Search results for: P. S. Theobald
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: P. S. Theobald

2 Giant Filiform Polyposis in a Patient with Ulcerative Colitis Mimicking Colorectal Cancer

Authors: Godwin Dennison, Edwin Cooper, George Theobald, Richard Dalton

Abstract:

We report an unusual case of giant filiform polyposis in a patient with ulcerative colitis, causing a large stricture in the colon. A 62-year-old man was referred to the Bowel Cancer Screening Programme with a positive Faecal Immunochemical Test (FIT). He was known to have UC for 30 years. A CT scan showed a 9 cm stricture in the transverse colon suspicious of malignancy. A colonoscopy was attempted three times, and biopsies confirmed features of ulcerative colitis. A laparoscopic assisted transverse colectomy (Left hemicolectomy) was performed, and the histology revealed giant filiform polyposis. This should be considered in a UC patient presenting with signs of obstruction mimicking a carcinoma. Whilst it is a benign condition, because of the size of the lesion, it often causes obstruction, and surgery is indicated to relieve symptoms.

Keywords: giant inflammatory polyposis, filiform polyposis, ulcerative colitis, inflammatory bowel disease

Procedia PDF Downloads 87
1 Development of a Paediatric Head Model for the Computational Analysis of Head Impact Interactions

Authors: G. A. Khalid, M. D. Jones, R. Prabhu, A. Mason-Jones, W. Whittington, H. Bakhtiarydavijani, P. S. Theobald

Abstract:

Head injury in childhood is a common cause of death or permanent disability from injury. However, despite its frequency and significance, there is little understanding of how a child’s head responds during injurious loading. Whilst Infant Post Mortem Human Subject (PMHS) experimentation is a logical approach to understand injury biomechanics, it is the authors’ opinion that a lack of subject availability is hindering potential progress. Computer modelling adds great value when considering adult populations; however, its potential remains largely untapped for infant surrogates. The complexities of child growth and development, which result in age dependent changes in anatomy, geometry and physical response characteristics, present new challenges for computational simulation. Further geometric challenges are presented by the intricate infant cranial bones, which are separated by sutures and fontanelles and demonstrate a visible fibre orientation. This study presents an FE model of a newborn infant’s head, developed from high-resolution computer tomography scans, informed by published tissue material properties. To mimic the fibre orientation of immature cranial bone, anisotropic properties were applied to the FE cranial bone model, with elastic moduli representing the bone response both parallel and perpendicular to the fibre orientation. Biofiedility of the computational model was confirmed by global validation against published PMHS data, by replicating experimental impact tests with a series of computational simulations, in terms of head kinematic responses. Numerical results confirm that the FE head model’s mechanical response is in favourable agreement with the PMHS drop test results.

Keywords: finite element analysis, impact simulation, infant head trauma, material properties, post mortem human subjects

Procedia PDF Downloads 301