Search results for: Mohammed Ahmed Alghamdi
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2440

Search results for: Mohammed Ahmed Alghamdi

730 Uvulars Alternation in Hasawi Arabic: A Harmonic Serialism Approach

Authors: Huda Ahmed Al Taisan

Abstract:

This paper investigates a phonological phenomenon, which exhibits variation ‘alternation’ in terms of the uvular consonants [q] and [ʁ] in Hasawi Arabic. This dialect is spoken in Alahsa city, which is located in the Eastern province of Saudi Arabia. To the best of our knowledge, no such research has systematically studied this phenomenon in Hasawi Arabic dialect. This paper is significant because it fills the gap in the literature about this alternation phenomenon in this understudied dialect. A large amount of the data is extracted from several interviews the author has conducted with 10 participants, native speakers of the dialect, and complemented by additional forms from social media. The latter method of collecting the data adds to the significance of the research. The analysis of the data is carried out in Harmonic Serialism Optimality Theory (HS-OT), a version of the Optimality Theoretic (OT) framework, which holds that linguistic forms are the outcome of the interaction among violable universal constraints, and in the recent development of OT into a model that accounts for linguistic variation in harmonic derivational steps. This alternation process is assumed to be phonologically unconditioned and in free variation in other varieties of Arabic dialects in the area. The goal of this paper is to investigate whether this phenomenon is in free variation or governed, what governs this alternation between [q] and [ʁ] and whether the alternation is phonological or other linguistic constraints are in action. The results show that the [q] and [ʁ] alternation is not free and it occurs due to different assimilation processes. Positional, segmental sequence and vowel adjacency factors are in action in Hasawi Arabic.

Keywords: harmonic serialism, Hasawi, uvular, variation

Procedia PDF Downloads 478
729 The Role of Transport Investment and Enhanced Railway Accessibility in Regional Efficiency Improvement in Saudi Arabia: Data Envelopment Analysis

Authors: Saleh Alotaibi, Mohammed Quddus, Craig Morton, Jobair Bin Alam

Abstract:

This paper explores the role of large-scale investment in transport sectors and the impact of increased railway accessibility on the efficiency of the regional economic productivity in the Kingdom of Saudi Arabia (KSA). There are considerable differences among the KSA regions in terms of their levels of investment and productivity due to their geographical scale and location, which in turn greatly affect their relative efficiency. The study used a non-parametric linear programming technique - Data Envelopment Analysis (DEA) - to measure the regional efficiency change over time and determine the drivers of inefficiency and their scope of improvement. In addition, Window DEA analysis is carried out to compare the efficiency performance change for various time periods. Malmquist index (MI) is also analyzed to identify the sources of productivity change between two subsequent years. The analysis involves spatial and temporal panel data collected from 1999 to 2018 for the 13 regions of the country. Outcomes reveal that transport investment and improved railway accessibility, in general, have significantly contributed to regional economic development. Moreover, the endowment of the new railway stations has spill-over effects. The DEA Window analysis confirmed the dynamic improvement in the average regional efficiency over the study periods. MI showed that the technical efficiency change was the main source of regional productivity improvement. However, there is evidence of investment allocation discrepancy among regions which could limit the achievement of development goals in the long term. These relevant findings will assist the Saudi government in developing better strategic decisions for future transport investments and their allocation at the regional level.

Keywords: data envelopment analysis, transport investment, railway accessibility, efficiency

Procedia PDF Downloads 126
728 Numerical Investigation of Fluid Flow, Characteristics of Thermal Performance and Enhancement of Heat Transfer of Corrugated Pipes with Various Geometrical Configurations

Authors: Ahmed Ramadhan Al-Obaidi, Jassim Alhamid

Abstract:

In this investigation, the flow pattern, characteristics of thermal-hydraulic, and improvement of heat transfer performance are evaluated using a numerical technique in three dimensions corrugated pipe heat exchanger. The modification was made under different corrugated pipe geometrical parameters, including corrugated ring angle (CRA), distance between corrugated ring (DBCR), and corrugated diameter (CD), the range of Re number from 2000 to 12000. The numerical results are validated with available experimental data. The numerical outcomes reveal that there is an important change in flow field behaviour and a significant increase in friction factor and improvement in heat transfer performance owing to the use of the corrugated shape in the heat exchanger pipe as compared to the conventional smooth pipe. Using corrugated pipe with different configurations makes the flow more turbulence, flow separation, boundary layer distribution, flow mixing, and that leads to augmenting the performance of heat transfer. Moreover, the value of pressure drop, and the Nusselt number increases as the corrugated pipe geometrical parameters increase. Furthermore, the corrugation configuration shapes have an important influence on the thermal evaluation performance factor, and the maximum value was more than 1.3. Numerical simulation can be performed to predict the various geometrical configurations effects on fluid flow, thermal performance, and heat transfer enhancement.

Keywords: corrugated ring angle, corrugated diameter, Nusselt number, heat transfer

Procedia PDF Downloads 116
727 Paenibacillus illinoisensis CX11: A Cellulase- and Xylanase-Producing Bacteria for Saccharification of Lignocellulosic Materials

Authors: Abeer A. Q. Ahmed, Tracey McKay

Abstract:

Biomass can provide a sustainable source for the production of high valued chemicals. Under the uncertain availability of fossil resources biomass could be the only available source for chemicals in future. Cellulose and hemicellulose can be hydrolyzed into their building blocks (hexsoses and pentoses) which can be converted later to the desired high valued chemicals. A cellulase- and xylanase- producing bacterial strain identified as Paenibacillus illinoisensis CX11 by 16S rRNA gene sequencing and phylogenetic analysis was found to have the ability to saccharify different lignocellulosic materials. Cellulase and xylanase activities were evaluated by 3,5-dinitro-salicylic acid (DNS) method using CMC and xylan as substrates. Results showed that P. illinoisensis CX11 have cellulase (2.63± 0.09 mg/ml) and xylanase (3.25 ± 0.2 mg/ml) activities. The ability of P. illinoisensis CX11 to saccharify lignocellulosic materials was tested using wheat straw (WS), wheat bran (WB), saw dust (SD), and corn stover (CS). DNS method was used to determine the amount of reducing sugars that were released from lignocellulosic materials. P. illinoisensis CX11 showed to have the ability to saccharify lignocellulosic materials and producing total reducing sugars as 2.34 ± 0.12, 2.51 ± 0.37, 1.86 ± 0.16, and 3.29 ± 0.20 mg/l from WS, WB, SD, and CS respectively. According to the author's knowledge, current findings are the first to report P. illinoisensis CX11 as a cellulase and xylanase producing species and that it has the ability to saccharify different lignocellulosic materials. This study presents P. illinoisensis CX11 that can be good source for cellulase and xylanase enzymes which could be introduced into lignocellulose bioconversion processes to produce high valued chemicals.

Keywords: cellulase, high valued chemicals, lignocellulosic materials, Paenibacillus illinoisensis CX11, Xylanase

Procedia PDF Downloads 206
726 IoT Based Agriculture Monitoring Framework for Sustainable Rice Production

Authors: Armanul Hoque Shaon, Md Baizid Mahmud, Askander Nobi, Md. Raju Ahmed, Md. Jiabul Hoque

Abstract:

In the Internet of Things (IoT), devices are linked to the internet through a wireless network, allowing them to collect and transmit data without the need for a human operator. Agriculture relies heavily on wireless sensors, which are a vital component of the Internet of Things (IoT). This kind of wireless sensor network monitors physical or environmental variables like temperatures, sound, vibration, pressure, or motion without relying on a central location or sink and collaboratively passes its data across the network to be analyzed. As the primary source of plant nutrients, the soil is critical to the agricultural industry's continued growth. We're excited about the prospect of developing an Internet of Things (IoT) solution. To arrange the network, the sink node collects groundwater levels and sends them to the Gateway, which centralizes the data and forwards it to the sensor nodes. The sink node gathers soil moisture data, transmits the mean to the Gateways, and then forwards it to the website for dissemination. The web server is in charge of storing and presenting the moisture in the soil data to the web application's users. Soil characteristics may be collected using a networked method that we developed to improve rice production. Paddy land is running out as the population of our nation grows. The success of this project will be dependent on the appropriate use of the existing land base.

Keywords: IoT based agriculture monitoring, intelligent irrigation, communicating network, rice production

Procedia PDF Downloads 127
725 Tunable Optoelectronic Properties of WS₂ by Local Strain Engineering and Folding

Authors: Ahmed Raza Khan

Abstract:

Local-strain engineering is an exciting approach to tune the optoelectronic properties of materials and enhance the performance of devices. Two dimensional (2D) materials such as 2D transition metal dichalcogenides (TMDCs) are particularly well-suited for this purpose because they have high flexibility and can withstand high deformations before rupture. Wrinkles on thick TMDC layers have been reported to show the interesting photoluminescence enhancement due to bandgap modulation and funneling effect. However, the wrinkles in ultrathin TMDCs have not been investigated, because the wrinkles can easily fall down to form folds in these ultrathin layers of TMDCs. Here, we have achieved both wrinkle and fold nano-structures simultaneously on 1-3L WS₂ using a new fabrication technique. The comparable layer dependent reduction in surface potential is observed for both folded layers and corresponding perfect pack layers due to the dominant interlayer screening effect. The strains produced from the wrinkle nanostructures considerably vary semi conductive junction properties. Thermo-ionic modelling suggests that the strained (1.6%) wrinkles can lower the Schottky barrier height (SBH) by 20%. The photo-generated carriers would further significantly lower the SBH. These results present an important advance towards controlling the optoelectronic properties of atomically thin WS₂ using strain engineering, with important implications for practical device applications.

Keywords: strain engineering, folding, WS₂, Kelvin probe force microscopy, KPFM, surface potential, photo current, layer dependence

Procedia PDF Downloads 86
724 Effect of Fill Material Density under Structures on Ground Motion Characteristics Due to Earthquake

Authors: Ahmed T. Farid, Khaled Z. Soliman

Abstract:

Due to limited areas and excessive cost of land for projects, backfilling process has become necessary. Also, backfilling will be done to overcome the un-leveling depths or raising levels of site construction, especially near the sea region. Therefore, backfilling soil materials used under the foundation of structures should be investigated regarding its effect on ground motion characteristics, especially at regions subjected to earthquakes. In this research, 60-meter thickness of sandy fill material was used above a fixed 240-meter of natural clayey soil underlying by rock formation to predict the modified ground motion characteristics effect at the foundation level. Comparison between the effect of using three different situations of fill material compaction on the recorded earthquake is studied, i.e. peak ground acceleration, time history, and spectra acceleration values. The three different densities of the compacted fill material used in the study were very loose, medium dense and very dense sand deposits, respectively. Shake computer program was used to perform this study. Strong earthquake records, with Peak Ground Acceleration (PGA) of 0.35 g, were used in the analysis. It was found that, higher compaction of fill material thickness has a significant effect on eliminating the earthquake ground motion properties at surface layer of fill material, near foundation level. It is recommended to consider the fill material characteristics in the design of foundations subjected to seismic motions. Future studies should be analyzed for different fill and natural soil deposits for different seismic conditions.

Keywords: acceleration, backfill, earthquake, soil, PGA

Procedia PDF Downloads 355
723 Plant Growth, Symbiotic Performance and Grain Yield of 63 Common Bean Genotypes Grown Under Field Conditions at Malkerns Eswatini

Authors: Rotondwa P. Gunununu, Mustapha Mohammed, Felix D. Dakora

Abstract:

Common bean is the most importantly high protein grain legume grown in Southern Africa for human consumption and income generation. Although common bean can associate with rhizobia to fix N₂ for bacterial use and plant growth, it is reported to be a poor nitrogen fixer when compared to other legumes. N₂ fixation can vary with legume species, genotype and rhizobial strain. Therefore, screening legume germplasm can reveal rhizobia/genotype combinations with high N₂-fixing efficiency for use by farmers. This study assessed symbiotic performance and N₂ fixation in 63 common bean genotypes under field conditions at Malkerns Station in Eswatini, using the ¹⁵N natural abundance technique. The shoots of common bean genotypes were sampled at a pod-filling stage, oven-dried (65oC for 72h), weighed, ground into a fine powder (0.50 mm sieve), and subjected to ¹⁵N/¹⁴N isotopic analysis using mass spectrometry. At maturity, plants from the inner rows were harvested for the determination of grain yield. The results revealed significantly higher modulation (p≤0.05) in genotypes MCA98 and CIM-RM01-97-8 relative to the other genotypes. Shoot N concentration was highest in genotype MCA 98, followed by KAB 10 F2.8-84, with most genotypes showing shoot N concentrations below 2%. Percent N derived from atmospheric N₂ fixation (%Ndfa) differed markedly among genotypes, with CIM-RM01-92-3 and DAB 174, respectively, recording the highest values of 66.65% and 66.22 % N derived from fixation. There were also significant differences in grain yield, with CIM-RM02-79-1 producing the highest yield (3618.75 kg/ha). These results represent an important contribution in the profiling of symbiotic functioning of common bean germplasm for improved N₂ fixation.

Keywords: nitrogen fixation, %Ndfa, ¹⁵N natural abundance, grain yield

Procedia PDF Downloads 185
722 Genotoxic and Cytotoxic Effects of Salvia officinals Extracts on Rat Bone Marrow

Authors: Mohammed A. Alshehri

Abstract:

Salvia officinalis is an aromatic plant member of the mint (Labiatae) family. It is popular kitchen herb. Not surprise to find that the name of this herb related to cure, in Latin language Salvia means to cure where officinalis means medicinal which answer why the sage has a top place in the list of medicinal plants. The aim of the present study was to assess the genetic damage and cytological changes caused by exposure of the test organism (Rattusrattus) to Salvia officinals. For this purpose, adult female rats, weighing 200–250 g, were used as donors. A total of 36 adult Wister male rats were randomly assigned to five groups: the experimental groups (rats were intraperitonealy injected with Salvia officinalis pure extract at (0.1, 0.2, 0.5, 0.1mg/kg body weight, the same dose was administered once a day. Control group (rats were injected intraperitonealy physiological saline. And positive control were injected with Cyclophosphamide. On the 21st days following Salvia officinalis pure extract exposure, rats were sacrificed, and samples of bone marrow were collected. Following that, we performed a micronuclei (MN) test using MNNCE (Micro-nucleated normocromatic erythrocytes) and MNPCE (Micronucleated polychromatic erythrocytes), NDI (Nuclear division index), and cytological parameters using NDCI (nuclear division cytotoxicity index), necrotic, and apoptotic cells in rat's bone marrow samples. Results showed that there was a no significant increase in the frequency of micro-nucleatedas well as in cytological parameters in bone marrow cells. In light of these results, if Salvia officinalis pure extract may considered to be safe from the stand point of genotoxicity and cytotoxicity effects.

Keywords: Salvia officinalis, micronucleus, NDI, NDCI, toxicity, chromosomal aberrations

Procedia PDF Downloads 320
721 Spirituality and Coping with Breast Cancer among Omani Women

Authors: Huda Al-Awisi, Mohammed Al-Azri, Samira Al-Rasbi, Mansour Al-Moundhri

Abstract:

Cancer diagnosis is invariably a profound and catastrophic life-changing experience for individuals and their families. It has been found that cancer patients and survivors are distressed with the fragility of their life and their mortality. Based on the literature, cancer patients /survivors value their spiritual experience and connecting with unknown power either related to religious belief or not as an important coping mechanism. Health care professionals including nurses are expected to provide spiritual care for cancer patients as holistic care. Yet, nurses face many challenges in providing such care mainly due to lack of clear definition of spirituality. This study aims to explore coping mechanisms of Omani women diagnosed with breast cancer throughout their cancer journey including spirituality using a qualitative approach. A purposive sample of 19 Omani women diagnosed with breast cancer at different stages of cancer treatment modalities were interviewed. Interviews were tape recorded and transcribed verbatim. The framework approach was used to analyze the data. One main theme related to spirituality was identified and called “The power of faith”. For the majority of participants, faith in God (the will of God) was most important in coping with all stages of their breast cancer experience. Some participants thought that the breast cancer is a test from God which they have to accept. Participants also expressed acceptance of death as the eventual end and reward from God. This belief gives them the strength to cope with cancer and seek medical treatment. In conclusion, women participated in this study believed faith in God imposed spiritual power for them to cope with cancer. They connected spirituality with religious beliefs. Therefore, regardless of nurses’ faith in spirituality, the spiritual care needs to be tailored and provided according to each patient individual need.

Keywords: breast cancer, spiritual, religion, coping, diagnosis, oman, women

Procedia PDF Downloads 299
720 The Influence of Steel Connection on Fire Resistance of Composite Steel-Framed Buildings

Authors: Mohammed Kadhim, Zhaohui Huang

Abstract:

Steel connections can play an important role in enhancing the robustness of structures under fire conditions. Therefore, it is significant to examine the influence of steel connections on the fire resistance of composite steel-framed buildings. In this paper, both the behavior of steel connections and their influence on composite steel frame are analyzed using the non-linear finite element computer software VULCAN at ambient and elevated temperatures. The chosen frame is subjected to ISO834 fire. The comparison between end plate connections, pinned connection, and rigid connection has been carried out. By applying different compartment fires, some cases are studied to show the behavior of steel connection when the fire is applied at certain beams. In addition, different plate thickness and deferent applied loads have been analyzed to examine the behavior of chosen steel connection under ISO834 fire. It was found from the analytical results that the beam with extended end plate is stronger and has better performance in terms of axial forces than those beams with flush end plate connection. It was also found that extended end plate connection has highest limiting temperatures compared to the flush end plate connection. In addition, it was found that the performance of end-plate connections is very close to rigid connection and very far from pinned connections. Furthermore, plate thickness has less effect on the influence of steel connection on fire resistance. In conclusion, the behavior of composite steel framed buildings is largely dependent on the steel connection due to their high impact under fire condition. It is recommended to consider the extended end-plate in the design proposes because of its higher properties compared to the flush end plate connection. Finally, this paper shows a steel connection has an important effect on the fire resistance of composite steel framed buildings.

Keywords: composite steel-framed buildings, connection behavior, end-plate connections, finite element modeling, fire resistance

Procedia PDF Downloads 123
719 Assessment of Availability and Factors Associated with Improved Sanitation Facilities in Urban Kebeles of Dire Dawa City, Eastern Ethiopia in 2022

Authors: Meki Detamo, Ahmed

Abstract:

Access to improved sanitation facilities is crucial for promoting community sanitation worldwide. In Ethiopia, however, sanitation remains a major development challenge despite growing attention and efforts by governments and donors. This study aimed to assess the availability of improved sanitation facilities and associated factors in urban kebeles of Dire Dawa City, Eastern Ethiopia, in 2022. A community-based cross-sectional study was conducted from March 6 to 30, 2022, using a multi-stage sampling technique to select 508 households. Data was collected through structured and pre-tested questionnaires using face-to-face interviews and observations and analyzed using SPSS Version 23. The availability of improved sanitation facilities was found to be remarkably high at 98.2% (95% CI: 97.0, 99.2), with 60.8% of households having a handwashing facility in or around the latrine, 86.0% using soap and water, and 89.0% using an improved water source for drinking. Logistic regression analysis revealed that households with a family size of less than four, those who owned their own house, and those who had self-initiated latrine construction were significantly associated with the availability of improved sanitation facilities. The study recommends the implementation of continuous refreshment training to emphasize the benefits of improved sanitation facilities in the urban community and family planning. This study provides valuable insights into the high availability of improved sanitation facilities in urban areas of Ethiopia and can inform future efforts to improve community sanitation.

Keywords: sanitation facilities, availability, improved, Dire Dawa, Ethiopia

Procedia PDF Downloads 52
718 Experimental Investigation to Produce an Optimum Mix Ratio of Micro-Concrete

Authors: Shofiq Ahmed, Rakibul Hassan, Raquib Ahsan

Abstract:

Concrete is one of the basic elements of RCC structure and also the most crucial one. In recent years, a lot of researches have been conducted to develop special types of concrete for special purposes. Micro-concrete is one of them which has high compressive strength and is mainly used for retrofitting. Micro-concrete is a cementitious based composition formulated for use in repairs of areas where the concrete is damaged & the area is confined in movement making the placement of conventional concrete difficult. According to recent statistics, a large number of structures in the major cities of Bangladesh are vulnerable to collapse. Retrofitting may thus be required for a sustainable solution, and for this purpose, the utilization of micro-concrete can be considered as the most effective solution. For that reason, the aim of this study was to produce micro-concrete using indigenous materials in low cost. Following this aim, the experimental data were observed for five mix ratios with varied amount of cement, fine aggregate, coarse aggregate, water, and admixture. The investigation criteria were a compressive strength, tensile strength, slump and the cost of different mix ratios. Finally, for a mix ratio of 1:1:1.5, the compressive strength was achieved as 7820 psi indicating highest strength among all the samples with the reasonable tensile strength of 1215 psi. The slump of 6.9 inches was also found for this specimen indicating it’s high flowability and making it’s convenient to use as micro-concrete. Moreover, comparing with the cost of foreign products of micro-concrete, it was observed that foreign products were almost four to five times costlier than this local product.

Keywords: indigenous, micro-concrete, retrofitting, vulnerable

Procedia PDF Downloads 304
717 Silent Struggles: Unveiling Linguistic Insights into Poverty in Ancient Egypt

Authors: Hossam Mohammed Abdelfattah

Abstract:

In ancient Egypt, poverty, recognized as the foremost challenge, was extensively addressed in teachings, wisdom, and literary texts. These sources vividly depicted the suffering of a class deprived of life's pleasures. The ancient Egyptian language evolved to introduce terms reflecting poverty and hunger, underscoring the society's commitment to acknowledging and cautioning against this prevalent issue. Among the notable expressions, iwty.f emerged during the Middle Kingdom, symbolizing "the one without property" and signifying the destitute poor. iwty n.f traced back to the Pyramid Texts era, referred to "the one who has nothing" or simply, the poor. Another term, , iwty-sw emphasized the state of possessing nothing. rA-awy originating in the Middle Kingdom Period, initially meant "poverty and poor," expanding to signify poverty in various texts with the addition of the preposition "in," conveying strength given to the poor. During the First Intermediate Period, sny - mnt denoted going through a crisis or suffering, possibly referencing a widespread disease or plague. It encompassed meanings of sickness, pain, and anguish. The term .” sq-sn introduced in Middle Kingdom texts, conveyed the notion of becoming miserable. sp-Xsy . represented a temporal expression reflecting a period of misery or poverty, with Xsy ,indicating distress or misery. The term qsnt appearing in Middle Kingdom texts, held meanings of painful, difficult, harsh, miserable, emaciated, and in bad condition. Its feminine form, qsn denoted anxiety and turmoil. Finally, tp-qsn encapsulated the essence of misery and unhappiness. In essence, these expressions provide linguistic insights into the multifaceted experience of poverty in ancient Egypt, illustrating the society's keen awareness and efforts to address this pervasive challenge.

Keywords: poverty, poor, suffering, misery, painful, ancient Egypt

Procedia PDF Downloads 23
716 Efficient Production of Cell-Adhesive Motif From Human Fibronectin Domains to Design a Bio-Functionalized Scaffold for Tissue Engineering

Authors: Amina Ben Abla, Sylvie Changotade, Geraldine Rohman, Guilhem Boeuf, Cyrine Dridi, Ahmed Elmarjou, Florence Dufour, Didier Lutomski, Abdellatif Elm’semi

Abstract:

Understanding cell adhesion and interaction with the extracellular matrix is essential for biomedical and biotechnological applications, including the development of biomaterials. In recent years, numerous biomaterials have emerged and were used in the field of tissue engineering. Nevertheless, the lack of interaction of biomaterials with cells still limits their bio-integration. Thus, the design of bioactive biomaterials to improve cell attachment and proliferation is of growing interest. In this study, bio-functionalized material was developed combining a synthetic polymer scaffold surface with selected domains of type III human fibronectin (FNIII-DOM) to promote cell adhesion and proliferation. Bioadhesive ligand includes cell-binding domains of human fibronectin, a major ECM protein that interacts with a variety of integrins cell-surface receptors, and ECM proteins through specific binding domains were engineered. FNIII-DOM was produced in bacterial system E. coli in 5L fermentor with a high yield level reaching 20mg/L. Bioactivity of the produced fragment was validated by studying cellular adhesion of human cells. The adsorption and immobilization of FNIII-DOM onto the polymer scaffold were evaluated in order to develop an innovative biomaterial.

Keywords: biomaterials, cellular adhesion, fibronectin, tissue engineering

Procedia PDF Downloads 121
715 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling

Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed

Abstract:

The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.

Keywords: streamflow, neural network, optimisation, algorithm

Procedia PDF Downloads 121
714 Microbial Bioagent Triggered Biochemical Response in Tea (Camellia sinensis) Inducing Resistance against Grey Blight Disease and Yield Enhancement

Authors: Popy Bora, L. C. Bora, A. Bhattacharya, Sehnaz S. Ahmed

Abstract:

Microbial bioagents, viz., Pseudomonas fluorescens, Bacillus subtilis, and Trichoderma viride were assessed for their ability to suppress grey blight caused by Pestalotiopsis theae, a major disease of tea crop in Assam. The expression of defense-related phytochemicals due to the application of these bioagents was also evaluated. The individual bioagents, as well as their combinations, were screened for their bioefficacy against P. theae in vitro using nutrient agar (NA) as basal medium. The treatment comprising a combination of the three bioagents, P. fluorescens, B. subtilis, and T. viride showed significantly the highest inhibition against the pathogen. Bioformulation of effective bioagent combinations was further evaluated under field condition, where significantly highest reduction of grey blight (90.30%), as well as the highest increase in the green leaf yield (10.52q/ha), was recorded due to application of the bioformulation containing the three bioagents. The application of the three bioformulation also recorded an enhanced level of caffeine (4.15%) and polyphenols (22.87%). A significant increase in the enzymatic activity of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase were recorded in the plants treated with the microbial bioformulation of the three bioagents. The present investigation indicates the role of microbial agents in suppressing disease, inducing plant defense response, as well as improving the quality of tea.

Keywords: enzymatic activity, grey blight, microbial bioagents, Pestalotiopsis theae, phytochemicals, plant defense, tea

Procedia PDF Downloads 119
713 A Perspective on Education to Support Industry 4.0: An Exploratory Study in the UK

Authors: Sin Ying Tan, Mohammed Alloghani, A. J. Aljaaf, Abir Hussain, Jamila Mustafina

Abstract:

Industry 4.0 is a term frequently used to describe the new upcoming industry era. Higher education institutions aim to prepare students to fulfil the future industry needs. Advancement of digital technology has paved the way for the evolution of education and technology. Evolution of education has proven its conservative nature and a high level of resistance to changes and transformation. The gap between the industry's needs and competencies offered generally by education is revealing the increasing need to find new educational models to face the future. The aim of this study was to identify the main issues faced by both universities and students in preparing the future workforce. From December 2018 to April 2019, a regional qualitative study was undertaken in Liverpool, United Kingdom (UK). Interviews were conducted with employers, faculty members and undergraduate students, and the results were analyzed using the open coding method. Four main issues had been identified, which are the characteristics of the future workforce, student's readiness to work, expectations on different roles played at the tertiary education level and awareness of the latest trends. The finding of this paper concluded that the employers and academic practitioners agree that their expectations on each other’s roles are different and in order to face the rapidly changing technology era, students should not only have the right skills, but they should also have the right attitude in learning. Therefore, the authors address this issue by proposing a learning framework known as 'ASK SUMA' framework as a guideline to support the students, academicians and employers in meeting the needs of 'Industry 4.0'. Furthermore, this technology era requires the employers, academic practitioners and students to work together in order to face the upcoming challenges and fast-changing technologies. It is also suggested that an interactive system should be provided as a platform to support the three different parties to play their roles.

Keywords: attitude, expectations, industry needs, knowledge, skills

Procedia PDF Downloads 100
712 Adaptation and Habituation to new Complete Dentures

Authors: Mohamed Khaled Ahmed Azzam

Abstract:

Complete dentures, a non biological appliance, were and are still used to replace missing teeth and surrounding structures. Its main objectives are esthetics, speech, function and psychological state improvement. Dentists must realize that, just as dentate patients vary in their dental treatment complexity; edentulous patients also vary in the difficulty of their treatment plan. There are two main problems facing the removable Prosthodontist which harden his/her task how to please his patient with their new dentures being: Denture construction which however its fabrication is at the highest standards still is an unpleasant experience to all patients in the beginning and improves by time. This varies from one to several years according to the patient’s attitude, age, gender, socio-economical level and culture. The second problem of edentulous patients is both physical and psychological. Good interview, communication and note how patients present themselves for the concerns of their appearance, overall attitude and expectations concerning treatment is very important physically. On the psychological aspect patients have great difficulty to cope with new dentures to the extent of not using them at all. Hence their mind preparation should be commenced from day one by more than one method. This had a great impact on the acceptance which led to habituation to their dentures and patients were appreciative and pleased. In conclusion to successfully treat edentulous patients a great deal of information is required to complete a proper diagnosis, including patient mental attitude, past and present medical and dental conditions, and extra and intra-oral examinations. In addition to the clinical experience and skill of the whole dental team.

Keywords: complete dentures, edentulous patients, management of denture, psychological mind preparation

Procedia PDF Downloads 226
711 Highly Efficient Ca-Doped CuS Counter Electrodes for Quantum Dot Sensitized Solar Cells

Authors: Mohammed Panthakkal Abdul Muthalif, Shanmugasundaram Kanagaraj, Jumi Park, Hangyu Park, Youngson Choe

Abstract:

The present study reports the incorporation of calcium ions into the CuS counter electrodes (CEs) in order to modify the photovoltaic performance of quantum dot-sensitized solar cells (QDSSCs). Metal ion-doped CuS thin film was prepared by the chemical bath deposition (CBD) method on FTO substrate and used directly as counter electrodes for TiO₂/CdS/CdSe/ZnS photoanodes based QDSSCs. For the Ca-doped CuS thin films, copper nitrate and thioacetamide were used as anionic and cationic precursors. Calcium nitrate tetrahydrate was used as doping material. The surface morphology of Ca-doped CuS CEs indicates that the fragments are uniformly distributed, and the structure is densely packed with high crystallinity. The changes observed in the diffraction patterns suggest that Ca dopant can introduce increased disorder into CuS material structure. EDX analysis was employed to determine the elemental identification, and the results confirmed the presence of Cu, S, and Ca on the FTO glass substrate. The photovoltaic current density – voltage characteristics of Ca-doped CuS CEs shows the specific improvements in open circuit voltage decay (Voc) and short-circuit current density (Jsc). Electrochemical impedance spectroscopy results display that Ca-doped CuS CEs have greater electrocatalytic activity and charge transport capacity than bare CuS. All the experimental results indicate that 20% Ca-doped CuS CE based QDSSCs exhibit high power conversion efficiency (η) of 4.92%, short circuit current density of 15.47 mA cm⁻², open circuit photovoltage of 0.611 V, and fill factor (FF) of 0.521 under illumination of one sun.

Keywords: Ca-doped CuS counter electrodes, surface morphology, chemical bath deposition method, electrocatalytic activity

Procedia PDF Downloads 133
710 Development of a Semiconductor Material Based on Functionalized Graphene: Application to the Detection of Nitrogen Oxides (NOₓ)

Authors: Djamil Guettiche, Ahmed Mekki, Tighilt Fatma-Zohra, Rachid Mahmoud

Abstract:

The aim of this study was to synthesize and characterize conducting polymer composites of polypyrrole and graphene, including pristine and surface-treated graphene (PPy/GO, PPy/rGO, and PPy/rGO-ArCOOH), for use as sensitive elements in a homemade chemiresistive module for on-line detection of nitrogen oxides vapors. The chemiresistive module was prepared, characterized, and evaluated for performance. Structural and morphological characterizations of the composite were carried out using FTIR, Raman spectroscopy, and XRD analyses. After exposure to NO and NO₂ gases in both static and dynamic modes, the sensitivity, selectivity, limit of detection, and response time of the sensor were determined at ambient temperature. The resulting sensor showed high sensitivity, selectivity, and reversibility, with a low limit of detection of 1 ppm. A composite of polypyrrole and graphene functionalized with aryl 4-carboxy benzene diazonium salt was synthesized and characterized using FTIR, scanning electron microscopy, transmission electron microscopy, UV-visible, and X-ray diffraction. The PPy-rGOArCOOH composite exhibited a good electrical resistance response to NO₂ at room temperature and showed enhanced NO₂-sensing properties compared to PPy-rGO thin films. The selectivity and stability of the NO₂ sensor based on the PPy/rGO-ArCOOH nanocomposite were also investigated.

Keywords: conducting polymers, surface treated graphene, diazonium salt, polypyrrole, Nitrogen oxide sensing

Procedia PDF Downloads 51
709 Using Fuzzy Logic Decision Support System to Predict the Lifted Weight for Students at Weightlifting Class

Authors: Ahmed Abdulghani Taha, Mohammad Abdulghani Taha

Abstract:

This study aims at being acquainted with the using the body fat percentage (%BF) with body Mass Index (BMI) as input parameters in fuzzy logic decision support system to predict properly the lifted weight for students at weightlifting class lift according to his abilities instead of traditional manner. The sample included 53 male students (age = 21.38 ± 0.71 yrs, height (Hgt) = 173.17 ± 5.28 cm, body weight (BW) = 70.34 ± 7.87.6 kg, Body mass index (BMI) 23.42 ± 2.06 kg.m-2, fat mass (FM) = 9.96 ± 3.15 kg and fat percentage (% BF) = 13.98 ± 3.51 %.) experienced the weightlifting class as a credit and has variance at BW, Hgt and BMI and FM. BMI and % BF were taken as input parameters in FUZZY logic whereas the output parameter was the lifted weight (LW). There were statistical differences between LW values before and after using fuzzy logic (Diff 3.55± 2.21, P > 0.001). The percentages of the LW categories proposed by fuzzy logic were 3.77% of students to lift 1.0 fold of their bodies; 50.94% of students to lift 0.95 fold of their bodies; 33.96% of students to lift 0.9 fold of their bodies; 3.77% of students to lift 0.85 fold of their bodies and 7.55% of students to lift 0.8 fold of their bodies. The study concluded that the characteristic changes in body composition experienced by students when undergoing weightlifting could be utilized side by side with the Fuzzy logic decision support system to determine the proper workloads consistent with the abilities of students.

Keywords: fuzzy logic, body mass index, body fat percentage, weightlifting

Procedia PDF Downloads 391
708 The Impact of Dust Storm Events on the Chemical and Toxicological Characteristics of Ambient Particulate Matter in Riyadh, Saudi Arabia

Authors: Abdulmalik Altuwayjiri, Milad Pirhadi, Mohammed Kalafy, Badr Alharbi, Constantinos Sioutas

Abstract:

In this study, we investigated the chemical and toxicological characteristics of PM10 in the metropolitan area of Riyadh, Saudi Arabia. PM10 samples were collected on quartz and teflon filters during cold (December 2019–April 2020) and warm (May 2020–August 2020) seasons, including dust and non-dust events. The PM10 constituents were chemically analyzed for their metal, inorganic ions, and elemental and organic carbon (EC/OC) contents. Additionally, the PM10 oxidative potential was measured by means of the dithiothreitol (DTT) assay. Our findings revealed that the oxidative potential of the collected ambient PM10 samples was significantly higher than those measured in many urban areas worldwide. The oxidative potential of the collected ambient PM¹⁰⁻ samples was also higher during dust episodes compared to non-dust events, mainly due to higher concentrations of metals during these events. We performed Pearson correlation analysis, principal component analysis (PCA), and multi-linear regression (MLR) to identify the most significant sources contributing to the toxicity of PM¹⁰⁻ The results of the MLR analyses indicated that the major pollution sources contributing to the oxidative potential of ambient PM10 were soil and resuspended dust emissions (identified by Al, K, Fe, and Li) (31%), followed by secondary organic aerosol (SOA) formation (traced by SO₄-² and NH+₄) (20%), and industrial activities (identified by Se and La) (19%), and traffic emissions (characterized by EC, Zn, and Cu) (17%). Results from this study underscore the impact of transported dust emissions on the oxidative potential of ambient PM10 in Riyadh and can be helpful in adopting appropriate public health policies regarding detrimental outcomes of exposure to PM₁₀-

Keywords: ambient PM10, oxidative potential, source apportionment, Riyadh, dust episodes

Procedia PDF Downloads 135
707 Prognostic Value of Serum Matrix Metalloproteinase (MMP-9) in Critically Ill Septic Patients

Authors: Sherif Sabri, Nael Samir, Mohamed Ali, Ahmed ElSakhawy

Abstract:

Introduction: There is growing evidence to support the hypothesis that serum matrix metalloproteinase -9 in could be an early predictor of mortality in septic patients. Aim of the work: Study the relationship of matrix metalloproteinase 9 in patients with SIRS in comparison to septic patients in day 0 and day 2. Patients and Methods: This is a prospective observational study conducted on 40 adult critically ill patients staying more than 24 hours in ICU either surgical or medical department, El Fayoum General Hospital in the period from November 2014 to March 2015. Patients met at least two of the criteria for severe inflammatory response syndrome (SIRS). Diagnostic criteria include several clinical and laboratory findings of sepsis induced tissue hypoperfusion or organ dysfunction. Samples were grouped as drawn either at admission, or at day 2 after admission. Results: Patients were divided into two groups: The non-sepsis (SIRS) group, which included 15 (37.5%) patients with no later evidence of sepsis were enrolled as controls. The Sepsis group, which included 25 patients diagnosed to have SIRS with later evidence of sepsis with positive culture. Exploring serum level of MMP-9 in non-survivors and survivors, there was significant increase in non-survivors if compared to survivors at admission p-value 0.001 (mean value in survivors 4.4mg/dl±4.1mg/dl at admission versus mean value in non-survivors 11.9mg/dl±5.8mg/dl) and after two days of admission was also significant increase p-value 0.001 (mean value in survivors 10.9mg/dl ±9.4mg/dl versus mean value in non-survivors 22.6mg/dl±10.4). Conclusion: MMP-9 levels in septic patients have a beneficial role in ICU for high-risk stratification as it is an independent marker of mortality in severe sepsis.

Keywords: matrix metalloproteinase (MMP-9), sepsis, septic shock, systemic inflamatory response syndrome

Procedia PDF Downloads 206
706 Numerical Analysis of the Aging Effects of RC Shear Walls Repaired by CFRP Sheets: Application of CEB-FIP MC 90 Model

Authors: Yeghnem Redha, Guerroudj Hicham Zakaria, Hanifi Hachemi Amar Lemiya, Meftah Sid Ahmed, Tounsi Abdelouahed, Adda Bedia El Abbas

Abstract:

Creep deformation of concrete is often responsible for excessive deflection at service loads which can compromise the performance of elements within a structure. Although laboratory test may be undertaken to determine the deformation properties of concrete, these are time-consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically design code models are relied to predict the creep strain. This paper reviews the accuracy of creep and shrinkage predictions of reinforced concrete (RC) shear walls structures strengthened with carbon fibre reinforced polymer (CFRP) sheets, which is characterized by a widthwise varying fibre volume fraction. This review is yielded by CEB-FIB MC90 model. The time-dependent behavior was investigated to analyze their static behavior. In the numerical formulation, the adherents and the adhesives are all modelled as shear wall elements, using the mixed finite element method. Several tests were used to dem¬onstrate the accuracy and effectiveness of the proposed method. Numerical results from the present analysis are presented to illustrate the significance of the time-dependency of the lateral displacements.

Keywords: RC shear walls strengthened, CFRP sheets, creep and shrinkage, CEB-FIP MC90 model, finite element method, static behavior

Procedia PDF Downloads 277
705 Effect of Sowing Dates on Incidence of Sorghum Head Bug Eurystylus Sp (Hemiptera; Miridae) at Rainfed Sector, Blue Nile State, Sudan

Authors: Eisa Y. Adam, Anas A. Fadlelmula, Ali E. Ali

Abstract:

Sorghum head bug is a key insect pest of sorghum, and it is important to pay attention to the peak time of the pest abundance. The objective of this study was to study the effect of planting date on head bugs population. Field experiment was conducted during 2007/08 – 2008/09 and 2013/14 - 2014/15 cropping seasons at the Damazine Research Station Farm, Blue Nile State to determine sorghum head bugs incidence and abundance through the sowing date. Different sowing dates (early, mid and late sowing) and a susceptible sorghum variety known as Wad Ahmed variety were used the experiment. The experimental design used was randomized complete block design (RCBD). Data were collected on the number of head bug adults and nymphs/panicle, damage percent, coloration and a puncture due to bug feeding and oviposition, 1000 seeds weight and yield. The results showed that significantly (P<0.05) higher number of bugs and damage percent were recorded on the late sowing date for the four seasons followed by the mid sowing, while the early sowing gave low number of bugs, damage percent and high1000 weight. There were significant differences between protected and unprotected heads. The late sowing (August) is a critical sorghum planting time because it coincided with highest numbers of the head bugs.

Keywords: abundance, damage, headbugs, panicle

Procedia PDF Downloads 235
704 Innovation and Economic Growth Model of East Asian Countries: The Adaptability of the Model in Ethiopia

Authors: Khalid Yousuf Ahmed

Abstract:

At the beginning of growth period, East Asian countries achieved impressive economic growth for the decades. They transformed from agricultural economy toward industrialization and contributed to dynamic structural transformation. The achievements were driven by government-led development policies that implemented effective innovation policy to boost technological capability of local firms. Recently, most Sub-Saharan African have been showing sustainable growth. Exceptionally, Ethiopia has been recording double-digit growth for a decade. Hence, Ethiopia has claimed to follow the footstep of East Asia development model. The study is going to examine whether Ethiopia can replicate innovation and economic growth model of East Asia by using Japan, Taiwan, South Korea and China as a case to illustrate their model of growth. This research will be based on empirical data gathering and extended theory of national innovation system and economic growth theory. Moreover, the methodology is based on Knowledge Assessment Methodology (KAM) and also employing cross-countries regression analysis. The results explained that there is a significant relationship between innovation indicators and economic growth in East Asian countries while the relationship is non-existing for Ethiopia except implementing similar policies and achieving similar growth trend. Therefore, Ethiopia needs to introduce inclusive policies that give priority to improving human capital and invest on the knowledge-based economy to replicate East Asian Model.

Keywords: economic growth, FDI, endogenous growth theory, East Asia model

Procedia PDF Downloads 232
703 3D Object Retrieval Based on Similarity Calculation in 3D Computer Aided Design Systems

Authors: Ahmed Fradi

Abstract:

Nowadays, recent technological advances in the acquisition, modeling, and processing of three-dimensional (3D) objects data lead to the creation of models stored in huge databases, which are used in various domains such as computer vision, augmented reality, game industry, medicine, CAD (Computer-aided design), 3D printing etc. On the other hand, the industry is currently benefiting from powerful modeling tools enabling designers to easily and quickly produce 3D models. The great ease of acquisition and modeling of 3D objects make possible to create large 3D models databases, then, it becomes difficult to navigate them. Therefore, the indexing of 3D objects appears as a necessary and promising solution to manage this type of data, to extract model information, retrieve an existing model or calculate similarity between 3D objects. The objective of the proposed research is to develop a framework allowing easy and fast access to 3D objects in a CAD models database with specific indexing algorithm to find objects similar to a reference model. Our main objectives are to study existing methods of similarity calculation of 3D objects (essentially shape-based methods) by specifying the characteristics of each method as well as the difference between them, and then we will propose a new approach for indexing and comparing 3D models, which is suitable for our case study and which is based on some previously studied methods. Our proposed approach is finally illustrated by an implementation, and evaluated in a professional context.

Keywords: CAD, 3D object retrieval, shape based retrieval, similarity calculation

Procedia PDF Downloads 237
702 Change Detection and Analysis of Desertification Processes in Semi Arid Land in Algeria Using Landsat Data

Authors: Zegrar Ahmed, Ghabi Mohamed

Abstract:

The degradation of arid and semi-arid ecosystems in Algeria has become a palpable fact that only hinders progress and rural development. In these exceptionally fragile environments, the decline of vegetation is done according to an alarming increase and wind erosion dominates. The ecosystem is subjected to a long hot dry season and low annual average rainfall. The urgency of the fight against desertification is imposed by the very nature of the process that tends to self-accelerate, resulting when human intervention is not forthcoming the irreversibility situations, preventing any possibility of restoration state of these zones. These phenomena have led to different degradation processes, such as the destruction of vegetation, soil erosion, and deterioration of the physical environment. In this study, the work is mainly based on the criteria for classification and identification of physical parameters for spatial analysis and multi-sources to determine the vulnerability of major steppe formations and their impact on desertification. we used Landsat data with two different dates March 2010 and November 2014 in order to determine the changes in land cover, sand moving and land degradation for the diagnosis of the desertification Phenomenon. The application, through specific processes, including the supervised classification was used to characterize the main steppe formations. An analysis of the vulnerability of plant communities was conducted to assign weights and identify areas most susceptible to desertification. Vegetation indices are used to characterize the steppe formations to determine changes in land use.

Keywords: remote sensing, SIG, ecosystem, degradation, desertification

Procedia PDF Downloads 320
701 Unveiling the Potential of PANI@MnO2@rGO Ternary Nanocomposite in Energy Storage and Gas Sensing

Authors: Ahmad Umar, Sheikh Akbar, Ahmed A. Ibrahim, Mohsen A. Alhamami

Abstract:

The development of advanced materials for energy storage and gas sensing applications has gained significant attention in recent years. In this study, we synthesized and characterized PANI@MnO2@rGO ternary nanocomposites (NCs) to explore their potential in supercapacitors and gas sensing devices. The ternary NCs were synthesized through a multi-step process involving the hydrothermal synthesis of MnO2 nanoparticles, preparation of PANI@rGO composites and the assembly to the ternary PANI@MnO2@rGO ternary NCs. The structural, morphological, and compositional characteristics of the materials were thoroughly analyzed using techniques such as XRD, FESEM, TEM, FTIR, and Raman spectroscopy. In the realm of gas sensing, the ternary NCs exhibited excellent performance as NH3 gas sensors. The optimized operating temperature of 100 °C yielded a peak response of 15.56 towards 50 ppm NH3. The nanocomposites demonstrated fast response and recovery times of 6 s and 10 s, respectively, and displayed remarkable selectivity for NH3 gas over other tested gases. For supercapacitor applications, the electrochemical performance of the ternary NCs was evaluated using cyclic voltammetry and galvanostatic charge-discharge techniques. The composites exhibited pseudocapacitive behavior, with the capacitance reaching up to 185 F/g at 1 A/g and excellent capacitance retention of approximately 88.54% over 4000 charge-discharge cycles. The unique combination of rGO, PANI, and MnO2 nanoparticles in these ternary NCs offer synergistic advantages, showcasing their potential to address challenges in energy storage and gas sensing technologies.

Keywords: paniI@mnO2@rGO ternary NCs, synergistic effects, supercapacitors, gas sensing, energy storage

Procedia PDF Downloads 42