional profit-sharing system (Tesang) in Barru Regency and Bone Regency using breeding system and cattle enlargement system (expense) by fifty breeders. The results showed beef cattle breeder’s income from the profit-sharing system (Tesang) where enlargement system (expense) at6th month maintenance periods higher than the profit-sharing system (Tesang) with using breeding the cattle.

Keywords: income, beef cattle, profit-sharing system, Teseng

Procedia PDF Downloads 243
470 Impact of Chimerism on Y-STR DNA Determination: Sex Mismatch Analysis

Authors: Anupuma Raina, Ajay P. Balayan, Prateek Pandya, Pankaj Shrivastava, Uma Kanga, Tulika Seth

Abstract:

DNA fingerprinting analysis aids in personal identification for forensic purposes and has always been a driving motivation for law enforcement agencies in almost all countries since its inception. The introduction of DNA markers (Y-STR) has allowed for greater precision and higher discriminatory power in forensic testing. A criminal/ person committing crime after bone marrow transplantation is a rare situation but not an impossible one. Keeping such a situation in mind, a study was carried out to find out the best biological sample to be used for personal identification, especially in forensic situation. We choose a female patient (recipient) and a male donor. The pre transplant sample (blood) and post transplant samples (blood, buccal swab, hair roots) were collected from the recipient (patient). The same were compared with the blood sample of the donor using DNA FP technique. Post transplant samples were collected at different interval of time (15, 30, 60, and 90 days). The study was carried out using Y-STR kit at 23 loci. The results determined discusses the phenomenon of chimerism and its impact on Y-STR. Hair sample was found the most suitable sample which had no donor DNA profiling up to 90 days.

Keywords: bone marrow transplantation, chimerism, DNA profiling, Y-STR

Procedia PDF Downloads 118
469 In Vitro Evaluation of a Chitosan-Based Adhesive to Treat Bone Fractures

Authors: Francisco J. Cedano, Laura M. Pinzón, Camila I. Castro, Felipe Salcedo, Juan P. Casas, Juan C. Briceño

Abstract:

Complex fractures located in articular surfaces are challenging to treat and their reduction with conventional treatments could compromise the functionality of the affected limb. An adhesive material to treat those fractures is desirable for orthopedic surgeons. This adhesive must be biocompatible and have a high adhesion to bone surface in an aqueous environment. The proposed adhesive is based on chitosan, given its adhesive and biocompatibility properties. Chitosan is mixed with calcium carbonate and hydroxyapatite, which contribute to structural support and a gel like behavior, and glutaraldehyde is used as a cross-linking agent to keep the adhesive mechanical performance in aqueous environment. This work aims to evaluate the rheological, adhesion strength and biocompatibility properties of the proposed adhesive using in vitro tests. The gelification process of the adhesive was monitored by oscillatory rheometry in an ARG-2 TA Instruments rheometer, using a parallel plate geometry of 22 mm and a gap of 1 mm. Time sweep experiments were conducted at 1 Hz frequency, 1% strain and 37°C from 0 to 2400 s. Adhesion strength is measured using a butt joint test with bovine cancellous bone fragments as substrates. The test is conducted at 5 min, 20min and 24 hours after curing the adhesive under water at 37°C. Biocompatibility is evaluated by a cytotoxicity test in a fibroblast cell culture using MTT assay and SEM. Rheological results concluded that the average gelification time of the adhesive is 820±107 s, also it reaches storage modulus magnitudes up to 106 Pa; The adhesive show solid-like behavior. Butt joint test showed 28.6 ± 9.2 kPa of tensile bond strength for the adhesive cured for 24 hours. Also there was no significant difference in adhesion strength between 20 minutes and 24 hours. MTT showed 70 ± 23 % of active cells at sixth day of culture, this percentage is estimated respect to a positive control (only cells with culture medium and bovine serum). High vacuum SEM observation permitted to localize and study the morphology of fibroblasts presented in the adhesive. All captured fibroblasts presented in SEM typical flatted structure with filopodia growth attached to adhesive surface. This project reports an adhesive based on chitosan that is biocompatible due to high active cells presented in MTT test and these results were correlated using SEM. Also, it has adhesion properties in conditions that model the clinical application, and the adhesion strength do not decrease between 5 minutes and 24 hours.

Keywords: bioadhesive, bone adhesive, calcium carbonate, chitosan, hydroxyapatite, glutaraldehyde

Procedia PDF Downloads 290
468 A Review on Development of Pedicle Screws and Characterization of Biomaterials for Fixation in Lumbar Spine

Authors: Shri Dubey, Jamal Ghorieshi

Abstract:

Instability of the lumbar spine is caused by various factors that include degenerative disc, herniated disc, traumatic injuries, and other disorders. Pedicle screws are widely used as a main fixation device to construct rigid linkages of vertebrae to provide a fully functional and stable spine. Various technologies and methods have been used to restore the stabilization. However, loosening of pedicle screws is the main cause of concerns for neurosurgeons. This could happen due to poor bone quality with osteoporosis as well as types of pedicle screw used. Compatibilities and stabilities of pedicle screws with bone depend on design (thread design, length, and diameter) and material. Grip length and pullout strength affect the motion and stability of the spine when it goes through different phases such as extension, flexion, and rotation. Pullout strength of augmented pedicle screws is increased in both primary and salvage procedures by 119% (p = 0.001) and 162% (p = 0.01), respectively. Self-centering pedicle screws at different trajectories (0°, 10°, 20°, and 30°) show the same pullout strength as insertion in a straight-ahead trajectory. The outer cylindrical and inner conical shape of pedicle screws show the highest pullout strength in Grades 5 and 15 foams (synthetic bone). An outer cylindrical and inner conical shape with a V-shape thread exhibit the highest pullout strength in all foam grades. The maximum observed pullout strength is at axial pullout configuration at 0°. For Grade 15 (240 kg/m³) foam, there is a decline in pull out strength. The largest decrease in pullout strength is reported for Grade 10 (160 kg/m³) foam. The maximum pullout strength of 2176 N (0.32-g/cm³ Sawbones) on all densities. Type 1 Pedicle screw shows the best fixation due to smaller conical core diameter and smaller thread pitch (Screw 2 with 2 mm; Screws 1 and 3 with 3 mm).

Keywords: polymethylmethacrylate, PMMA, classical pedicle screws, CPS, expandable poly-ether-ether-ketone shell, EPEEKS, includes translaminar facet screw, TLFS, poly-ether-ether-ketone, PEEK, transfacetopedicular screw, TFPS

Procedia PDF Downloads 129
467 Poly(L-Lactic Acid) Scaffolds for Bone Tissue Engineering

Authors: Aleksandra BužArovska, Gordana Bogoeva Gaceva

Abstract:

Biodegradable polymers have received significant scientific attention in tissue engineering (TE) application, in particular their composites consisting of inorganic nanoparticles. In the last 15 years, they are subject of intensive research by many groups, aiming to develop polymer scaffolds with defined biodegradability, porosity and adequate mechanical stability. The most important characteristic making these materials attractive for TE is their biodegradability, a process that could be time controlled and long enough to enable generation of a new tissue as a replacement for the degraded polymer scaffold. In this work poly(L-lactic acid) scaffolds, filled with TiO2 nanoparticles functionalized with oleic acid, have been prepared by thermally induced phase separation method (TIPS). The functionalization of TiO2 nanoparticles with oleic acid was performed in order to improve the nanoparticles dispersibility within the polymer matrix and at the same time to inhibit the cytotoxicity of the nanofiller. The oleic acid was chosen as amphiphilic molecule belonging to the fatty acid family because of its non-toxicity and possibility for mediation between the hydrophilic TiO2 nanoparticles and hydrophobic PLA matrix. The produced scaffolds were characterized with thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and mechanical compression measurements. The bioactivity for bone tissue engineering application was tested in supersaturated simulated body fluid. The degradation process was followed by Fourier transform infrared spectroscopy (FTIR). The results showed anisotropic morphology with elongated open pores (100 µm), high porosity (around 92%) and perfectly dispersed nanofiller. The compression moduli up to 10 MPa were identified independent on the nanofiller content. Functionalized TiO2 nanoparticles induced formation of hydroxyapatite clusters as much as unfunctionalized TiO2. The prepared scaffolds showed properties ideal for scaffold vascularization, cell attachment, growth and proliferation.

Keywords: biodegradation, bone tissue engineering, mineralization, PLA scaffolds

Procedia PDF Downloads 240
466 Strontium and Selenium Doped Bioceramic Incorporated Hydrogel for Faster Apatite Growth and Bone Regeneration Applications

Authors: Nonita Sarin, K.J.Singh, Anuj Kumar, Davinder Singh

Abstract:

Polymeric 3D hydrogels have pivotal role in bone tissue regeneration applications. Hydrogels behave similar to the living tissues because they have large water imbibing capacity in swollen state and adjust their shape according to the tissues during tissue formation after implantation. On the other hand, hydrogels are very soft, fragile and lack mechanical strength. Incorporation of bioceramics can improve mechanical strength. Furthermore, bioceramics synthesized by sol gel technique may enhance the apatite formation and degradation rates which can lead to the increase in faster rates for new bone and tissue regeneration. Simulated body fluid (SBF) induces the poly-condensation of silanol groups which leads to formation of silica matrix and provide active sites for the precipitation of Ca2+ and PO43- ions to form apatite layer which is similar to mineral form of bone. Therefore, authors have synthesized bioceramic incorporated Polyacrylamide-carboxymethylcellulose hydrogels by free radical polymerization and bioceramic compositions of xSrO-(36-x)CaO-45SiO2-ySeO3-(12-y)P2O5-7MgO (where x=0,4 and y=0,2 mol%) were synthesized by sol gel technique. Bioceramics incorporated in polymer matrix induces quicker apatite formation during immersion in SBF by raising the pH with the release of alkaline ions during ion exchange process and the apatite formation takes place in alkaline medium. The behavior of samples PABC-0 (without bioceramics) and PABC-20 (with 20 wt% bioceramics) were evaluated by X-Ray Diffraction and FTIR. In term of bioactivity, it was observed that PABC-20 has shown hydroxyapatite (HA) formation on 1st day of immersion whereas, PABC-0 was shown apatite formation on 7th day of immersion in SBF. The rapid rate of HA growth on 1st day of immersion in SBF signifies easy regeneration of damaged bone tissues. Degradation studies have been undertaken in Phosphate Buffer Saline and PABC-20 exhibited slower degradation rate up to 9%as compared to PABC-0 up to 18%. Slower degradation rate is suitable for new tissue regeneration and cell attachment. Also, Zeta potential studies have been employed to check the surface charge and it has been observed that samples carry negative charge when immersed in SBF. In addition, the swelling test of the samples have been performed and relative swelling ratio % observed for PABC-0 is 607% and PABC-20 is 305%. This indicates that the incorporation of bioceramics leads to the filling up of the voids in between the polymer matrix which in result reduces porosity and increase the mechanical strength by filling the voids. The porosity of PABC-0 is 84% and PABC-20 is 72%. PABC-20 sample demonstrates that bioceramics incorporation reduce the porosity and improves mechanical strength. Also, maximum in vitro cell viability up to 98% with MG63 cell line has been observed which indicate that the bioceramic incorporated hydrogel(PABC-20) provide the alkaline medium which is suitable environment for cell growth.

Keywords: hydrogels, hydroxyapatite, MG63 cell line, zeta potential

Procedia PDF Downloads 112
465 High Density Polyethylene Biocomposites Reinforced with Hydroxyapatite Nanorods and Carbon Nanofibers for Joint Replacements

Authors: Chengzhu Liao, Jianbo Zhang, Haiou Wang, Jing Ming, Huili Li, Yanyan Li, Hua Cheng, Sie Chin Tjong

Abstract:

Since Bonfield’s group’s pioneer work, there has been growing interest amongst the materials scientists, biomedical engineers and surgeons in the use of novel biomaterials for the treatment of bone defects and injuries. This study focuses on the fabrication, mechanical characterization and biocompatibility evaluation of high density polyethylene (HDPE) reinforced with hydroxyapatite nanorods (HANR) and carbon nanofibers (CNF). HANRs of 20 wt% and CNFs of 0.5-2 wt% were incorporated into HDPE to form biocomposites using traditional melt-compounding and injection molding techniques. The mechanical measurements show that CNF additions greatly improve the tensile strength and Young’s modulus of HDPE and HDPE-20% nHA composites. Meanwhile, the nHA and CNF fillers were found to be effective to improve dimensional and thermal stability of HDPE. The results of osteoblast cell cultivation and dimethyl thiazolyl diphenyl thiazolyl tetrazolium (MTT) tests showed that the HDPE/ CNF-nHA nanocomposites are biocompatible. Such HDPE/ CNF-nHA hybrids are found to be potential biomaterials for making orthopedic joint/bone replacements.

Keywords: biocompatibility, biocomposite, carbon nanofiber, high density polyethylene, hydroxyapatite

Procedia PDF Downloads 269
464 Calcium Biochemical Indicators in a Group of Schoolchildren with Low Socioeconomic Status from Barranquilla, Colombia

Authors: Carmiña L. Vargas-Zapata, María A. Conde-Sarmiento, Maria Consuelo Maestre-Vargas

Abstract:

Calcium is an essential element for good growth and development of the organism, and its requirement is increased at school age. Low socio-economic populations of developing countries such as Colombia may have food deficiency of this mineral in schoolchildren that could be reflected in calcium biochemical indicators, bone alterations and anthropometric indicators. The objective of this investigation was to evaluate some calcium biochemical indicators in a group of schoolchildren of low socioeconomic level from Barranquilla city and to correlate with body mass index. 60 schoolchildren aged 7 to 15 years were selected from Jesus’s Heart Educational Institution in Barranquilla-Atlántico, apparently healthy, without suffering from infectious or gastrointestinal diseases, without habits of drinking alcohol or smoking another hallucinogenic substance and without taking supplementation with calcium in the last six months or another substance that compromises bone metabolism. The research was approved by the ethics committee at Universidad del Atlántico. The selected children were invited to donate a blood and urine sample in a fasting time of 12 hours, the serum was separated by centrifugation and frozen at ˗20 ℃ until analyzed and the same was done with the urine sample. On the day of the biological collections, the weight and height of the students were measured to determine the nutritional status by BMI using the WHO tables. Calcium concentrations in serum and urine (SCa, UCa), alkaline phosphatase activity total and of bone origin (SAPT, SBAP) and urinary creatinine (UCr) were determined by spectrophotometric methods using commercial kits. Osteocalcin and Cross-linked N-telopeptides of type I collagen (NTx-1) in serum were measured with an enzyme-linked inmunosorbent assay. For statistical analysis the Statgraphics software Centurium XVII was used. 63% (n = 38) and 37% (n = 22) of the participants were male and female, respectively. 78% (n = 47), 5% (n = 3) and 17% (n = 10) had a normal, malnutrition and high nutritional status, respectively. The averages of evaluated indicators levels were (mean ± SD): 9.50 ± 1.06 mg/dL for SCa; 181.3 ± 64.3 U/L for SAPT, 143.8 ± 73.9 U/L for SBAP; 9.0 ± 3.48 ng/mL for osteocalcin and 101.3 ± 12.8 ng/mL for NTx-1. UCa level was 12.8 ± 7.7 mg/dL that adjusted with creatinine ranged from 0.005 to 0.395 mg/mg. Considering serum calcium values, approximately 7% of school children were hypocalcemic, 16% hypercalcemic and 77% normocalcemic. The indicators evaluated did not correlate with the BMI. Low values ​​were observed in calcium urinary excretion and high in NTx-1, suggesting that mechanisms such as increase in renal retention of calcium and in bone remodeling may be contributing to calcium homeostasis.

Keywords: calcium, calcium biochemical, indicators, school children, low socioeconomic status

Procedia PDF Downloads 80
463 Spinal Hydatidosis: Therapeutic Management of 5 Cases

Authors: Ghoul Rachid Brahim, Trad Khodja Rafik

Abstract:

Vertebral localization of the hydatid cyst is a severe form of bone hydatidosis, is a parasitic infection caused by the larval forms of the tapeworms Echinococcus granulosus, The disease is slowly remaining silent (a long incubation period) which may explain why this pathology is often discovered at the stage of neurological complications. The objective of this study is to recall the clinical and radiological aspects of this condition and the importance of early diagnosis and appropriate management. We report a study of 5 patients with vertebral hydatidosis, four men and one woman, four (04) patients operated in the emergency setting for spinal cord compression (decompression by wide laminectomy with evacuation of intra and extra canal vesicles).Albendazole-based medical treatment is instituted in all patients. Results: The evolution was favorable for three patients, the other two patients reoperated for a local recurrence. Conclusion: Vertebral hydatidosis is a rare condition with a poor prognosis due to the risk of neurological damage, the infiltrating nature of bone lesions, the frequency of relapses and therapeutic difficulties. The only curative method remains surgery, which must aim for complete and large excision of the lesions as if it were a “malignant tumour”.

Keywords: hydatidosis, Echinococcosis granulosus, hydatid cyst, spinal cord compression, laminectomy

Procedia PDF Downloads 69
462 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes

Authors: Madushani Rodrigo, Banuka Athuraliya

Abstract:

In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.

Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16

Procedia PDF Downloads 28
461 Development of a Paediatric Head Model for the Computational Analysis of Head Impact Interactions

Authors: G. A. Khalid, M. D. Jones, R. Prabhu, A. Mason-Jones, W. Whittington, H. Bakhtiarydavijani, P. S. Theobald

Abstract:

Head injury in childhood is a common cause of death or permanent disability from injury. However, despite its frequency and significance, there is little understanding of how a child’s head responds during injurious loading. Whilst Infant Post Mortem Human Subject (PMHS) experimentation is a logical approach to understand injury biomechanics, it is the authors’ opinion that a lack of subject availability is hindering potential progress. Computer modelling adds great value when considering adult populations; however, its potential remains largely untapped for infant surrogates. The complexities of child growth and development, which result in age dependent changes in anatomy, geometry and physical response characteristics, present new challenges for computational simulation. Further geometric challenges are presented by the intricate infant cranial bones, which are separated by sutures and fontanelles and demonstrate a visible fibre orientation. This study presents an FE model of a newborn infant’s head, developed from high-resolution computer tomography scans, informed by published tissue material properties. To mimic the fibre orientation of immature cranial bone, anisotropic properties were applied to the FE cranial bone model, with elastic moduli representing the bone response both parallel and perpendicular to the fibre orientation. Biofiedility of the computational model was confirmed by global validation against published PMHS data, by replicating experimental impact tests with a series of computational simulations, in terms of head kinematic responses. Numerical results confirm that the FE head model’s mechanical response is in favourable agreement with the PMHS drop test results.

Keywords: finite element analysis, impact simulation, infant head trauma, material properties, post mortem human subjects

Procedia PDF Downloads 301
460 Positive Effects of Aerobic Exercise after Bone Marrow Stem Cell Transplantation on Recovery of Dopaminergic Neurons and Promotion of Angiogenesis Markers in the Striatum of Parkinsonian Rats

Authors: S. A. Hashemvarzi, A. Heidarianpour, Z. Fallahmohammadi, M. Pourghasem, M. Kaviani

Abstract:

Introduction: Parkinson’s disease (PD) is a progressive neurodegenerative in the central nervous system characterized by the loss of dopaminergic neurons in the substantia nigra resulting in loss of dopamine release in the striatum. Non-drug treatment options such as Stem cell transplantation and exercise have been considered for treatment of Parkinson's disease. Purpose: The purpose of this study was to evaluate the effect of aerobic exercise after bone marrow stem cells transplantation on recovery of dopaminergic neurons and promotion of angiogenesis markers in the striatum of parkinsonian rats. Materials and Methods: 42 male Wistar rats were divided randomly into six groups: Normal (N), Sham (S), Parkinson’s (P), Stem cells transplanted Parkinson’s (SP), Exercised Parkinson’s (EP) and Stem cells transplanted + Exercised Parkinson’s (SEP). To create a model of Parkinson's, the striatum was destroyed by injection of 6-hydroxy-dopamine into the striatum through stereotaxic apparatus. Stem cells were derived from the bone marrow of femur and tibia of male rats with 6-8 weeks old. After cultivation, approximately 5×105 cells in 5 microliter of medium were injected into the striatum of rats through the channel. Aerobic exercise was included 8 weeks of running on the treadmill with a speed of 15 meters per minute. At the end, all subjects were decapitated and striatum tissues were separately isolated for measurement of vascular endothelial growth factor (VEGF), dopamine (DA) and tyrosine hydroxylase (TH) levels. Results: VEGF, DA and TH levels in the striatum of parkinsonian rats significantly increased in treatment groups (SP, EP and SEP), especially in SEP group compared to P group after treatment (P<0.05). Conclusion: The findings implicate that the BMSCs transplantation in combination with exercise would have synergistic effects leading to functional recovery, dopaminergic neurons recovery and promotion of angiogenesis marker in the striatum of parkinsonian rats.

Keywords: stem cells, treadmill training, neurotrophic factors, Parkinson

Procedia PDF Downloads 316
459 Determination of Skeletal Age in Nigerian Children: Applicability of the Greulich and Pyle Atlas

Authors: Udoaka A. I., Didia B. C.

Abstract:

Background: The maturation of a child’s bones as it grows to adulthood can be viewed radiologically. The skeletal age (bone age) is the average age at which a particular stage of bone maturation is achieved. The Greulich and Pyle standard is the commonest method used to assess the skeletal age using the hand and wrist radiograph throughout the world. This atlas was compiled solely from Caucasian children and made use of the orderly sequence of carpal ossification to determine the skeletal age. Several authors have faulted this atlas for not being suitable for other races. Aim: The aim of this study is to determine if the Greulich and Pyle Atlas is applicable to Nigerian children when compared to their chronological ages. Methods: The total number of 78 normal radiographs of the hand and wrist of Nigerian children obtained from several hospitals were used for this study . These radiographs were compared with the atlas and their skeletal ages noted form the atlas. The child’s chronological age in each case was also recorded. Results: The result shows a mean increase of two months in the skeletal ages of the Nigerian children compared to the atlas. This difference, however, was not significant. The skeletal age (in months) was greater in 77% of the children than the expected age in the atlas. Conclusion: The mean skeletal age of Nigerian children, though more than the standard in the atlas, is not statistically significant; as a result the study finds the radiographic atlas of Greulich and Pyle atlas applicable to Nigerian children.

Keywords: Greulich and Pyle Atlas, radiograph, skeletal age

Procedia PDF Downloads 236
458 Nutrient Foramina of the Lunate Bone of the Hand – an Anatomical Study

Authors: P.J. Jiji, B.V. Murlimanju, Latha V. Prabhu, Mangala M. Pai

Abstract:

Background: The lunate bone dislocation can lead to the compression of the median nerve and subsequent carpal tunnel syndrome. The dislocation can interrupt the vasculature and would cause avascular necrosis. The objective of the present study was to study the morphology and number of the nutrient foramina in the cadaveric dried lunate bones of the Indian population. Methods: The present study included 28 lunate bones (13 right sided and 15 left sided) which were obtained from the gross anatomy laboratory of our institution. The bones were macroscopically observed for the nutrient foramina and the data was collected with respect to their number. The tabulation of the data and analysis were done. Results: All of our specimens (100%) exhibited the nutrient foramina over the non-articular surfaces. The foramina were observed only over the palmar and dorsal surfaces of the lunate bones. The foramen ranged between 2 and 10. The foramina were more in number over the dorsal surface (average number 3.3) in comparison to the palmar surface (average number 2.4). Conclusion: We believe that the present study has provided important data about the nutrient foramina of the lunate bones. The data is enlightening to the orthopedic surgeon and would help in the hand surgeries. The morphological knowledge of the vasculature, their foramina of entry and their number is required to understand the concepts in the lunatomalacia and Kienbock’s disease.

Keywords: avascular necrosis, foramen, lunate, nutrient

Procedia PDF Downloads 221
457 Impact of 99mTc-MDP Bone SPECT/CT Imaging in Failed Back Surgery Syndrome

Authors: Ching-Yuan Chen, Lung-Kwang Pan

Abstract:

Objective: Back pain is a major health problem costing billions of health budgets annually in Taiwan. Thousands of back pain surgeries are performed annually with up to 40% of patients complaining of back pain at time of post-surgery causing failed back surgery syndrome (FBSS), although diagnosis in these patients may be complex. The aim of study is to assess the feasibility of using bone SPECT-CT imaging to localize the active lesions causing persistent, recurrent or new backache after spine surgery. Materials and Methods: Bone SPECT-CT imaging was performed after the intravenous injection of 20 mCi of 99mTc-MDP for all the patients with diagnosis of FBSS. Patients were evaluated using status of subjectively pain relief, functional improvement and degree of satisfaction by reviewing the medical records and questionnaires in a 2 more years’ follow-up. Results: We enrolled a total of 16 patients were surveyed in our hospital from Jan. 2015 to Dec. 2016. Four people on SPEC/CT imaging ensured significant lesions were undergone a revised surgery (surgical treatment group). The mean visual analogue scale (VAS) decreased 5.3 points and mean Oswestry disability index (ODI) improved 38 points in the surgical group. The remaining 12 on SPECT/CT imaging were diagnosed as no significant lesions then received drug treatment (medical treatment group). The mean VAS only decreased 2 .1 point and mean ODI improved 12.6 points in the medical treatment group. In the posttherapeutic evaluation, the pain of the surgical treatment group showed a satisfactory improvement. In the medical treatment group, 10 of the 12 were also satisfied with the symptom relief while the other 2 did not improve significantly. Conclusions: Findings on SPECT-CT imaging appears to be easily explained the patients' pain. We recommended that SPECT/CT imaging was a feasible and useful clinical tool to improve diagnostic confidence or specificity when evaluating patients with FBSS.

Keywords: failed back surgery syndrome, oswestry disability index, SPECT-CT imaging, 99mTc-MDP, visual analogue scale

Procedia PDF Downloads 143
456 Prevalence Of Periodontal Disease In Felines In The Outskirts Of The City Of Manaus, Brazil: An Epidemiological Study

Authors: Pármenas Costa Macedo do Nascimento

Abstract:

Periodontal disease is the most common disease in the oral cavity of felines. It starts with the accumulation of bacteria on the tooth surface supporting the tissues of the periodontal tissue, namely gums, alveolar bone, cementum, and periodontal ligament. The main clinical symptom observed by the owner is bad breath, which may lead to local and systemic consequences depending on the stage of periodontal disease, such as bleeding and bone loss. Therefore, the study is important to educate tutors to take better care of the felines oral health in order to try to prevent the disease. For this epidemiological study, the target population has been felines, located on the outskirts of Manaus, in the state of Amazonas, with a geographic area of 155.68 km², with no defined breed, from October 1st to 10th, 2021, whose samples has been randomly selected, with a detailed profile. The variables of interest for this study have been: absence or presence of periodontal disease, gender, age (delimited by age group), and condition (domiciled or homeless). Using a sample of 40 felines from 4 districts of the east side of Manaus chosen at random, an oral exam has been made to identify the studied disease. The animal's apparent age, condition, sex, and presence or absence of periodontal disease has been noted. It has been observed that 70% (28/40) of them had periodontal disease, mostly females, aged between 0 and 5 years and domiciled, totaling 30% (12/40).

Keywords: felines, oral cavity, oral exam, periodontal disease

Procedia PDF Downloads 174
455 Biodegradable Magnesium Alloys with Addition of Rare Earth Elements for Biomedical Applications

Authors: Yuncang Li, Cuie Wen

Abstract:

Biodegradable metallic materials such as magnesium (Mg)-based alloys have attracted extensive interest for use as bone implant materials. However, the high biodegradation rate of existing Mg alloys in the physiological environment of human body leads to losing mechanical integrity before adequate bone healing and producing a large volume of hydrogen gas. Therefore, slowing down the biodegradation rate of Mg alloys is a critical task in developing new biodegradable Mg alloy implant materials. One of the most effective approaches to achieve this is to strategically design new Mg alloys with low biodegradation rate, excellent biocompatibility, and enhanced mechanical properties. Our research selected biocompatible and biofunctional alloying elements such as zirconium (Zr), strontium (Sr), and rare earth elements (REEs) to alloy Mg and has developed a new series of Mg-Zr-Sr-REEs alloys for biodegradable implant applications. Research results indicated that Sr and Zr additions could refine the grain size, decrease the biodegradation rate, and enhance the biological behaviors of the Mg alloys. The REE addition, such as holmium (Ho) and dysprosium (Dy) to Mg-Zr-Sr alloys resulted in enhanced mechanical strength and decreased biodegradation rate. In addition, Ho and Dy additions (≤ 5 wt.%) to Mg-Zr-Sr alloys led to enhancement of cell adhesion and proliferation of osteoblast cells on the Mg-Zr-Sr-Ho/Dy alloys.

Keywords: biocompatibility, magnesium, mechanical and biodegrade properties, rare earth elements

Procedia PDF Downloads 91
454 Demonstration of Risk Factors Associated with Male Athlete Triad in Young Elite Athlete from Pakistan

Authors: Muhammad Saleem

Abstract:

Background: Inattentive food choices and engagement in excessive physical activities by male athletes can potentially lead to adverse health consequences. Objective: The aim was to ascertain the occurrence of risk factors associated with the Male Athlete Triad among young elite athletes in Pakistan. Methodology: In 2018, a cross-sectional study based on questionnaires was conducted at the Pakistan Sports Board. The study aimed to explore the risk factors related to the Male Athlete Triad in young elite athletes who were part of national training camps in major metropolitan areas. The study included proficient male elite athletes aged 18 to 25 years, capable of understanding the English questionnaire. The athletes completed a survey encompassing aspects like demographic information, educational background, Body Mass Index (BMI), sports involvement, and hours of participation. Additionally, they filled out the Eating Attitude Test-26 (EAT-26) and questionnaires assessing risks of amenorrhea and low bone mineral density. The prevalence of risk factors for each of the three components was individually evaluated. The collected data underwent analysis using SPSS-20, with descriptive statistics being applied. Results: The study comprised a sample of 90 elite athletes (mean age: 23.57 ± 2.37 years, mean BMI: 21.97 ± 1.90) engaged in various sports. The EAT-26 results indicated that 50% of athletes were at risk of developing an eating disorder. Moreover, 83.3% exhibited disordered eating behaviors that necessitated referral. Risks for amenorrhea were observed in 15% of the participants, and regarding low bone mineral density, notable risks were absent except for the consumption of caffeinated beverages, which was noted in 51.7% of participants. Conclusion: The study identified a significant prevalence of disordered eating risk among male elite athletes in Pakistan. However, the risks associated with amenorrhea and low bone mineral density were not a major concern in this particular group.

Keywords: 1. health and physical education risk factors male athlete associated with the male athlete traid in young elite athlete from pakistan., 2. sports sciences pakistan, 3. risk factors sports sciences pakistan, 4. triad and young elite athlete from pakistan

Procedia PDF Downloads 51
453 Hybrid Manufacturing System to Produce 3D Structures for Osteochondral Tissue Regeneration

Authors: Pedro G. Morouço

Abstract:

One utmost challenge in Tissue Engineering is the production of 3D constructs capable of mimicking the functional hierarchy of native tissues. This is well stated for osteochondral tissue due to the complex mechanical functional unit based on the junction of articular cartilage and bone. Thus, the aim of the present study was to develop a new additive manufacturing system coupling micro-extrusion with hydrogels printing. An integrated system was developed with 2 main features: (i) the printing of up to three distinct hydrogels; (ii) in coordination with the printing of a thermoplastic structural support. The hydrogel printing module was projected with a ‘revolver-like’ system, where the hydrogel selection was made by a rotating mechanism. The hydrogel deposition was then controlled by pressured air input. The use of specific components approved for medical use was incorporated in the material dispensing system (Nordson EDF Optimum® fluid dispensing system). The thermoplastic extrusion modulus enabled the control of required extrusion temperature through electric resistances in the polymer reservoir and the extrusion system. After testing and upgrades, a hydrogel modulus with 3 syringes (3cm3 capacity each), with a pressure range of 0-2.5bar, a rotational speed of 0-5rpm, and working with needles from 200-800µm was obtained. This modulus was successfully coupled to the extrusion system that presented a temperature up to 300˚C, a pressure range of 0-12bar, and working with nozzles from 200-500µm. The applied motor could provide a velocity range 0-2000mm/min. Although, there are distinct printing requirements for hydrogels and polymers, the novel system could develop hybrid scaffolds, combining the 2 moduli. The morphological analysis showed high reliability (n=5) between the theoretical and obtained filament and pore size (350µm and 300µm vs. 342±4µm and 302±3µm, p>0.05, respectively) of the polymer; and multi-material 3D constructs were successfully obtained. Human tissues present very distinct and complex structures regarding their mechanical properties, organization, composition and dimensions. For osteochondral regenerative medicine, a multiphasic scaffold is required as subchondral bone and overlying cartilage must regenerate at the same time. Thus, a scaffold with 3 layers (bone, intermediate and cartilage parts) can be a promising approach. The developed system may give a suitable solution to construct those hybrid scaffolds with enhanced properties. The present novel system is a step-forward regarding osteochondral tissue engineering due to its ability to generate layered mechanically stable implants through the double-printing of hydrogels with thermoplastics.

Keywords: 3D bioprinting, bone regeneration, cartilage regeneration, regenerative medicine, tissue engineering

Procedia PDF Downloads 135
452 The Osteocutaneous Distal Tibia Turn-over Fillet Flap: A Novel Spare-parts Orthoplastic Surgery Option for Functional Below-knee Amputation

Authors: Harry Burton, Alexios Dimitrios Iliadis, Neil Jones, Aaron Saini, Nicola Bystrzonowski, Alexandros Vris, Georgios Pafitanis

Abstract:

This article portrays the authors’ experience with a complex lower limb bone and soft tissue defect, following chronic osteomyelitis and pathological fracture, which was managed by the multidisciplinary orthoplastic team. The decision for functional amputation versus limb salvage was deemed necessary, enhanced by the principles of “spares parts” in reconstructive microsurgery. This case describes a successful use of the osteocutaneous distal tibia turn-over fillet flap that allowed ‘lowering the level of the amputation’ from a through knee to the conventional level of a below-knee amputation to preserve the knee joint function. This case demonstrates the value of ‘spare-parts’ surgery principles and how these concepts refine complex orthoplastic approaches when limb salvage is not possible to enhance function. The osteocutaneous distal tibia turn-over fillet flap is a robust technique for modified BKA reconstructions that provides sufficient bone length to achieve a tough, sensate stump and functional knee joint.

Keywords: osteocutaneous flap, fillet flap, spare-parts surgery, Below knee amputation

Procedia PDF Downloads 133
451 Parathyroid Hormone Receptor 1 as a Prognostic Indicator in Canine Osteosarcoma

Authors: Awf A. Al-Khan, Michael J. Day, Judith Nimmo, Mourad Tayebi, Stewart D. Ryan, Samantha J. Richardson, Janine A. Danks

Abstract:

Osteosarcoma (OS) is the most common type of malignant primary bone tumour in dogs. In addition to their critical roles in bone formation and remodeling, parathyroid hormone-related protein (PTHrP) and its receptor (PTHR1) are involved in progression and metastasis of many types of tumours in humans. The aims of this study were to determine the localisation and expression levels of PTHrP and PTHR1 in canine OS tissues using immunohistochemistry and to investigate if this expression is correlated with survival time. Formalin-fixed, paraffin-embedded tissue samples from 44 dogs with known survival time that had been diagnosed with primary osteosarcoma were analysed for localisation of PTHrP and PTHR1. Findings showed that both PTHrP and PTHR1 were present in all OS samples. The dogs with high level of PTHR1 protein (16%) had decreased survival time (P<0.05) compared to dogs with less PTHR1 protein. PTHrP levels did not correlate with survival time (P>0.05). The results of this study indicate that the PTHR1 is expressed differently in canine OS tissues and this may be correlated with poor prognosis. This may mean that PTHR1 may be useful as a prognostic indicator in canine OS and could represent a good therapeutic target in OS.

Keywords: dog, expression, osteosarcoma, parathyroid hormone receptor 1 (PTHR1), parathyroid hormone-related protein (PTHrP), survival

Procedia PDF Downloads 250
450 Developing Biocompatible Iridium Oxide Electrodes for Bone-Guided Extra-Cochlear Implant

Authors: Yung-Shan Lu, Chia-Fone Lee, Shang-Hsuan Li, Chien-Hao Liu

Abstract:

Recently, various bioelectronic devices have been developed for neurologic disease treatments via electro-stimulations such as cochlear implants and retinal prosthesis. Since the electric signal needs electrodes to be transmitted to an organism, electrodes play an important role of stimulations. The materials of stimulation electrodes affect the efficiency of the delivered currents. The higher the efficiency of the electrodes, the lower the threshold current can be used to stimulate the organism which minimizes the potential damages to the adjacent tissues. In this study, we proposed a biocompatible composite electrode composed of high-charge-capacity iridium oxide (IrOₓ) film for a bone-guide extra-cochlear implant. IrOₓ was exploited to decrease the threshold current due to its high capacitance and low impedance. The IrOₓ electrode was fabricated via microelectromechanical systems (MEMS) photolithography and examined with in-vivo tests with guinea pigs. Based on the measured responses of brain waves to sound, the results demonstrated that IrOₓ electrodes have a lower threshold current compared with the Platinum (Pt) electrodes. The research results are expected to be beneficial for implantable and biocompatible electrodes for electrical stimulations.

Keywords: cochlear implants, electrode, electrical stimulation, iridium oxide

Procedia PDF Downloads 159