Search results for: diffusion magnetic resonance imaging
943 Biosynthesis, Characterization and Interplay of Bacteriocin-nanoparticles to Combat Infectious Drug Resistant Pathogens
Authors: Asma Ansari, Afsheen Aman, Shah Ali Ul Qader
Abstract:
In the past few years, numerous concerns have been raised against increased bacterial resistance towards effective drugs and become a debated issue all over the world. With the emergence of drug resistant pathogens, the interaction of natural antimicrobial compounds and antibacterial nanoparticles has emerged as a potential candidate for combating infectious diseases. Microbial diversity in the biome provides an opportunity to screen new species which are capable of producing large number of antimicrobial compounds. Among these antimicrobial compounds, bacteriocins are highly specific and efficient antagonists. A combination of bacteriocin along with nanoparticles could prove to be more potent due to broadened antibacterial spectrum with possibly lower doses. In the current study, silver nanoparticles were synthesized through biological reduction using various isolated bacterial, fungal and yeast strains. Spectroscopy and scanning electron microscopy (SEM) was performed for the confirmation of nanoparticles. Bacteriocin was characterized and purified to homogeneity through gel permeation chromatography. The estimated molecular weight of bacteriocin was 10 kDa. Amino acid analysis and N-terminal sequencing revealed the novelty of the protein. Then antibacterial potential of silver nanoparticles and broad inhibitory spectrum bacteriocin was determined through agar well diffusion assay. These synthesized bacteriocin-Nanoparticles exhibit a good potential for clinical applications as compared to bacteriocin alone. This combination of bacteriocin with nanoparticles will be used as a new sort of biocide in the field of nano-proteomics. The advancement of nanoparticles-mediated drug delivery system will open a new age for rapid eradication of pathogens from biological systems.Keywords: BAC-IB17, multidrug resistance, purification, silver nanoparticles
Procedia PDF Downloads 497942 Risk Assessment of Heavy Metals in River Sediments and Suspended Matter in Small Tributaries of Abandoned Mercury Mines in Wanshan, Guizhou
Authors: Guo-Hui Lu, Jing-Yi Cai, Ke-Yan Tan, Xiao-Cai Yin, Yu Zheng, Peng-Wei Shao, Yong-Liang Yang
Abstract:
Soil erosion around abandoned mines is one of the important geological agents for pollutant diffuses to the lower reaches of the local river basin system. River loading of pollutants is an important parameter for remediation of abandoned mines. In order to obtain information on pollutant transport and diffusion downstream in mining area, the small tributary system of the Xiaxi River in Wanshan District of Guizhou Province was selected as the research area. Sediment and suspended matter samples were collected and determined for Pb, As, Hg, Zn, Co, Cd, Cu, Ni, Cr, and Mn by inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) with the pretreatment of wet digestion. Discussions are made for pollution status and spatial distribution characteristics. The total Hg content in the sediments ranged from 0.45 to 16.0 g/g (dry weight) with an average of 5.79 g/g, which was ten times higher than the limit of Class II soil for mercury by the National Soil Environmental Quality Standard. The maximum occurred at the intersection of the Jin River and the Xiaxi River. The potential ecological hazard index (RI) was used to evaluate the ecological risk of heavy metals in the sediments. The average RI value for the whole study area suggests the high potential ecological risk level. High Cd potential ecological risk was found at individual sites.Keywords: heavy metal, risk assessment, sediment, suspended matter, Wanshan mercury mine, small tributary system
Procedia PDF Downloads 133941 Purification of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) from Fish Oil Using HPLC Method and Investigation of Their Antibacterial Effects on Some Pathogenic Bacteria
Authors: Yılmaz Uçar, Fatih Ozogul, Mustafa Durmuş, Yesim Ozogul, Ali Rıza Köşker, Esmeray Kuley Boğa, Deniz Ayas
Abstract:
The aim of this study was to purified eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), that are essential oils from trout oil, using high-performance liquid chromatography (HPLC) method, bioconverted EPA and DHA into bioconverted EPA (bEPA), bioconverted DHA (bDHA) extracts by P. aeruginosa PR3. Moreover, in vitro antibacterial activity of bEPA and bDHA was investigated using disc diffusion methods and minimum inhibitory concentration (MIC). EPA and DHA concentration of 11.1% and 15.9% in trout oil increased in 58.64% and 40.33% after HPLC optimisation, respectively. In this study, EPA and DHA enriched products were obtained which are to be used as valuable supplements for food and pharmaceutical purposes. The bioconverted EPA and DHA exhibited antibacterial activities against two Gram-positive bacteria (Listeria monocytogenes ATCC 7677 and Staphylococcus aureus ATCC 29213) and six Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC700603, Enterococcus faecalis ATCC 29212, Aeromonas hydrophila NCIMB 1135, and Salmonella Paratyphi A NCTC 13). Inhibition zones and MIC value of bEPA and bDHA against bacterial strains ranged from 7 to 12 mm and from 350 to 2350 μg/mL, respectively. Our results suggested that the crude extracts of bioconversion of EPA and DHA by P. aeruginosa PR3 can be considered as promising antimicrobials in improving food safety by controlling foodborne pathogens.Keywords: High-Performance Liquid Chromatography (HPLC), docosahexaenoic acid, DHA, eicosapentaenoic acid, EPA, minimum inhibitory concentration, MIC, Pseudomonas aeruginosa PR3
Procedia PDF Downloads 502940 Antibacterial Activity of Flavonoids from Corn Silk (Zea mays L.) in Propionibacterium acne, Staphylococcus Aureus and Staphylococcus Epidermidis
Authors: Fitri Ayu, Nadia, Tanti, Putri, Fatkhan, Pasid Harlisa, Suparmi
Abstract:
Acne is a skin abnormal conditions experienced by many teens, this is caused by various factors such as the climate is hot, humid and excessive sun exposure can aggravate acne because it will lead to excess oil production. Flavonoids form complex compounds against extracellular proteins that disrupt the integrity of bacterial cell membrane in a way denature bacterial cell proteins and bacterial cell membrane damage. This study aimed to test the antibacterial activity of corn silk extract with a concentration of 10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 % and 100 % in vitro by measuring the inhibition of the growth of bacteria Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis then compared with the standard antibiotic clindamycin. Extracts tested by Disk Diffusion Method, in which the blank disc soaked with their respective corn silk extract concentration for 15-30 minutes and then the medium of bacteria that have been planted with Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermis in the given disk that already contains extracts with various concentration. Incubated for 24 hours and then measured the growth inhibition zone Propionibacterium acne, Staphylococcus aureus and Staphylococcus epidermidis. Corn silk contains flavonoids, is shown by the test of flavonoids in corn silk extract by using a tube heating and without heating. Flavonoid in corn silk potentially as anti acne by inhibiting the growth of bacteria that cause acne. Corn silk extract concentration which has the highest antibacterial activity is then performed in a cream formulation and evaluation test of physical and chemical properties of the resulting cream preparation.Keywords: antibacterial, flavonoid, corn silk, acne
Procedia PDF Downloads 514939 Melanoma and Non-Melanoma, Skin Lesion Classification, Using a Deep Learning Model
Authors: Shaira L. Kee, Michael Aaron G. Sy, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar AlDahoul
Abstract:
Skin diseases are considered the fourth most common disease, with melanoma and non-melanoma skin cancer as the most common type of cancer in Caucasians. The alarming increase in Skin Cancer cases shows an urgent need for further research to improve diagnostic methods, as early diagnosis can significantly improve the 5-year survival rate. Machine Learning algorithms for image pattern analysis in diagnosing skin lesions can dramatically increase the accuracy rate of detection and decrease possible human errors. Several studies have shown the diagnostic performance of computer algorithms outperformed dermatologists. However, existing methods still need improvements to reduce diagnostic errors and generate efficient and accurate results. Our paper proposes an ensemble method to classify dermoscopic images into benign and malignant skin lesions. The experiments were conducted using the International Skin Imaging Collaboration (ISIC) image samples. The dataset contains 3,297 dermoscopic images with benign and malignant categories. The results show improvement in performance with an accuracy of 88% and an F1 score of 87%, outperforming other existing models such as support vector machine (SVM), Residual network (ResNet50), EfficientNetB0, EfficientNetB4, and VGG16.Keywords: deep learning - VGG16 - efficientNet - CNN – ensemble – dermoscopic images - melanoma
Procedia PDF Downloads 85938 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials
Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic
Abstract:
The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.Keywords: laser welding-brazing, finite element, response surface methodology (RSM), multi-response optimization, cross-beam laser
Procedia PDF Downloads 353937 Effects of the Fractional Order on Nanoparticles in Blood Flow through the Stenosed Artery
Authors: Mohammed Abdulhameed, Sagir M. Abdullahi
Abstract:
In this paper, based on the applications of nanoparticle, the blood flow along with nanoparticles through stenosed artery is studied. The blood is acted by periodic body acceleration, an oscillating pressure gradient and an external magnetic field. The mathematical formulation is based on Caputo-Fabrizio fractional derivative without singular kernel. The model of ordinary blood, corresponding to time-derivatives of integer order, is obtained as a limiting case. Analytical solutions of the blood velocity and temperature distribution are obtained by means of the Hankel and Laplace transforms. Effects of the order of Caputo-Fabrizio time-fractional derivatives and three different nanoparticles i.e. Fe3O4, TiO4 and Cu are studied. The results highlights that, models with fractional derivatives bring significant differences compared to the ordinary model. It is observed that the addition of Fe3O4 nanoparticle reduced the resistance impedance of the blood flow and temperature distribution through bell shape stenosed arteries as compared to TiO4 and Cu nanoparticles. On entering in the stenosed area, blood temperature increases slightly, but, increases considerably and reaches its maximum value in the stenosis throat. The shears stress has variation from a constant in the area without stenosis and higher in the layers located far to the longitudinal axis of the artery. This fact can be an important for some clinical applications in therapeutic procedures.Keywords: nanoparticles, blood flow, stenosed artery, mathematical models
Procedia PDF Downloads 268936 Genetic Characterization of a Composite Transposon Carrying armA and Aac(6)-Ib Genes in an Escherichia coli Isolate from Egypt
Authors: Omneya M. Helmy, Mona T. Kashef
Abstract:
Aminoglycosides are used in treating a wide range of infections caused by both Gram-negative and Gram positive bacteria. The presence of 16S rRNA methyl transferases (16S-RMTase) is among the newly discovered resistance mechanisms that confer high resistance to clinically useful aminoglycosides. Cephalosporins are the most commonly used antimicrobials in Egypt; therefore, this study was conducted to determine the isolation frequency of 16S rRNA methyl transferases among third generation cephalosporin-resistant clinical isolates in Egypt. One hundred and twenty three cephalosporin resistant Gram-negative clinical isolates were screened for aminoglycoside resistance by the Kirby Bauer disk diffusion method and tested for possible production of 16S-RMTase. PCR testing and sequencing were used to confirm the presence of 16S-RMTase and the associated antimicrobial resistance determinants, as well as the genetic region surrounding the armA gene. Out of 123 isolates, 66 (53.66%) were resistant to at least one aminoglycoside antibiotic. Only one Escherichia coli isolate (E9ECMO) which was totally resistant to all tested aminoglycosides, was confirmed to have the armA gene in association with blaTEM-1, blaCTX-M-15, blaCTX-M-14 and aac(6)-Ib genes. The armA gene was found to be carried on a large A/C plasmid. Genetic mapping of the armA surrounding region revealed, for the first time, the association of armA with aac(6)-Ib on the same transposon. In Conclusion, the isolation frequency of 16S-RMTase was low among the tested cephalosporin-resistant clinical samples. However, a novel composite transposon has been detected conferring high-level aminoglycosides resistance.Keywords: aminoglcosides, armA gene, β lactmases, 16S rRNA methyl transferases
Procedia PDF Downloads 285935 Multi-Temporal Cloud Detection and Removal in Satellite Imagery for Land Resources Investigation
Authors: Feng Yin
Abstract:
Clouds are inevitable contaminants in optical satellite imagery, and prevent the satellite imaging systems from acquiring clear view of the earth surface. The presence of clouds in satellite imagery bring negative influences for remote sensing land resources investigation. As a consequence, detecting the locations of clouds in satellite imagery is an essential preprocessing step, and further remove the existing clouds is crucial for the application of imagery. In this paper, a multi-temporal based satellite imagery cloud detection and removal method is proposed, which will be used for large-scale land resource investigation. The proposed method is mainly composed of four steps. First, cloud masks are generated for cloud contaminated images by single temporal cloud detection based on multiple spectral features. Then, a cloud-free reference image of target areas is synthesized by weighted averaging time-series images in which cloud pixels are ignored. Thirdly, the refined cloud detection results are acquired by multi-temporal analysis based on the reference image. Finally, detected clouds are removed via multi-temporal linear regression. The results of a case application in Hubei province indicate that the proposed multi-temporal cloud detection and removal method is effective and promising for large-scale land resource investigation.Keywords: cloud detection, cloud remove, multi-temporal imagery, land resources investigation
Procedia PDF Downloads 281934 Multidrug Resistance Mechanisms among Gram Negative Clinical Isolates from Egypt
Authors: Mona T. Kashef, Omneya M. Helmy
Abstract:
Multidrug resistant (MDR) bacteria have become a significant public health threat. The prevalence rates, of Gram negative MDR bacteria, are in continuous increase. However, few data are available about these resistant strains. Since, third generation cephalosporins are one of the most commonly used antimicrobials, we set out to investigate the prevalence, different mechanisms and clonal relatedness of multidrug resistance among third generation resistant Gram negative clinical isolates. A total of 114 Gram negative clinical isolates, previously characterized as being resistant to at least one of 3rd generation cephalosporins, were included in this study. Each isolate was tested, using Kirby Bauer disk diffusion method, against its assigned categories of antimicrobials. The role of efflux pump in resistance development was tested by the efflux pump inhibitor-based microplate assay using chloropromazine as an inhibitor. Detecting different aminoglycosides, β-lactams and quinolones resistance genes was done using polymerase chain reaction. The genetic diversity of MDR isolates was investigated using Random Amplification of Polymorphic DNA technique. MDR phenotype was detected in 101 isolates (89%). Efflux pump mediated resistance was detected in 49/101 isolates. Aminoglycosides resistance genes; armA and aac(6)-Ib were detected in one and 53 isolates, respectively. The aac(6)-Ib-cr allele, that also confers resistance to floroquinolones, was detected in 28/53 isolates. β-lactam resistance genes; blaTEM, blaSHV, blaCTX-M group 1 and group 9 were detected in 52, 29, 61 and 35 isolates, respectively. Quinolone resistance genes; qnrA, qnrB and qnrS were detectable in 2, 14, 8 isolates respectively, while qepA was not detectable at all. High diversity was observed among tested MDR isolates. MDR is common among 3rd generation cephalosporins resistant Gram negative bacteria, in Egypt. In most cases, resistance was caused by different mechanisms. Therefore, new treatment strategies should be implemented.Keywords: gram negative, multidrug resistance, RAPD typing, resistance genes
Procedia PDF Downloads 321933 Automated Feature Detection and Matching Algorithms for Breast IR Sequence Images
Authors: Chia-Yen Lee, Hao-Jen Wang, Jhih-Hao Lai
Abstract:
In recent years, infrared (IR) imaging has been considered as a potential tool to assess the efficacy of chemotherapy and early detection of breast cancer. Regions of tumor growth with high metabolic rate and angiogenesis phenomenon lead to the high temperatures. Observation of differences between the heat maps in long term is useful to help assess the growth of breast cancer cells and detect breast cancer earlier, wherein the multi-time infrared image alignment technology is a necessary step. Representative feature points detection and matching are essential steps toward the good performance of image registration and quantitative analysis. However, there is no clear boundary on the infrared images and the subject's posture are different for each shot. It cannot adhesive markers on a body surface for a very long period, and it is hard to find anatomic fiducial markers on a body surface. In other words, it’s difficult to detect and match features in an IR sequence images. In this study, automated feature detection and matching algorithms with two type of automatic feature points (i.e., vascular branch points and modified Harris corner) are developed respectively. The preliminary results show that the proposed method could identify the representative feature points on the IR breast images successfully of 98% accuracy and the matching results of 93% accuracy.Keywords: Harris corner, infrared image, feature detection, registration, matching
Procedia PDF Downloads 305932 A Three-Dimensional Investigation of Stabilized Turbulent Diffusion Flames Using Different Type of Fuel
Authors: Moataz Medhat, Essam E. Khalil, Hatem Haridy
Abstract:
In the present study, a numerical simulation study is used to 3-D model the steady-state combustion of a staged natural gas flame in a 300 kW swirl-stabilized burner, using ANSYS solver to find the highest combustion efficiency by changing the inlet air swirl number and burner quarl angle in a furnace and showing the effect of flue gas recirculation, type of fuel and staging. The combustion chamber of the gas turbine is a cylinder of diameter 1006.8 mm, and a height of 1651mm ending with a hood until the exhaust cylinder has been reached, where the exit of combustion products which have a diameter of 300 mm, with a height of 751mm. The model was studied by 15 degree of the circumference due to axisymmetric of the geometry and divided into a mesh of about 1.1 million cells. The numerical simulations were performed by solving the governing equations in a three-dimensional model using realizable K-epsilon equations to express the turbulence and non-premixed flamelet combustion model taking into consideration radiation effect. The validation of the results was done by comparing it with other experimental data to ensure the agreement of the results. The study showed two zones of recirculation. The primary one is at the center of the furnace, and the location of the secondary one varies by changing the quarl angle of the burner. It is found that the increase in temperature in the external recirculation zone is a result of increasing the swirl number of the inlet air stream. Also it was found that recirculating part of the combustion products back to the combustion zone decreases pollutants formation especially nitrogen monoxide.Keywords: burner selection, natural gas, analysis, recirculation
Procedia PDF Downloads 163931 Evaluation of DNA Oxidation and Chemical DNA Damage Using Electrochemiluminescent Enzyme/DNA Microfluidic Array
Authors: Itti Bist, Snehasis Bhakta, Di Jiang, Tia E. Keyes, Aaron Martin, Robert J. Forster, James F. Rusling
Abstract:
DNA damage from metabolites of lipophilic drugs and pollutants, generated by enzymes, represents a major toxicity pathway in humans. These metabolites can react with DNA to form either 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG), which is the oxidative product of DNA or covalent DNA adducts, both of which are genotoxic and hence considered important biomarkers to detect cancer in humans. Therefore, detecting reactions of metabolites with DNA is an effective approach for the safety assessment of new chemicals and drugs. Here we describe a novel electrochemiluminescent (ECL) sensor array which can detect DNA oxidation and chemical DNA damage in a single array, facilitating a more accurate diagnostic tool for genotoxicity screening. Layer-by-layer assembly of DNA and enzyme are assembled on the pyrolytic graphite array which is housed in a microfluidic device for sequential detection of two type of the DNA damages. Multiple enzyme reactions are run on test compounds using the array, generating toxic metabolites in situ. These metabolites react with DNA in the films to cause DNA oxidation and chemical DNA damage which are detected by ECL generating osmium compound and ruthenium polymer, respectively. The method is further validated by the formation of 8-oxodG and DNA adduct using similar films of DNA/enzyme on magnetic bead biocolloid reactors, hydrolyzing the DNA, and analyzing by liquid chromatography-mass spectrometry (LC-MS). Hence, this combined DNA/enzyme array/LC-MS approach can efficiently explore metabolic genotoxic pathways for drugs and environmental chemicals.Keywords: biosensor, electrochemiluminescence, DNA damage, microfluidic array
Procedia PDF Downloads 370930 Evaluating the Satisfaction of Chinese Consumers toward Influencers at TikTok
Authors: Noriyuki Suyama
Abstract:
The progress and spread of digitalization have led to the provision of a variety of new services. The recent progress in digitization can be attributed to rapid developments in science and technology. First, the research and diffusion of artificial intelligence (AI) has made dramatic progress. Around 2000, the third wave of AI research, which had been underway for about 50 years, arrived. Specifically, machine learning and deep learning were made possible in AI, and the ability of AI to acquire knowledge, define the knowledge, and update its own knowledge in a quantitative manner made the use of big data practical even for commercial PCs. On the other hand, with the spread of social media, information exchange has become more common in our daily lives, and the lending and borrowing of goods and services, in other words, the sharing economy, has become widespread. The scope of this trend is not limited to any industry, and its momentum is growing as the SDGs take root. In addition, the Social Network Service (SNS), a part of social media, has brought about the evolution of the retail business. In the past few years, social network services (SNS) involving users or companies have especially flourished. The People's Republic of China (hereinafter referred to as "China") is a country that is stimulating enormous consumption through its own unique SNS, which is different from the SNS used in developed countries around the world. This paper focuses on the effectiveness and challenges of influencer marketing by focusing on the influence of influencers on users' behavior and satisfaction with Chinese SNSs. Specifically, Conducted was the quantitative survey of Tik Tok users living in China, with the aim of gaining new insights from the analysis and discussions. As a result, we found several important findings and knowledge.Keywords: customer satisfaction, social networking services, influencer marketing, Chinese consumers’ behavior
Procedia PDF Downloads 91929 Pregnant Women with Dental Amalgam Fillings Limiting Their Exposure to Electromagnetic Fields to Prevent the Toxic Effects of Mercury in Their Fetuses
Authors: Ghazal Mortazavi, S. M. J. Mortazavi
Abstract:
Although seems to be ultra-conservative, it has recently been suggested that whenever it is possible, pregnant women should postpone dental amalgam restorations to avoid the toxic effect of mercury on the foetus. Dental amalgam fillings cause significant exposure to elemental mercury vapour in the general population. Over the past several years, our lab has focused on the health effects of exposure of laboratory animals and humans to different sources of electromagnetic fields such as mobile phones and their base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons and MRI. Today, substantial evidence indicates that mercury even at low doses may lead to toxicity. Increased release of mercury from dental amalgam fillings after exposure to MRI or microwave radiation emitted by mobile phones has been previously shown by our team. Moreover, our recent studies on the effects of stronger magnetic fields entirely confirmed our previous findings. From the other point of view, we have also shown that papers which reported no increased release of mercury after MRI, may have some methodological flaws. As a strong positive correlation between maternal and cord blood mercury levels has been found in some studies, our findings regarding the effect of exposure to electromagnetic fields on the release of mercury from dental amalgam fillings lead us to this conclusion that pregnant women with dental amalgam fillings should limit their exposure to electromagnetic fields to prevent toxic effects of mercury in their foetuses.Keywords: pregnancy, foetus, mercury release, dental amalgam, electromagnetic fields, MRI, mobile phones
Procedia PDF Downloads 277928 Rethinking Classical Concerts in the Digital Era: Transforming Sound, Experience, and Engagement for the New Generation
Authors: Orit Wolf
Abstract:
Classical music confronts a crucial challenge: updating cherished concert traditions for the digital age. This paper is a journey, and a quest to make classical concerts resonate with a new generation. It's not just about asking questions; it's about exploring the future of classical concerts and their potential to captivate and connect with today's audience in an era defined by change. The younger generation, known for their love of diversity, interactive experiences, and multi-sensory immersion, cannot be overlooked. This paper explores innovative strategies that forge deep connections with audiences whose relationship with classical music differs from the past. The urgency of this challenge drives the transformation of classical concerts. Examining classical concerts is necessary to understand how they can harmonize with contemporary sensibilities. New dimensions in audiovisual experiences that enchant the emerging generation are sought. Classical music must embrace the technological era while staying open to fusion and cross-cultural collaboration possibilities. The role of technology and Artificial Intelligence (AI) in reshaping classical concerts is under research. The fusion of classical music with digital experiences and dynamic interdisciplinary collaborations breathes new life into the concert experience. It aligns classical music with the expectations of modern audiences, making it more relevant and engaging. Exploration extends to the structure of classical concerts. Conventions are challenged, and ways to make classical concerts more accessible and captivating are sought. Inspired by innovative artistic collaborations, musical genres and styles are redefined, transforming the relationship between performers and the audience. This paper, therefore, aims to be a catalyst for dialogue and a beacon of innovation. A set of critical inquiries integral to reshaping classical concerts for the digital age is presented. As the world embraces digital transformation, classical music seeks resonance with contemporary audiences, redefining the concert experience while remaining true to its roots and embracing revolutions in the digital age.Keywords: new concert formats, reception of classical music, interdiscplinary concerts, innovation in the new musical era, mash-up, cross culture, innovative concerts, engaging musical performances
Procedia PDF Downloads 66927 Comet Assay: A Promising Tool for the Risk Assessment and Clinical Management of Head and Neck Tumors
Authors: Sarim Ahmad
Abstract:
The Single Cell Gel Electrophoresis Assay (SCGE, known as comet assay) is a potential, uncomplicated, sensitive and state-of-the-art technique for quantitating DNA damage at individual cell level and repair from in vivo and in vitro samples of eukaryotic cells and some prokaryotic cells, being popular in its widespread use in various areas including human biomonitoring, genotoxicology, ecological monitoring and as a tool for research into DNA damage or repair in different cell types in response to a range of DNA damaging agents, cancer risk and therapy. The method involves the encapsulation of cells in a low-melting-point agarose suspension, lysis of the cells in neutral or alkaline (pH > 13) conditions, and electrophoresis of the suspended lysed cells, resulting in structures resembling comets as observed by fluorescence microscopy; the intensity of the comet tail relative to the head reflects the number of DNA breaks. The likely basis for this is that loops containing a break lose their supercoiling and become free to extend towards the anode. This is followed by visual analysis with staining of DNA and calculating fluorescence to determine the extent of DNA damage. This can be performed by manual scoring or automatically by imaging software. The assay can, therefore, predict an individual’s tumor sensitivity to radiation and various chemotherapeutic drugs and further assess the oxidative stress within tumors and to detect the extent of DNA damage in various cancerous and precancerous lesions of oral cavity.Keywords: comet assay, single cell gel electrophoresis, DNA damage, early detection test
Procedia PDF Downloads 293926 Kinetic Study of Physical Quality Changes on Jumbo Squid (Dosidicus gigas) Slices during Application High-Pressure Impregnation
Authors: Mario Perez-Won, Roberto Lemus-Mondaca, Fernanda Marin, Constanza Olivares
Abstract:
This study presents the simultaneous application of high hydrostatic pressure (HHP) and osmotic dehydration of jumbo squid (Dosidicus gigas) slice. Diffusion coefficients for both components water and solids were improved by the process pressure, being influenced by pressure level. The working conditions were different pressures such as 100, 250, 400 MPa and pressure atmospheric (0.1 MPa) for time intervals from 30 to 300 seconds and a 15% NaCl concentration. The mathematical expressions used for mass transfer simulations both water and salt were those corresponding to Newton, Henderson and Pabis, Page and Weibull models, where the Weibull and Henderson-Pabis models presented the best fitted to the water and salt experimental data, respectively. The values for water diffusivity coefficients varied from 1.62 to 8.10x10⁻⁹ m²/s whereas that for salt varied among 14.18 to 36.07x10⁻⁹ m²/s for selected conditions. Finally, as to quality parameters studied under the range of experimental conditions studied, the treatment at 250 MPa yielded on the samples a minimum hardness, whereas springiness, cohesiveness and chewiness at 100, 250 and 400 MPa treatments presented statistical differences regarding to unpressurized samples. The colour parameters L* (lightness) increased, however, but b* (yellowish) and a* (reddish) parameters decreased when increasing pressure level. This way, samples presented a brighter aspect and a mildly cooked appearance. The results presented in this study can support the enormous potential of hydrostatic pressure application as a technique important for compounds impregnation under high pressure.Keywords: colour, diffusivity, high pressure, jumbo squid, modelling, texture
Procedia PDF Downloads 347925 The Use of Remotely Sensed Data to Extract Wetlands Area in the Cultural Park of Ahaggar, South of Algeria
Authors: Y. Fekir, K. Mederbal, M. A. Hammadouche, D. Anteur
Abstract:
The cultural park of the Ahaggar, occupying a large area of Algeria, is characterized by a rich wetlands area to be preserved and managed both in time and space. The management of a large area, by its complexity, needs large amounts of data, which for the most part, are spatially localized (DEM, satellite images and socio-economic information...), where the use of conventional and traditional methods is quite difficult. The remote sensing, by its efficiency in environmental applications, became an indispensable solution for this kind of studies. Remote sensing imaging data have been very useful in the last decade in very interesting applications. They can aid in several domains such as the detection and identification of diverse wetland surface targets, topographical details, and geological features... In this work, we try to extract automatically wetlands area using multispectral remotely sensed data on-board the Earth Observing 1 (EO-1) and Landsat satellite. Both are high-resolution multispectral imager with a 30 m resolution. The instrument images an interesting surface area. We have used images acquired over the several area of interesting in the National Park of Ahaggar in the south of Algeria. An Extraction Algorithm is applied on the several spectral index obtained from combination of different spectral bands to extract wetlands fraction occupation of land use. The obtained results show an accuracy to distinguish wetlands area from the other lad use themes using a fine exploitation on spectral index.Keywords: multispectral data, EO1, landsat, wetlands, Ahaggar, Algeria
Procedia PDF Downloads 379924 Development of an Implicit Physical Influence Upwind Scheme for Cell-Centered Finite Volume Method
Authors: Shidvash Vakilipour, Masoud Mohammadi, Rouzbeh Riazi, Scott Ormiston, Kimia Amiri, Sahar Barati
Abstract:
An essential component of a finite volume method (FVM) is the advection scheme that estimates values on the cell faces based on the calculated values on the nodes or cell centers. The most widely used advection schemes are upwind schemes. These schemes have been developed in FVM on different kinds of structured and unstructured grids. In this research, the physical influence scheme (PIS) is developed for a cell-centered FVM that uses an implicit coupled solver. Results are compared with the exponential differencing scheme (EDS) and the skew upwind differencing scheme (SUDS). Accuracy of these schemes is evaluated for a lid-driven cavity flow at Re = 1000, 3200, and 5000 and a backward-facing step flow at Re = 800. Simulations show considerable differences between the results of EDS scheme with benchmarks, especially for the lid-driven cavity flow at high Reynolds numbers. These differences occur due to false diffusion. Comparing SUDS and PIS schemes shows relatively close results for the backward-facing step flow and different results in lid-driven cavity flow. The poor results of SUDS in the lid-driven cavity flow can be related to its lack of sensitivity to the pressure difference between cell face and upwind points, which is critical for the prediction of such vortex dominant flows.Keywords: cell-centered finite volume method, coupled solver, exponential differencing scheme (EDS), physical influence scheme (PIS), pressure weighted interpolation method (PWIM), skew upwind differencing scheme (SUDS)
Procedia PDF Downloads 285923 Atom Probe Study of Early Stage of Precipitation on Binary Al-Li, Al-Cu Alloys and Ternary Al-Li-Cu Alloys
Authors: Muna Khushaim
Abstract:
Aluminum-based alloys play a key role in modern engineering, especially in the aerospace industry. Introduction of solute atoms such as Li and Cu is the main approach to improve the strength in age-hardenable Al alloys via the precipitation hardening phenomenon. Knowledge of the decomposition process of the microstructure during the precipitation reaction is particularly important for future technical developments. The objective of this study is to investigate the nano-scale chemical composition in the Al-Cu, Al-Li and Al-Li-Cu during the early stage of the precipitation sequence and to describe whether this compositional difference correlates with variations in the observed precipitation kinetics. Comparing the random binomial frequency distribution and the experimental frequency distribution of concentrations in atom probe tomography data was used to investigate the early stage of decomposition in the different binary and ternary alloys which were experienced different heat treatments. The results show that an Al-1.7 at.% Cu alloy requires a long ageing time of approximately 8 h at 160 °C to allow the diffusion of Cu atoms into Al matrix. For the Al-8.2 at.% Li alloy, a combination of both the natural ageing condition (48 h at room temperature) and a short artificial ageing condition (5 min at 160 °C) induces increasing on the number density of the Li clusters and hence increase number of precipitated δ' particles. Applying this combination of natural ageing and short artificial ageing conditions onto the ternary Al-4 at.% Li-1.7 at.% Cu alloy induces the formation of a Cu-rich phase. Increasing the Li content in the ternary alloy up to 8 at.% and increasing the ageing time to 30 min resulted in the precipitation processes ending with δ' particles. Thus, the results contribute to the understanding of Al-alloy design.Keywords: aluminum alloy, atom probe tomography, early stage, decomposition
Procedia PDF Downloads 343922 A Retrospective Cross Sectional Study of Blood Culture Results in a Tertiary Hospital, Ekiti, Nigeria
Authors: S. I. Nwadioha, M. S. Odimayo, J. A. Omotayo, A. Olu Taiwo, O. E. Olabiyi
Abstract:
The current study was conducted to determine the epidemiology and antibiotic sensitivity pattern of bacteria isolated from blood of septicemic patients for improved antibiotic therapy. A three-year descriptive study has been carried out at Microbiology Laboratory, Ekiti State University Teaching Hospital, Ado Ekiti, from April 2012 to April 2015. Information compiled from patients’ records includes age, sex, isolated organisms and antibiotic susceptibility patterns. Three hundred and thirteen blood cultures were collected from neonatology and pediatrics wards, Out Patients’ Department (OPD) and from other adult patients. Forty-one cultures yielded mono microbial growth (no polymicrobial growth), giving an incidence of 13.1% positive blood culture (N=41/313). There were 58.4% Gram-negative bacilli and 41.6% Gram-positive cocci in the microbial growth. Bacteria isolated were Staphylococcus aureus 34%(14/41), Klebsiella species22% (9/41), Enterococci 17%(7/41), Proteus species12%(5/41), Escherichia coli 7%(3/41) and Streptococcal pneumoniae 7%(3/41). There was a (35%) higher occurrence of septicemia in neonates than in any other age groups in the hospital. Bacterial sensitivity to 13 antibiotic agents was determined by antibiotics disc diffusion using modified Kirby Bauer’s method. Gram-positive organisms showed a higher antibiotic sensitivity ranging from 14- 100% than the Gram-negative bacteria (11-80%). Staphylococcus aureus and Klebsiella species are the most prevalent organisms. The third generation Cephalosporins (Ceftriaxone) and Floroquinolone(Levofloxacin, Ofloxacin) have proved reliable for management of these blood infections.Keywords: blood cultures, septicemia, antibiogram, Nigeria
Procedia PDF Downloads 238921 Determination of Identification and Antibiotic Resistance Rates of Pseudomonas aeruginosa Strains from Various Clinical Specimens in a University Hospital for Two Years, 2013-2015
Authors: Recep Kesli, Gulsah Asik, Cengiz Demir, Onur Turkyilmaz
Abstract:
Objective: Pseudomonas aeruginosa (P. aeruginosa) is an important nosocomial pathogen which causes serious hospital infections and is resistant to many commonly used antibiotics. P. aeruginosa can develop resistance during therapy and also it is very resistant to disinfectant chemicals. It may be found in respiratory support devices in hospitals. In this study, the antibiotic resistance of P. aeruginosa strains isolated from bronchial aspiration samples was evaluated retrospectively. Methods: Between October 2013 and September 2015, a total of 318 P. aeruginosa were isolated from clinical samples obtained from various intensive care units and inpatient patients hospitalized at Afyon Kocatepe University, ANS Practice and Research Hospital. Isolated bacteria identified by using both the conventional methods and automated identification system-VITEK 2 (bioMerieux, Marcy l’etoile France). Antibacterial resistance tests were performed by using Kirby-Bauer disc (Oxoid, Hampshire, England) diffusion method following the recommendations of CLSI. Results: Antibiotic resistance rates of identified 318 P. aeruginosa strains were found as follows for tested antibiotics; 32 % amikacin, 42% gentamicin, 43% imipenem, 43% meropenem, 50% ciprofloxacin, 57% levofloxacin, 38% cefepime, 63% ceftazidime, and 85% piperacillin/tazobactam. Conclusion: Resistance profiles change according to years and provinces for P. aeruginosa, so these findings should be considered empirical treatment choices. In this study, the highest and lowest resistance rates found against piperacillin/tazobactam % 85, and amikacin %32.Keywords: Pseudomonas aeruginosa, antibiotic resistance rates, intensive care unit, Pseudomonas spp.
Procedia PDF Downloads 291920 Rapid and Efficient Removal of Lead from Water Using Chitosan/Magnetite Nanoparticles
Authors: Othman M. Hakami, Abdul Jabbar Al-Rajab
Abstract:
Occurrence of heavy metals in water resources increased in the recent years albeit at low concentrations. Lead (PbII) is among the most important inorganic pollutants in ground and surface water. However, removal of this toxic metal efficiently from water is of public and scientific concern. In this study, we developed a rapid and efficient removal method of lead from water using chitosan/magnetite nanoparticles. A simple and effective process has been used to prepare chitosan/magnetite nanoparticles (NPs) (CS/Mag NPs) with effect on saturation magnetization value; the particles were strongly responsive to an external magnetic field making separation from solution possible in less than 2 minutes using a permanent magnet and the total Fe in solution was below the detection limit of ICP-OES (<0.19 mg L-1). The hydrodynamic particle size distribution increased from an average diameter of ~60 nm for Fe3O4 NPs to ~75 nm after chitosan coating. The feasibility of the prepared NPs for the adsorption and desorption of Pb(II) from water were evaluated using Chitosan/Magnetite NPs which showed a high removal efficiency for Pb(II) uptake, with 90% of Pb(II) removed during the first 5 minutes and equilibrium in less than 10 minutes. Maximum adsorption capacities for Pb(II) occurred at pH 6.0 and under room temperature were as high as 85.5 mg g-1, according to Langmuir isotherm model. Desorption of adsorbed Pb on CS/Mag NPs was evaluated using deionized water at different pH values ranged from 1 to 7 which was an effective eluent and did not result the destruction of NPs, then, they could subsequently be reused without any loss of their activity in further adsorption tests. Overall, our results showed the high efficiency of chitosan/magnetite nanoparticles (NPs) in lead removal from water in controlled conditions, and further studies should be realized in real field conditions.Keywords: chitosan, magnetite, water, treatment
Procedia PDF Downloads 405919 Deliberation of Daily Evapotranspiration and Evaporative Fraction Based on Remote Sensing Data
Authors: J. Bahrawi, M. Elhag
Abstract:
Estimation of evapotranspiration is always a major component in water resources management. Traditional techniques of calculating daily evapotranspiration based on field measurements are valid only for local scales. Earth observation satellite sensors are thus used to overcome difficulties in obtaining daily evapotranspiration measurements on regional scale. The Surface Energy Balance System (SEBS) model was adopted to estimate daily evapotranspiration and relative evaporation along with other land surface energy fluxes. The model requires agro-climatic data that improve the model outputs. Advance Along Track Scanning Radiometer (AATSR) and Medium Spectral Resolution Imaging Spectrometer (MERIS) imageries were used to estimate the daily evapotranspiration and relative evaporation over the entire Nile Delta region in Egypt supported by meteorological data collected from six different weather stations located within the study area. Daily evapotranspiration maps derived from SEBS model show a strong agreement with actual ground-truth data taken from 92 points uniformly distributed all over the study area. Moreover, daily evapotranspiration and relative evaporation are strongly correlated. The reliable estimation of daily evapotranspiration supports the decision makers to review the current land use practices in terms of water management, while enabling them to propose proper land use changes.Keywords: daily evapotranspiration, relative evaporation, SEBS, AATSR, MERIS, Nile Delta
Procedia PDF Downloads 263918 Reversible Cerebral Vasoconstriction Syndrome at Emergency Department
Authors: Taerim Kim, Shin Ahn, Chang Hwan Sohn, Dong Woo Seo, Won Young Kim
Abstract:
Object: Reversible cerebral vasospasm syndrome (RCVS) remains an underrated cause of thunderclap headache which shares similar history of the ‘worst-ever’ headache with subarachnoid hemorrhage (SAH) to the emergency physicians. This study evaluated the clinical manifestations, radiological features, and outcomes of patients with RCVS so that the physicians could raise the high index of suspicion to detect RCVS in more patients with thunderclap headache before having life-threatening complications. Methods: The electric medical records of 18 patients with diagnostic criteria of RCVS at the emergency department (ED) between January 2013 and December 2014 were retrospective reviewed. Results: The mean age was 50.7 years, and 80% were women. Patients with RCVS visit an average of 4.7 physicians before receiving an accurate diagnosis and mean duration of symptom until diagnosis is 9.3 days. All patients except one experienced severe headache, from 8 to 10 pain intensity on a numerical rating scale (NRS). 44% of patients had nausea as an associated symptom, 66% of patients experienced worsening of headache while gagging, leaning forward, defecating, urinating or having sex. The most frequently affected vessels are middle cerebral arteries demonstrating the characteristic diffuse “string of beads” appearance. Four patients had SAH as a complication. Conclusion: Patients with RCVS have a unique set of clinical and imaging features. Emergency physicians should raise the high index of suspicion to detect RCVS in more patients with thunderclap headache before life-threatening complications.Keywords: headache, thunderclap, subarachnoid haemorrhage, stroke
Procedia PDF Downloads 428917 Analysis of Vortex-Induced Vibration Characteristics for a Three-Dimensional Flexible Tube
Authors: Zhipeng Feng, Huanhuan Qi, Pingchuan Shen, Fenggang Zang, Yixiong Zhang
Abstract:
Numerical simulations of vortex-induced vibration of a three-dimensional flexible tube under uniform turbulent flow are calculated when Reynolds number is 1.35×104. In order to achieve the vortex-induced vibration, the three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, the tube is discretized according to the finite element theory, and its dynamic equilibrium equations are solved by the Newmark method. The fluid-tube interaction is realized by utilizing the diffusion-based smooth dynamic mesh method. Considering the vortex-induced vibration system, the variety trends of lift coefficient, drag coefficient, displacement, vertex shedding frequency, phase difference angle of tube are analyzed under different frequency ratios. The nonlinear phenomena of locked-in, phase-switch are captured successfully. Meanwhile, the limit cycle and bifurcation of lift coefficient and displacement are analyzed by using trajectory, phase portrait, and Poincaré sections. The results reveal that: when drag coefficient reaches its minimum value, the transverse amplitude reaches its maximum, and the “lock-in” begins simultaneously. In the range of lock-in, amplitude decreases gradually with increasing of frequency ratio. When lift coefficient reaches its minimum value, the phase difference undergoes a suddenly change from the “out-of-phase” to the “in-phase” mode.Keywords: vortex induced vibration, limit cycle, LES, CFD, FEM
Procedia PDF Downloads 282916 A Kinetic Study of Radical Polymerisation of Acrylic Monomers in the Presence of the Liquid Crystal and the Electro-Optical Properties of These Mixtures
Authors: A. Bouriche, D. Merah, T. Bouchaour, L. Alachaher-Bedjaoui, U. Maschke
Abstract:
Intensive research continues in the field of liquid crystals (LCs) for their potential use in modern display applications. Nematic LCs has been most commonly used due to the large birefringence and their sensitivity to even weak perturbation forces induced by electric, magnetic and optical fields. Polymer dispersed liquid crystals (PDLCs), composed of micron-sized nematic LC droplets dispersed in a polymer matrix is an important class of materials for applications in different domains of technology involving large area display devices, optical switches, phase modulators, variable attenuators, polarisers, flexible displays and smart windows. In this study the composites are prepared from mixtures of mono functional acrylic monomers, (Butylacrylate (ABu), 2-Ethylhexylacrylate (2-EHA), 2-Hydroxyethyl methacrylate (HEMA) and hydroxybutylmethacrylate (HBMA)) and two liquid crystals: (4-cyano-4'-n-pentyl-biphenyl) (5CB) and E7 which is an eutectic mixtures of four cyanoparaphenylenes. These mixtures are prepared adding the Darocur 1173 as photoinitiator, the 1.6-hexanediol diacrylate (HDDA) as cross-linker agent, and finally they are exposed to UV irradiation. The kinetic polymerization of monomer/LC mixture were investigated with the Fourier Transform Infra Red spectroscopy (FTIR). The electro-optical properties of the PDLC films were determined by measuring the voltage dependence on the transmitted light.Keywords: acrylic monomers, films PDLC, liquid crystal, polymerisation
Procedia PDF Downloads 293915 Functional Profiling of a Circular RNA from the Huntingtin (HTT) Gene
Authors: Laura Gantley, Vanessa M. Conn, Stuart Webb, Kirsty Kirk, Marta Gabryelska, Duncan Holds, Brett W. Stringer, Simon J. Conn
Abstract:
Trinucleotide repeat disorders comprise ~20 severe, inherited human neuromuscular and neurodegenerative disorders, which are a result of an abnormal expansion of repetitive sequences in the DNA. The most common of these, Huntington’s disease, results from the expansion of the CAG repeat region in exon 1 of the HTT gene via an unknown mechanism. Non-coding RNAs have been implicated in the initiation and progression of many diseases; thus, we focus on one circular RNA (circRNA) molecule arising from non-canonical splicing (back splicing) of HTT pre-mRNA. This circRNA and its mouse orthologue were transgenically overexpressed in human cells (SHSY-5Y and HEK293T) and mouse cells (Mb1), respectively. High-content imaging and flow cytometry demonstrated the overexpression of this circRNA reduces cell proliferation, reduces nuclear size independent of cellular size, and alters cell cycle progression. Analysis of protein by western blot and immunofluorescence demonstrated no change to HTT protein levels but altered nuclear-cytoplasmic distribution without impacting the expansion of the HTT repeat region. As these phenotypic and genotypic changes are found in Huntington’s disease patients, these results may suggest that this circRNA may play a functional role in the progression of Huntington’s disease.Keywords: cell biology, circular RNAs, Huntington’s disease, molecular biology, neurodegenerative disorders
Procedia PDF Downloads 102914 Application of Electrochemical Impedance Spectroscopy to Monitor the Steel/Soil Interface During Cathodic Protection of Steel in Simulated Soil Solution
Authors: Mandlenkosi George Robert Mahlobo, Tumelo Seadira, Major Melusi Mabuza, Peter Apata Olubambi
Abstract:
Cathodic protection (CP) has been widely considered a suitable technique for mitigating corrosion of buried metal structures. Plenty of efforts have been made in developing techniques, in particular non-destructive techniques, for monitoring and quantifying the effectiveness of CP to ensure the sustainability and performance of buried steel structures. The aim of this study was to investigate the evolution of the electrochemical processes at the steel/soil interface during the application of CP on steel in simulated soil. Carbon steel was subjected to electrochemical tests with NS4 solution used as simulated soil conditions for 4 days before applying CP for a further 11 days. A previously modified non-destructive voltammetry technique was applied before and after the application of CP to measure the corrosion rate. Electrochemical impedance spectroscopy (EIS), in combination with mathematical modeling through equivalent electric circuits, was applied to determine the electrochemical behavior at the steel/soil interface. The measured corrosion rate was found to have decreased from 410 µm/yr to 8 µm/yr between days 5 and 14 because of the applied CP. Equivalent electrical circuits were successfully constructed and used to adequately model the EIS results. The modeling of the obtained EIS results revealed the formation of corrosion products via a mixed activation-diffusion mechanism during the first 4 days, while the activation mechanism prevailed in the presence of CP, resulting in a protective film. The x-ray diffraction analysis confirmed the presence of corrosion products and the predominant protective film corresponding to the calcareous deposit.Keywords: carbon steel, cathodic protection, NS4 solution, voltammetry, EIS
Procedia PDF Downloads 67