Search results for: High strain rate material characterization and modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31375

Search results for: High strain rate material characterization and modelling

31225 Fully Printed Strain Gauges: A Comparison of Aerosoljet-Printing and Micropipette-Dispensing

Authors: Benjamin Panreck, Manfred Hild

Abstract:

Strain sensors based on a change in resistance are well established for the measurement of forces, stresses, or material fatigue. Within the scope of this paper, fully additive manufactured strain sensors were produced using an ink of silver nanoparticles. Their behavior was evaluated by periodic tensile tests. Printed strain sensors exhibit two advantages: Their measuring grid is adaptable to the use case and they do not need a carrier-foil, as the measuring structure can be printed directly onto a thin sprayed varnish layer on the aluminum specimen. In order to compare quality characteristics, the sensors have been manufactured using two different technologies, namely aerosoljet-printing and micropipette-dispensing. Both processes produce structures which exhibit continuous features (in contrast to what can be achieved with droplets during inkjet printing). Briefly summarized the results show that aerosoljet-printing is the preferable technology for specimen with non-planar surfaces whereas both technologies are suitable for flat specimen.

Keywords: aerosoljet-printing, micropipette-dispensing, printed electronics, printed sensors, strain gauge

Procedia PDF Downloads 179
31224 Effect of Water Absorption on the Fatigue Behavior of Glass/Polyester Composite

Authors: Djamel Djeghader, Bachir Redjel

Abstract:

The composite materials of glass fibers can be used as a repair material for damage elements under repeated stresses, and in various environments. A cyclic bending characterization of a glass/polyester composite material was carried out with consideration of the period of immersion in water. These tests describe the behavior of materials and identify the mechanical fatigue characteristics using the Wohler Curve for different immersion time: 0, 90, 180 and 270 days in water. These curves are characterized by a dispersion in the lifetimes were modeled by straight whose intercepts are very similar and comparable to the static strength. This material deteriorates fatigue at a constant rate, which increases with increasing immersion time in water at a constant speed. The endurance limit seems to be independent of the immersion time in the water.

Keywords: fatigue, composite, glass, polyester, immersion, wohler

Procedia PDF Downloads 288
31223 Characterization of Carbon/Polyamide 6,6 (C/PA66) Composite Material for Dry and Wet Conditions

Authors: Tariq Bashir, Muhammad Waseem Tahir, Ulf Stigh, Behnaz Baghaie, Mikael Skrifvars

Abstract:

Absorption of moisture may cause many problems in a composite material, such as delamination, degradation of the strength and increase in the weight. For small coupons, the increase in weight may be negligible, however, for large structures increase in weight due to moisture absorption may be quite significant. Polyamides (PA6, PA66) absorb more moisture as compared to other thermoplastics. There are many parameters which affect the moisture absorption of the composite material for example temperature, pressure, type of matrix and fibers, thickness of the material and relative humidity (RH) etc. So, it is utmost important to investigate the impact of moisture on PA66 based composites which can be done by characterizing the mechanical properties of composite materials both for dry and wet conditions. In this study, laminates of C/PA66 composite are manufactured by first heating the commingled material in conventional oven at a temperature of 220 °C followed by pressing in a manual hot press for 20 minutes with preheated platen at 220 °C. To observe the moisture absorption of the composite, coupons of the material were placed in a climate chamber at five different conditions 0, 25, 50, 75 and 100% RH for 24 hours. Five specimens were used for each condition. These coupons were weighed before placing in the climate chamber and just after removing from the chamber to observe the moisture absorption of the material. The mechanical characterization such as tensile strength, flexural modulus, impact strength and DMTA of C/PA66 material are performed at 0, 50 and 100 % RH. The work is going on for the testing of the material and results will be presented in full paper.

Keywords: Carbon/Polyamide 66 composites, structural composites, mechanical characterizations, wet and dry conditions

Procedia PDF Downloads 215
31222 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data

Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann

Abstract:

Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.

Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers

Procedia PDF Downloads 175
31221 High-Temperature Behavior of Boiler Steel by Friction Stir Processing

Authors: Supreet Singh, Manpreet Kaur, Manoj Kumar

Abstract:

High temperature corrosion is an imperative material degradation method experienced in thermal power plants and other energy generation sectors. Metallic materials such as ferritic steels have special properties such as easy fabrication and machinibilty, low cost, but a serious drawback of these materials is the worsening in properties initiating from the interaction with the environments. The metallic materials do not endure higher temperatures for extensive period of time because of their poor corrosion resistance. Friction Stir Processing (FSP), has emerged as the potent surface modification means and control of microstructure in thermo mechanically heat affecting zones of various metal alloys. In the current research work, FSP was done on the boiler tube of SA 210 Grade A1 material which is regularly used by thermal power plants. The strengthening of SA210 Grade A1 boiler steel through microstructural refinement by Friction Stir Processing (FSP) and analyze the effect of the same on high temperature corrosion behavior. The high temperature corrosion performance of the unprocessed and the FSPed specimens were evaluated in the laboratory using molten salt environment of Na₂SO₄-82%Fe₂(SO₄). The unprocessed and FSPed low carbon steel Gr A1 evaluation was done in terms of microstructure, corrosion resistance, mechanical properties like hardness- tensile. The in-depth characterization was done by EBSD, SEM/EDS and X-ray mapping analyses with an aim to propose the mechanism behind high temperature corrosion behavior of the FSPed steel.

Keywords: boiler steel, characterization, corrosion, EBSD/SEM/EDS/XRD, friction stir processing

Procedia PDF Downloads 212
31220 Detection and Expression of Peroxidase Genes in Trichoderma harzianum KY488466 and Its Response to Crude Oil Degradation

Authors: Michael Dare Asemoloye, Segun Gbolagade Jonathan, Rafiq Ahmad, Odunayo Joseph Olawuyi, D. O. Adejoye

Abstract:

Fungi have potentials for degrading hydrocarbons through the secretion of different enzymes. Crude oil tolerance and degradation by Trichoderma harzianum was investigated in this study with its ability to produce peroxidase enzymes (LiP and MnP). Many fungal strains were isolated from rhizosphere of grasses growing on a crude oil spilled site, and the most frequent strain based on percentage incidence was further characterized using morphological and molecular characteristics. Molecular characterization was done through the amplification of Ribosomal-RNA regions of 18s (1609-1627) and 28s (287-266) using ITS1 and ITS4 combinations and it was identified using NCBI BLAST tool. The selected fungus was also subjected to an in-vitro tolerance test at crude oil concentrations of 5, 10, 15, 20 and 25% while 0% served as control. In addition, lignin peroxidase genes (lig1-6) and manganese peroxidase gene (mnp) were detected and expressed in this strain using RT-PCR technique, its peroxidase producing activities was also studied in aliquots (U/ml). This strain had highest incidence of 80%, it was registered in NCBI as Trichoderma harzianum asemoJ KY488466. The strain KY488466 responded to crude oil concentrations as it increase, the dose inhibition response percentage (DIRP) increased from 41.67 to 95.41 at 5 to 25 % crude oil concentrations. All the peroxidase genes are present in KY488466, and expressed with amplified 900-1000 bp through RT-PCR technique. In this strain, lig2, lig4 and mnp genes were over-expressed, lig 6 was moderately expressed, while none of the genes was under-expressed. The strain also produced 90±0.87 U/ml lignin peroxidase and 120±1.23 U/mil manganese peroxidase enzymes in aliquots. These results imply that KY488466 can tolerate and survive high crude oil concentration and could be exploited for bioremediation of oil-spilled soils, the produced peroxidase enzymes could also be exploited for other biotechnological experiments.

Keywords: crude oil, enzymes, expression, peroxidase genes, tolerance, Trichoderma harzianum

Procedia PDF Downloads 192
31219 Theoretical and Experimental Analysis of Hard Material Machining

Authors: Rajaram Kr. Gupta, Bhupendra Kumar, T. V. K. Gupta, D. S. Ramteke

Abstract:

Machining of hard materials is a recent technology for direct production of work-pieces. The primary challenge in machining these materials is selection of cutting tool inserts which facilitates an extended tool life and high-precision machining of the component. These materials are widely for making precision parts for the aerospace industry. Nickel-based alloys are typically used in extreme environment applications where a combination of strength, corrosion resistance and oxidation resistance material characteristics are required. The present paper reports the theoretical and experimental investigations carried out to understand the influence of machining parameters on the response parameters. Considering the basic machining parameters (speed, feed and depth of cut) a study has been conducted to observe their influence on material removal rate, surface roughness, cutting forces and corresponding tool wear. Experiments are designed and conducted with the help of Central Composite Rotatable Design technique. The results reveals that for a given range of process parameters, material removal rate is favorable for higher depths of cut and low feed rate for cutting forces. Low feed rates and high values of rotational speeds are suitable for better finish and higher tool life.

Keywords: speed, feed, depth of cut, roughness, cutting force, flank wear

Procedia PDF Downloads 259
31218 Aptitude of a Lactococcus Strain to Grow on Whey Medium

Authors: Souid Wafa, Boudjenah-Haroun Saliha, Khacef Linda

Abstract:

In this work, we focused on the valuation of discharges from the dairy industry. Whey is by-product of dairy industry, which is a formidable pollution factor and contains components (lactose, minerals and proteins) with high nutritional value. Whey is an excellent culture medium for microorganisms. The objective of our work is to investigate the ability of a lactic strain (of the genus Lactococcus) to grow in culture media based on whey of cattle and camels and comparing it with that recorded on M17 as indicator medium. In this study we isolated from a local sample of camel milk a lactic strain (S1).the strain had positive Gram shaped, cocci form and catalase (-). The strain has been purified by the method of streaks on M17 medium. Phenotypic identification allows us to classify this strain in the species: Lactococcus lactis subsp. Cremoris. We subsequently tested the ability of this strain to grow in cattle whey medium and camel whey, both media were deproteinized and unsupplemented. The obtained results revealed that: The cattle and camel whey are appropriate media for the growth of the strain Lactococcus lactis subsp cremoris but is more adapted to grow on a medium rich in lactose as the camel whey. In fact, after 48h and at initial pH 6.8 this strain acidified more camel whey (pH 3.99) than cattle whey (pH 4.8). And biomass produced in the camel whey is 1.50g /1 by contributing to the cattle whey which is 1g / l.

Keywords: cremoris, dairy industry, Lactococcus lactis subsp, medium, whey

Procedia PDF Downloads 330
31217 Nanostructure Formation and Characterization of Eco-Friendly Banana Peels Nanosorbent

Authors: Opeyemi Atiba-Oyewo, Maurice S. Onya, Christian Wolkersdorfer

Abstract:

Nanostructure formation and characterization of eco-friendly banana peels nanosorbent are thoroughly described in this paper. The transformation of material during mechanical milling to enhance certain properties such as changes in microstructure and surface area to solve the current problems involving water pollution and water quality were studied. The mechanical milling was employed using planetary continuous milling machine and ethanol as process control agent, the sample were taken at time interval between 10 h to 30 h to examine the structural changes. The samples were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR), Transmission electron microscopy (TEM) and Brunauer Emmett and teller (BET). Results revealed that the three typical structures with different grain-size, lattice strain and shapes were observed, and the deformation mechanisms in these structures were found to be different, further particles fracturing results to surface area increment which was confirmed by Brunauer Emmett and teller (BET) analysis. X-ray diffraction (XRD) shows high densities of dislocations in large crystallites, implying that dislocation slip is the dominant deformation mechanism. Scanning electron microscopy revealed the morphological properties of the materials at different milling time, nanostructure of the particles and fibres were confirmed by Transmission electron microscopy and FT-IR identified the functional groups responsible for its capacity to coordinate and remove metal ions, such as the carboxylic and amine groups at absorption bands of 1730 and 889 cm-1, respectively. However, the choice of this sorbent material for the sorption of any contaminants will depend on the composition of the effluent to be treated.

Keywords: banana peels, eco-friendly, mechanical milling, nanosorbent, nanostructure water quality

Procedia PDF Downloads 228
31216 Assessment of cellulase and xylanase Production by chryseobacterium sp. Isolated from Decaying Biomass in Alice, Eastern Cape, South Africa

Authors: A. Nkohla, U. Nwodo, L. V. Mabinya, A. I. Okoh

Abstract:

A potential source for low-cost production of value added products is the utilization of lignocellulosic materials. However, the huddle needing breaching would be the dismantlement of the complex lignocellulosic structure as to free sugar base therein. the current lignocellosic material treatment process is expensive and not eco-friendly hence, the advocacy for enzyme based technique which is both cheap and eco-friendly is highly imperative. Consequently, this study aimed at the screening of cellulose and xylan degrading bacterial strain isolated from decaying sawdust samples. This isolate showed high activity for cellulase and xylanase when grown on carboxymethyl cellulose and birtchwood xylan as the sole carbon source respectively. The 16S rDNA nucleotide sequence of the isolate showed 98% similarity with that of Chryseobacterium taichungense thus, it was identified as a Chryseobacterium sp. Optimum culture conditions for cellulase and xylanase production were medium pH 6, incubation temperature of 25 °C at 50 rpm and medium pH 6, incubation temperature of 25 °C at 150 rpm respectively. The high enzyme activity obtained from this bacterial strain portends it as a good candidate for industrial use in the degradation of complex biomass for value added products.

Keywords: lignocellulosic material, chryseobacterium sp., submerged fermentation, cellulase, xylanase

Procedia PDF Downloads 282
31215 Experimental Investigation on the Effect of Prestress on the Dynamic Mechanical Properties of Conglomerate Based on 3D-SHPB System

Authors: Wei Jun, Liao Hualin, Wang Huajian, Chen Jingkai, Liang Hongjun, Liu Chuanfu

Abstract:

Kuqa Piedmont is rich in oil and gas resources and has great development potential in Tarim Basin, China. However, there is a huge thick gravel layer developed with high content, wide distribution and variation in size of gravel, leading to the condition of strong heterogeneity. So that, the drill string is in a state of severe vibration and the drill bit is worn seriously while drilling, which greatly reduces the rock-breaking efficiency, and there is a complex load state of impact and three-dimensional in-situ stress acting on the rock in the bottom hole. The dynamic mechanical properties and the influencing factors of conglomerate, the main component of gravel layer, are the basis of engineering design and efficient rock breaking method and theoretical research. Limited by the previously experimental technique, there are few works published yet about conglomerate, especially rare in dynamic load. Based on this, a kind of 3D SHPB system, three-dimensional prestress, can be applied to simulate the in-situ stress characteristics, is adopted for the dynamic test of the conglomerate. The results show that the dynamic strength is higher than its static strength obviously, and while the three-dimensional prestress is 0 and the loading strain rate is 81.25~228.42 s-1, the true triaxial equivalent strength is 167.17~199.87 MPa, and the strong growth factor of dynamic and static is 1.61~1.92. And the higher the impact velocity, the greater the loading strain rate, the higher the dynamic strength and the greater the failure strain, which all increase linearly. There is a critical prestress in the impact direction and its vertical direction. In the impact direction, while the prestress is less than the critical one, the dynamic strength and the loading strain rate increase linearly; otherwise, the strength decreases slightly and the strain rate decreases rapidly. In the vertical direction of impact load, the strength increases and the strain rate decreases linearly before the critical prestress, after that, oppositely. The dynamic strength of the conglomerate can be reduced properly by reducing the amplitude of impact load so that the service life of rock-breaking tools can be prolonged while drilling in the stratum rich in gravel. The research has important reference significance for the speed-increasing technology and theoretical research while drilling in gravel layer.

Keywords: huge thick gravel layer, conglomerate, 3D SHPB, dynamic strength, the deformation characteristics, prestress

Procedia PDF Downloads 162
31214 Modeling the Effect of Thermal Gradation on Steady-State Creep Behavior of Isotropic Rotating Disc Made of Functionally Graded Material

Authors: Tania Bose, Minto Rattan, Neeraj Chamoli

Abstract:

In this paper, an attempt has been made to study the effect of thermal gradation on the steady-state creep behavior of rotating isotropic disc made of functionally graded material using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate have been taken for analysis. The stress and strain rate distributions have been calculated for the discs rotating at elevated temperatures having thermal gradation. The material parameters of creep vary radially and have been estimated by regression fit of the available experimental data. Investigations for discs made up of linearly increasing particle content operating under linearly decreasing temperature from inner to outer radii have been done using von Mises’ yield criterion. The results are displayed and compared graphically in designer friendly format for the above said disc profile with the disc made of particle reinforced composite operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.

Keywords: creep, isotropic, steady-state, thermal gradation

Procedia PDF Downloads 217
31213 Sample Preparation and Coring of Highly Friable and Heterogeneous Bonded Geomaterials

Authors: Mohammad Khoshini, Arman Khoshghalb, Meghdad Payan, Nasser Khalili

Abstract:

Most of the Earth’s crust surface rocks are technically categorized as weak rocks or weakly bonded geomaterials. Deeply weathered, weakly cemented, friable and easily erodible, they demonstrate complex material behaviour and understanding the overlooked mechanical behaviour of such materials is of particular importance in geotechnical engineering practice. Weakly bonded geomaterials are so susceptible to surface shear and moisture that conventional methods of core drilling fail to extract high-quality undisturbed samples out of them. Moreover, most of these geomaterials are of high heterogeneity rendering less reliable and feasible material characterization. In order to compensate for the unpredictability of the material response, either numerous experiments are needed to be conducted or large factors of safety must be implemented in the design process. However, none of these approaches is sustainable. In this study, a method for dry core drilling of such materials is introduced to take high-quality undisturbed core samples. By freezing the material at certain moisture content, a secondary structure is developed throughout the material which helps the whole structure to remain intact during the core drilling process. Moreover, to address the heterogeneity issue, the natural material was reconstructed artificially to obtain a homogeneous material with very high similarity to the natural one in both micro and macro-mechanical perspectives. The method is verified for both micro and macro scale. In terms of micro-scale analysis, using Scanning Electron Microscopy (SEM), pore spaces and inter-particle bonds were investigated and compared between natural and artificial materials. X-Ray Diffraction, XRD, analyses are also performed to control the chemical composition. At the macro scale, several uniaxial compressive strength tests, as well as triaxial tests, were performed to verify the similar mechanical response of the materials. A high level of agreement is observed between micro and macro results of natural and artificially bonded geomaterials. The proposed methods can play an important role to cut down the costs of experimental programs for material characterization and also to promote the accuracy of the numerical modellings based on the experimental results.

Keywords: Artificial geomaterial, core drilling, macro-mechanical behavior, micro-scale, sample preparation, SEM photography, weakly bonded geomaterials

Procedia PDF Downloads 191
31212 Biodegradable Elastic Polymers Are Used to Create Stretchable Piezoresistive Strain Sensors

Authors: Mostafa Vahdani, Mohsen Asadnia, Shuying Wu

Abstract:

Huge amounts of e-waste are being produced by the rapidly expanding use of electronics; the majority of this material is either burned or dumped directly in landfills since recycling would either be impracticable or too expensive. Degradable and environmentally friendly materials are therefore seen as the answer to this urgent problem. Here, we create strain sensors that are biodegradable, robust, and incredibly flexible using thin films of sodium carboxymethyl cellulose (NaCMC), glycerol, and polyvinyl alcohol (PVA). Due to the creation of many inter- or intramolecular hydrogen bonds, the polymer blends (NaCMC/PVA/glycerol) exhibit a failure strain of up to 330% and negligible hysteresis when exposed to cyclic stretching-releasing. What's more intriguing is that the sensors can degrade completely in deionized water at a temperature of 95 °C in about 25 minutes. This project illustrates a novel method for developing wearable electronics that are environmentally beneficial.

Keywords: degradable, stretchable, strain sensors, wearable electronics.

Procedia PDF Downloads 66
31211 3-D Modeling of Particle Size Reduction from Micro to Nano Scale Using Finite Difference Method

Authors: Himanshu Singh, Rishi Kant, Shantanu Bhattacharya

Abstract:

This paper adopts a top-down approach for mathematical modeling to predict the size reduction from micro to nano-scale through persistent etching. The process is simulated using a finite difference approach. Previously, various researchers have simulated the etching process for 1-D and 2-D substrates. It consists of two processes: 1) Convection-Diffusion in the etchant domain; 2) Chemical reaction at the surface of the particle. Since the process requires analysis along moving boundary, partial differential equations involved cannot be solved using conventional methods. In 1-D, this problem is very similar to Stefan's problem of moving ice-water boundary. A fixed grid method using finite volume method is very popular for modelling of etching on a one and two dimensional substrate. Other popular approaches include moving grid method and level set method. In this method, finite difference method was used to discretize the spherical diffusion equation. Due to symmetrical distribution of etchant, the angular terms in the equation can be neglected. Concentration is assumed to be constant at the outer boundary. At the particle boundary, the concentration of the etchant is assumed to be zero since the rate of reaction is much faster than rate of diffusion. The rate of reaction is proportional to the velocity of the moving boundary of the particle. Modelling of the above reaction was carried out using Matlab. The initial particle size was taken to be 50 microns. The density, molecular weight and diffusion coefficient of the substrate were taken as 2.1 gm/cm3, 60 and 10-5 cm2/s respectively. The etch-rate was found to decline initially and it gradually became constant at 0.02µ/s (1.2µ/min). The concentration profile was plotted along with space at different time intervals. Initially, a sudden drop is observed at the particle boundary due to high-etch rate. This change becomes more gradual with time due to declination of etch rate.

Keywords: particle size reduction, micromixer, FDM modelling, wet etching

Procedia PDF Downloads 406
31210 Development of Forging Technology of Cam Ring Gear for Truck Using Small Bar

Authors: D. H. Park, Y. H. Tak, H. H. Kwon, G. J. Kwon, H. G. Kim

Abstract:

This study focused on developing forging technology of a large-diameter cam ring gear from the small bar. The analyses of temperature variation and deformation behavior of the material are important to obtain the optimal forging products. The hot compression test was carried out to know formability at high temperature. In order to define the optimum forging conditions including material temperature, strain and forging load, the finite element method was used to simulate the forging process of cam ring gear parts. Test results were in good agreement with the simulations. An existing cam ring gear is presented the chips generated by cutting the rod material and the durability issues, but this would be to develop a large-diameter cam ring gear forging parts for truck in order to solve the durability problem and the material waste.

Keywords: forging technology, cam ring, gear, truck, small bar

Procedia PDF Downloads 264
31209 Tool Wear of Metal Matrix Composite 10wt% AlN Reinforcement Using TiB2 Cutting Tool

Authors: M. S. Said, J. A. Ghani, C. H. Che Hassan, N. N. Wan, M. A. Selamat, R. Othman

Abstract:

Metal Matrix Composite (MMCs) have attracted considerable attention as a result of their ability to provide high strength, high modulus, high toughness, high impact properties, improved wear resistance and good corrosion resistance than unreinforced alloy. Aluminium Silicon (Al/Si) alloys Metal Matrix composite (MMC) has been widely used in various industrial sectors such as transportation, domestic equipment, aerospace, military, construction, etc. Aluminium silicon alloy is MMC reinforced with aluminium nitride (AlN) particle and becomes a new generation material for automotive and aerospace applications. The AlN material is one of the advanced materials with light weight, high strength, high hardness and stiffness qualities which have good future prospects. However, the high degree of ceramic particles reinforcement and the irregular nature of the particles along the matrix material that contribute to its low density, is the main problem that leads to the machining difficulties. This paper examines tool wear when milling AlSi/AlN Metal Matrix Composite using a TiB2 coated carbide cutting tool. The volume of the AlN reinforced particle was 10%. The milling process was carried out under dry cutting condition. The TiB2 coated carbide insert parameters used were the cutting speed of (230 m/min, feed rate 0.4mm tooth, DOC 0.5mm, 300 m/min, feed rate 0.8mm/tooth, DOC 0.5mm and 370 m/min, feed rate 0.8, DOC 0.4m). The Sometech SV-35 video microscope system was used for tool wear measurements respectively. The results have revealed that the tool life increases with the cutting speed (370 m/min, feed rate 0.8 mm/tooth and depth of cut 0.4mm) constituted the optimum condition for longer tool life which is 123.2 min. While at medium cutting speed, it is found that the cutting speed of 300m/min, feed rate 0.8 mm/tooth and depth of cut 0.5mm only 119.86 min for tool wear mean while the low cutting speed give 119.66 min. The high cutting speed gives the best parameter for cutting AlSi/AlN MMCs materials. The result will help manufacture to machining the AlSi/AlN MMCs materials.

Keywords: AlSi/AlN Metal Matrix Composite milling process, tool wear, TiB2 coated carbide tool, manufacturing engineering

Procedia PDF Downloads 401
31208 On Mathematical Modelling and Optimization of Emerging Trends Processes in Advanced Manufacturing

Authors: Agarana Michael C., Akinlabi Esther T., Pule Kholopane

Abstract:

Innovation in manufacturing process technologies and associated product design affects the prospects for manufacturing today and in near future. In this study some theoretical methods, useful as tools in advanced manufacturing, are considered. In particular, some basic Mathematical, Operational Research, Heuristic, and Statistical techniques are discussed. These techniques/methods are very handy in many areas of advanced manufacturing processes, including process planning optimization, modelling and analysis. Generally the production rate requires the application of Mathematical methods. The Emerging Trends Processes in Advanced Manufacturing can be enhanced by using Mathematical Modelling and Optimization techniques.

Keywords: mathematical modelling, optimization, emerging trends, advanced manufacturing

Procedia PDF Downloads 266
31207 Microstructure Characterization of the Ball Milled Fe50Al30Ni20 (%.wt) Powder

Authors: C. Nakib, N. Ammouchi, A. Otmani, A. Djekoun, J. M. Grenèche

Abstract:

B2-structured FeAl was synthesized by an abrupt reaction during mechanical alloying (MA) of the elemental powders of Fe, Al and Ni. The structural, microstructural and morphological changes occurring in the studied material during MA were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Two crystalline phases were found, the major one corresponding to FeAl bcc phase with a crystallite size less than 10 nm, a lattice strain up to 1.6% and a dislocation density of about 2.3 1016m-2. The other phase in low proportion was corresponding to Fe (Al,Ni) solid solution. SEM images showed an irregular morphology of powder particles.

Keywords: mechanical alloying, ternary composition, dislocation density, structural properties

Procedia PDF Downloads 251
31206 Numerical Modelling of Shear Zone and Its Implications on Slope Instability at Letšeng Diamond Open Pit Mine, Lesotho

Authors: M. Ntšolo, D. Kalumba, N. Lefu, G. Letlatsa

Abstract:

Rock mass damage due to shear tectonic activity has been investigated largely in geoscience where fluid transport is of major interest. However, little has been studied on the effect of shear zones on rock mass behavior and its impact on stability of rock slopes. At Letšeng Diamonds open pit mine in Lesotho, the shear zone composed of sheared kimberlite material, calcite and altered basalt is forming part of the haul ramp into the main pit cut 3. The alarming rate at which the shear zone is deteriorating has triggered concerns about both local and global stability of pit the walls. This study presents the numerical modelling of the open pit slope affected by shear zone at Letšeng Diamond Mine (LDM). Analysis of the slope involved development of the slope model by using a two-dimensional finite element code RS2. Interfaces between shear zone and host rock were represented by special joint elements incorporated in the finite element code. The analysis of structural geological mapping data provided a good platform to understand the joint network. Major joints including shear zone were incorporated into the model for simulation. This approach proved successful by demonstrating that continuum modelling can be used to evaluate evolution of stresses, strain, plastic yielding and failure mechanisms that are consistent with field observations. Structural control due to geological shear zone structure proved to be important in its location, size and orientation. Furthermore, the model analyzed slope deformation and sliding possibility along shear zone interfaces. This type of approach can predict shear zone deformation and failure mechanism, hence mitigation strategies can be deployed for safety of human lives and property within mine pits.

Keywords: numerical modeling, open pit mine, shear zone, slope stability

Procedia PDF Downloads 274
31205 Active Thermography Technique for High-Entropy Alloy Characterization Deposited with Cold Spray Technique

Authors: Nazanin Sheibanian, Raffaella Sesana, Sedat Ozbilen

Abstract:

In recent years, high-entropy alloys (HEAs) have attracted considerable attention due to their unique properties and potential applications. In this study, novel HEA coatings were prepared on Mg substrates using mechanically alloyed HEA powder feedstocks based on Al_(0.1-0.5)CoCrCuFeNi and MnCoCrCuFeNi multi-material systems. The coatings were deposited by the Cold Spray (CS) process using three different temperatures of the process gas (N2) (650°C, 750°C, and 850°C) to examine the effect of gas temperature on coating properties. In this study, Infrared Thermography (non-destructive) was examined as a possible quality control technique for HEA coatings applied to magnesium substrates. Active Thermography was employed to characterize coating properties using the thermal response of the coating. Various HEA chemical compositions and deposition temperatures have been investigated. As a part of this study, a comprehensive macro and microstructural analysis of Cold Spray (CS) HEA coatings has been conducted using macrophotography, optical microscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM+EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), microhardness tests, roughness measurements, and porosity assessments. These analyses provided insight into phase identification, microstructure characterization, deposition, particle deformation behavior, bonding mechanisms, and identifying a possible relationship between physical properties and thermal responses. Based on the figures and tables, it is evident that the Maximum Relative Radiance (∆RMax) of each sample differs depending on both the chemical composition of HEA and the temperature at which Cold Spray is applied.

Keywords: active thermography, coating, cold spray, high- entropy alloy, material characterization

Procedia PDF Downloads 46
31204 Numerical Investigation of Static and Dynamic Responses of Fiber Reinforced Sand

Authors: Sandeep Kumar, Mahesh Kumar Jat, Rajib Sarkar

Abstract:

Soil reinforced with randomly distributed fibers is an attractive means to improve the performance of soil in a cost effective manner. Static and dynamic characterization of fiber reinforced soil have become important to evaluate adequate performance for all classes of geotechnical engineering problems. Present study investigates the behaviour of fiber reinforced cohesionless soil through numerical simulation of triaxial specimen. The numerical model has been validated with the existing literature of laboratory triaxial compression testing. A parametric study has been done to find out optimum fiber content for shear resistance. Cyclic triaxial testing has been simulated and the stress-strain response of fiber-reinforced sand has been examined considering different combination of fiber contents. Shear modulus values and damping values of fiber-reinforced sand are evaluated. It has been observed from results that for 1.0 percent fiber content shear modulus increased 2.28 times and damping ratio decreased 4.6 times. The influence of amplitude of cyclic strain, confining pressure and frequency of loading on the dynamic properties of fiber reinforced sand has been investigated and presented.

Keywords: damping, fiber reinforced soil, numerical modelling, shear modulus

Procedia PDF Downloads 251
31203 Characterization and Comparative Analysis of North Bengal Sand

Authors: Marzia Hoque Tania, Oishy Roy, ASW Kurny, Fahmida Gulshan

Abstract:

This paper presents results of the investigation on the characterization of silica sand of northern region of Bangladesh on the basis of material composition, particle shape, and size, density, transportation, crystallinity, etc. before and after upgradation. The raw sand samples collected from Nilphamari and Lalmonirhat district were studied and compared for the prospect silica as a high valued commodity rather than heavy minerals. The raw sand particles were colorful in appearance with varying particle size distribution. Scanning Electron Microscopy (SEM) showed uniformity in grain size and mineralogical composition. X-ray fluorescence (XRF) analysis indicated the silica content of the as-received sample to be 75%. Thermogravimetric and Differential Thermal Analysis (DTA) did not detect the presence of any organic material. These tests revealed the sample to be alpha-quartz. Samples were washed with organic and inorganic acid with a combination of varying rotation speed, concentration, solid-liquid ratio. Experiments showed the silica content could be enhanced to more than 85% by washing with 15% sulphuric acid in room temperature. Beneficiation can be improved in further work considering the effect of varying temperature or advanced technology.

Keywords: beneficiation, characterization, commercial grade sand, glass sand, silica, upgradation

Procedia PDF Downloads 112
31202 Modelling of Composite Steel and Concrete Beam with the Lightweight Concrete Slab

Authors: Veronika Přivřelová

Abstract:

Well-designed composite steel and concrete structures highlight the good material properties and lower the deficiencies of steel and concrete, in particular they make use of high tensile strength of steel and high stiffness of concrete. The most common composite steel and concrete structure is a simply supported beam, which concrete slab transferring the slab load to a beam is connected to the steel cross-section. The aim of this paper is to find the most adequate numerical model of a simply supported composite beam with the cross-sectional and material parameters based on the results of a processed parametric study and numerical analysis. The paper also evaluates the suitability of using compact concrete with the lightweight aggregates for composite steel and concrete beams. The most adequate numerical model will be used in the resent future to compare the results of laboratory tests.

Keywords: composite beams, high-performance concrete, high-strength steel, lightweight concrete slab, modeling

Procedia PDF Downloads 375
31201 Characterization of 2,4,6-Trinitrotoluene (Tnt)-Metabolizing Bacillus Cereus Sp TUHP2 Isolated from TNT-Polluted Soils in the Vellore District, Tamilnadu, India

Authors: S. Hannah Elizabeth, A. Panneerselvam

Abstract:

Objective: The main objective was to evaluate the degradative properties of Bacillus cereus sp TUHP2 isolated from TNT-Polluted soils in the Vellore District, Tamil Nadu, India. Methods: Among the 3 bacterial genera isolated from different soil samples, one potent TNT degrading strain Bacillus cereus sp TUHP2 was identified. The morphological, physiological and the biochemical properties of the strain Bacillus cereus sp TUHP2 was confirmed by conventional methods and genotypic characterization was carried out using 16S r-DNA partial gene amplification and sequencing. The broken down by products of DNT in the extract was determined by Gas Chromatogram- Mass spectrometry (GC-MS). Supernatant samples from the broth studied at 24 h interval were analyzed by HPLC analysis and the effect on various nutritional and environmental factors were analysed and optimized for the isolate. Results: Out of three isolates one strain TUHP2 were found to have potent efficiency to degrade TNT and revealed the genus Bacillus. 16S rDNA gene sequence analysis showed highest homology (98%) with Bacillus cereus and was assigned as Bacillus cereus sp TUHP2. Based on the energy of the predicted models, the secondary structure predicted by MFE showed the more stable structure with a minimum energy. Products of TNT Transformation showed colour change in the medium during cultivation. TNT derivates such as 2HADNT and 4HADNT were detected by HPLC chromatogram and 2ADNT, 4ADNT by GC/MS analysis. Conclusion: Hence this study presents the clear evidence for the biodegradation process of TNT by strain Bacillus cereus sp TUHP2.

Keywords: bioremediation, biodegradation, biotransformation, sequencing

Procedia PDF Downloads 437
31200 Study on Constitutive Model of Particle Filling Material Considering Volume Expansion

Authors: Xu Jinsheng, Tong Xin, Zheng Jian, Zhou Changsheng

Abstract:

The NEPE (nitrate ester plasticized polyether) propellant is a kind of particle filling material with relatively high filling fraction. The experimental results show that the microcracks, microvoids and dewetting can cause the stress softening of the material. In this paper, a series of mechanical testing in inclusion with CCD technique were conducted to analyze the evolution of internal defects of propellant. The volume expansion function of the particle filling material was established by measuring of longitudinal and transverse strain with optical deformation measurement system. By analyzing the defects and internal damages of the material, a visco-hyperelastic constitutive model based on free energy theory was proposed incorporating damage function. The proposed constitutive model could accurately predict the mechanical properties of uniaxial tensile tests and tensile-relaxation tests.

Keywords: dewetting, constitutive model, uniaxial tensile tests, visco-hyperelastic, nonlinear

Procedia PDF Downloads 262
31199 An Adaptable Semi-Numerical Anisotropic Hyperelastic Model for the Simulation of High Pressure Forming

Authors: Daniel Tscharnuter, Eliza Truszkiewicz, Gerald Pinter

Abstract:

High-quality surfaces of plastic parts can be achieved in a very cost-effective manner using in-mold processes, where e.g. scratch resistant or high gloss polymer films are pre-formed and subsequently receive their support structure by injection molding. The pre-forming may be done by high-pressure forming. In this process, a polymer sheet is heated and subsequently formed into the mold by pressurized air. Due to the heat transfer to the cooled mold the polymer temperature drops below its glass transition temperature. This ensures that the deformed microstructure is retained after depressurizing, giving the sheet its final formed shape. The development of a forming process relies heavily on the experience of engineers and trial-and-error procedures. Repeated mold design and testing cycles are however both time- and cost-intensive. It is, therefore, desirable to study the process using reliable computer simulations. Through simulations, the construction of the mold and the effect of various process parameters, e.g. temperature levels, non-uniform heating or timing and magnitude of pressure, on the deformation of the polymer sheet can be analyzed. Detailed knowledge of the deformation is particularly important in the forming of polymer films with integrated electro-optical functions. Care must be taken in the placement of devices, sensors and electrical and optical paths, which are far more sensitive to deformation than the polymers. Reliable numerical prediction of the deformation of the polymer sheets requires sophisticated material models. Polymer films are often either transversely isotropic or orthotropic due to molecular orientations induced during manufacturing. The anisotropic behavior affects the resulting strain field in the deformed film. For example, parts of the same shape but different strain fields may be created by varying the orientation of the film with respect to the mold. The numerical simulation of the high-pressure forming of such films thus requires material models that can capture the nonlinear anisotropic mechanical behavior. There are numerous commercial polymer grades for the engineers to choose from when developing a new part. The effort required for comprehensive material characterization may be prohibitive, especially when several materials are candidates for a specific application. We, therefore, propose a class of models for compressible hyperelasticity, which may be determined from basic experimental data and which can capture key features of the mechanical response. Invariant-based hyperelastic models with a reduced number of invariants are formulated in a semi-numerical way, such that the models are determined from a single uniaxial tensile tests for isotropic materials, or two tensile tests in the principal directions for transversely isotropic or orthotropic materials. The simulation of the high pressure forming of an orthotropic polymer film is finally done using an orthotropic formulation of the hyperelastic model.

Keywords: hyperelastic, anisotropic, polymer film, thermoforming

Procedia PDF Downloads 594
31198 Nano-Coating for Corrosion Prevention

Authors: M. J. Suriani, F. Mansor, W. Siti Maizurah, I. Nurizwani

Abstract:

Silicon Carbide (SiC) is one of the Silicon-based materials, which get interested by the researcher. SiC is an emerging semiconductor material, which has received a great deal of attention due to their application in high frequency and high power systems. Although its superior characteristic for a semiconductor material, its outstanding mechanical properties, chemical inertness and thermal stability has gained important aspect for a surface coating for deployment in extreme environments. Very high frequency (VHF)-PECVD technique utilized to deposit nano ns-SiC film in which variation in chamber pressure, substrate temperature, RF power and precursor gases flow rate will be investigated in order to get a good quality of thin film coating. Characterization of the coating performed in order to study the surface morphology, structural information. This performance of coating evaluated through corrosion test to determine the effectiveness of the coating for corrosion prevention. Ns-SiC film expected to possess better corrosion resistance and optical properties, as well as preserving the metal from the marine environment. Through this research project, corrosion protection performance by applying coating will be explored to obtain a great corrosion prevention method to the shipping and oil and gas industry in Malaysia. Besides, the cost of repair and maintenance spending by the government of Malaysia can be reduced through practicing this method.

Keywords: composite materials, marine corrosion, nano-composite, nano structure–coating

Procedia PDF Downloads 444
31197 Mechanical Characterization and CNC Rotary Ultrasonic Grinding of Crystal Glass

Authors: Ricardo Torcato, Helder Morais

Abstract:

The manufacture of crystal glass parts is based on obtaining the rough geometry by blowing and/or injection, generally followed by a set of manual finishing operations using cutting and grinding tools. The forming techniques used do not allow the obtainment, with repeatability, of parts with complex shapes and the finishing operations use intensive specialized labor resulting in high cycle times and production costs. This work aims to explore the digital manufacture of crystal glass parts by investigating new subtractive techniques for the automated, flexible finishing of these parts. Finishing operations are essential to respond to customer demands in terms of crystal feel and shine. It is intended to investigate the applicability of different computerized finishing technologies, namely milling and grinding in a CNC machining center with or without ultrasonic assistance, to crystal processing. Research in the field of grinding hard and brittle materials, despite not being extensive, has increased in recent years, and scientific knowledge about the machinability of crystal glass is still very limited. However, it can be said that the unique properties of glass, such as high hardness and very low toughness, make any glass machining technology a very challenging process. This work will measure the performance improvement brought about by the use of ultrasound compared to conventional crystal grinding. This presentation is focused on the mechanical characterization and analysis of the cutting forces in CNC machining of superior crystal glass (Pb ≥ 30%). For the mechanical characterization, the Vickers hardness test provides an estimate of the material hardness (Hv) and the fracture toughness based on cracks that appear in the indentation. Mechanical impulse excitation test estimates the Young’s Modulus, shear modulus and Poisson ratio of the material. For the cutting forces, it a dynamometer was used to measure the forces in the face grinding process. The tests were made based on the Taguchi method to correlate the input parameters (feed rate, tool rotation speed and depth of cut) with the output parameters (surface roughness and cutting forces) to optimize the process (better roughness using the cutting forces that do not compromise the material structure and the tool life) using ANOVA. This study was conducted for conventional grinding and for the ultrasonic grinding process with the same cutting tools. It was possible to determine the optimum cutting parameters for minimum cutting forces and for minimum surface roughness in both grinding processes. Ultrasonic-assisted grinding provides a better surface roughness than conventional grinding.

Keywords: CNC machining, crystal glass, cutting forces, hardness

Procedia PDF Downloads 125
31196 Synthesis and Performance Study of Co3O4 as a Bi-Functional Next Generation Material

Authors: Shrikaant Kulkarni, Akshata Naik Nimbalkar

Abstract:

In this worki a method protocol has been developed for the synthesis of innovative Co3O4 material by using a method of chemical synthesis followed by calcination. The effect of calcination temperature on the morphology, structure and catalytic performance on material in question is investigated by using characterization tools like scanning electron microscopy (SEM), X-ray diffraction (XRD) spectroscopy and electrochemical techniques. The SEM images reveal that the morphology of the Co3O4 material undergoes a change from the rod to a beadlike shape on calcination at temperature of 700 °C. The XRD image shows that although the morphology of synthesized Co3O4 material exhibits a cubic phase but it differs in crystallinity depending upon morphology. Similarly spherical beadlike Co3O4 material has exhibited better activity than its rodlike counterpart which is reflected from electrochemical findings. Further, its performance in terms of bifunctional nature and hlods a lot much of promise as a excellent electrode material in the next generation batteries and fuel cells.

Keywords: bifunctional, next generation material, Co3O4, XRD

Procedia PDF Downloads 347