Search results for: open queueing network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7638

Search results for: open queueing network

4728 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 134
4727 Ensuring Sustainable Urban Mobility in Indian Cities: Need for Creating People Friendly Roadside Public Spaces

Authors: Pushplata Garg

Abstract:

Mobility, is an integral part of living and sustainability of urban mobility, is essential not only for, but also for addressing global warming and climate change. However, very little is understood about the obstacles/hurdles and likely challenges in the success of plans for sustainable urban mobility in Indian cities from the public perspective. Whereas some of the problems and issues are common to all cities, others vary considerably with financial status, function, the size of cities and culture of a place. Problems and issues similar in all cities relate to availability, efficiency and safety of public transport, last mile connectivity, universal accessibility, and essential planning and design requirements of pedestrians and cyclists are same. However, certain aspects like the type of means of public transportation, priority for cycling and walking, type of roadside activities, are influenced by the size of the town, average educational and income level of public, financial status of the local authorities, and culture of a place. The extent of public awareness, civic sense, maintenance of public spaces and law enforcement vary significantly from large metropolitan cities to small and medium towns in countries like India. Besides, design requirements for shading, location of public open spaces and sitting areas, street furniture, landscaping also vary depending on the climate of the place. Last mile connectivity plays a major role in success/ effectiveness of public transport system in a city. In addition to the provision of pedestrian footpaths connecting important destinations, sitting spaces and necessary amenities/facilities along footpaths; pedestrian movement to public transit stations is encouraged by the presence of quality roadside public spaces. It is not only the visual attractiveness of streetscape or landscape or the public open spaces along pedestrian movement channels but the activities along that make a street vibrant and attractive. These along with adequate spaces to rest and relax encourage people to walk as is observed in cities with successful public transportation systems. The paper discusses problems and issues of pedestrians for last mile connectivity in the context of Delhi, Chandigarh, Gurgaon, and Roorkee- four Indian cities representing varying urban contexts, that is, of metropolitan, large and small cities.

Keywords: pedestrianisation, roadside public spaces, last mile connectivity, sustainable urban mobility

Procedia PDF Downloads 256
4726 Image Processing and Calculation of NGRDI Embedded System in Raspberry

Authors: Efren Lopez Jimenez, Maria Isabel Cajero, J. Irving-Vasqueza

Abstract:

The use and processing of digital images have opened up new opportunities for the resolution of problems of various kinds, such as the calculation of different vegetation indexes, among other things, differentiating healthy vegetation from humid vegetation. However, obtaining images from which these indexes are calculated is still the exclusive subject of active research. In the present work, we propose to obtain these images using a low cost embedded system (Raspberry Pi) and its processing, using a set of libraries of open code called OpenCV, in order to obtain the Normalized Red-Green Difference Index (NGRDI).

Keywords: Raspberry Pi, vegetation index, Normalized Red-Green Difference Index (NGRDI), OpenCV

Procedia PDF Downloads 294
4725 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 145
4724 Passing-On Cultural Heritage Knowledge: Entrepreneurial Approaches for a Higher Educational Sustainability

Authors: Ioana Simina Frincu

Abstract:

As institutional initiatives often fail to provide good practices when it comes to heritage management or to adapt to the changing environment in which they function and to the audiences they address, private actions represent viable strategies for sustainable knowledge acquisition. Information dissemination to future generations is one of the key aspects in preserving cultural heritage and is successfully feasible even in the absence of original artifacts. Combined with the (re)discovery of natural landscape, open-air exploratory approaches (archeoparks) versus an enclosed monodisciplinary rigid framework (traditional museums) are more likely to 'speak the language' of a larger number of people, belonging to a variety of categories, ages, and professions. Interactive sites are efficient ways of stimulating heritage awareness and increasing the number of visitors of non-interactive/static cultural institutions owning original pieces of history, delivering specialized information, and making continuous efforts to preserve historical evidence (relics, manuscripts, etc.). It is high time entrepreneurs took over the role of promoting cultural heritage, bet it under a more commercial yet more attractive form (business). Inclusive, participatory type of activities conceived by experts from different domains/fields (history, anthropology, tourism, sociology, business management, integrative sustainability, etc.) have better chances to ensure long term cultural benefits for both adults and children, especially when and where the educational discourse fails. These unique self-experience leisure activities, which offer everyone the opportunity to recreate history by him-/her-self, to relive the ancestors’ way of living, surviving and exploring should be regarded not as pseudo-scientific approaches but as important pre-steps to museum experiences. In order to support this theory, focus will be laid on two different examples: one dynamic, in the outdoors (the Boario Terme Archeopark from Italy) and one experimental, held indoor (the reconstruction of the Neolithic sanctuary of Parta, Romania as part of a transdisciplinary academic course) and their impact on young generations. The conclusion of this study shows that the increasingly lower engagement of youth (students) in discovering and understanding history, archaeology, and heritage can be revived by entrepreneurial projects.

Keywords: archeopark, educational tourism, open air museum, Parta sanctuary, prehistory

Procedia PDF Downloads 143
4723 Exploring Hydrogen Embrittlement and Fatigue Crack Growth in API 5L X52 Steel Pipeline Under Cyclic Internal Pressure

Authors: Omar Bouledroua, Djamel Zelmati, Zahreddine Hafsi, Milos B. Djukic

Abstract:

Transporting hydrogen gas through the existing natural gas pipeline network offers an efficient solution for energy storage and conveyance. Hydrogen generated from excess renewable electricity can be conveyed through the API 5L steel-made pipelines that already exist. In recent years, there has been a growing demand for the transportation of hydrogen through existing gas pipelines. Therefore, numerical and experimental tests are required to verify and ensure the mechanical integrity of the API 5L steel pipelines that will be used for pressurized hydrogen transportation. Internal pressure loading is likely to accelerate hydrogen diffusion through the internal pipe wall and consequently accentuate the hydrogen embrittlement of steel pipelines. Furthermore, pre-cracked pipelines are susceptible to quick failure, mainly under a time-dependent cyclic pressure loading that drives fatigue crack propagation. Meanwhile, after several loading cycles, the initial cracks will propagate to a critical size. At this point, the remaining service life of the pipeline can be estimated, and inspection intervals can be determined. This paper focuses on the hydrogen embrittlement of API 5L steel-made pipeline under cyclic pressure loading. Pressurized hydrogen gas is transported through a network of pipelines where demands at consumption nodes vary periodically. The resulting pressure profile over time is considered a cyclic loading on the internal wall of a pre-cracked pipeline made of API 5L steel-grade material. Numerical modeling has allowed the prediction of fatigue crack evolution and estimation of the remaining service life of the pipeline. The developed methodology in this paper is based on the ASME B31.12 standard, which outlines the guidelines for hydrogen pipelines.

Keywords: hydrogen embrittlement, pipelines, transient flow, cyclic pressure, fatigue crack growth

Procedia PDF Downloads 94
4722 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: emotion recognition, facial recognition, signal processing, machine learning

Procedia PDF Downloads 322
4721 Wave Powered Airlift PUMP for Primarily Artificial Upwelling

Authors: Bruno Cossu, Elio Carlo

Abstract:

The invention (patent pending) relates to the field of devices aimed to harness wave energy (WEC) especially for artificial upwelling, forced downwelling, production of compressed air. In its basic form, the pump consists of a hydro-pneumatic machine, driven by wave energy, characterised by the fact that it has no moving mechanical parts, and is made up of only two structural components: an hollow body, which is open at the bottom to the sea and partially immersed in sea water, and a tube, both joined together to form a single body. The shape of the hollow body is like a mushroom whose cap and stem are hollow; the stem is open at both ends and the lower part of its surface is crossed by holes; the tube is external and coaxial to the stem and is joined to it so as to form a single body. This shape of the hollow body and the type of connection to the tube allows the pump to operate simultaneously as an air compressor (OWC) on the cap side, and as an airlift on the stem side. The pump can be implemented in four versions, each of which provides different variants and methods of implementation: 1) firstly, for the artificial upwelling of cold, deep ocean water; 2) secondly, for the lifting and transfer of these waters to the place of use (above all, fish farming plants), even if kilometres away; 3) thirdly, for the forced downwelling of surface sea water; 4) fourthly, for the forced downwelling of surface water, its oxygenation, and the simultaneous production of compressed air. The transfer of the deep water or the downwelling of the raised surface water (as for pump versions indicated in points 2 and 3 above), is obtained by making the water raised by the airlift flow into the upper inlet of another pipe, internal or adjoined to the airlift; the downwelling of raised surface water, oxygenation, and the simultaneous production of compressed air (as for the pump version indicated in point 4), is obtained by installing a venturi tube on the upper end of the pipe, whose restricted section is connected to the external atmosphere, so that it also operates like a hydraulic air compressor (trompe). Furthermore, by combining one or more pumps for the upwelling of cold, deep water, with one or more pumps for the downwelling of the warm surface water, the system can be used in an Ocean Thermal Energy Conversion plant to supply the cold and the warm water required for the operation of the same, thus allowing to use, without increased costs, in addition to the mechanical energy of the waves, for the purposes indicated in points 1 to 4, the thermal one of the marine water treated in the process.

Keywords: air lifted upwelling, fish farming plant, hydraulic air compressor, wave energy converter

Procedia PDF Downloads 149
4720 A Measurement Device of Condensing Flow Rate, an Order of MilliGrams per Second

Authors: Hee Joon Lee

Abstract:

There are many difficulties in measuring a small flow rate of an order of milli grams per minute (LPM) or less using a conventional flowmeter. Therefore, a flow meter with minimal loss and based on a new concept was designed as part of this paper. A chamber was manufactured with a level transmitter and an on-off control valve. When the level of the collected condensed water reaches the top of the chamber, the valve opens to allow the collected water to drain back into the tank. To allow the water to continue to drain when the signal is lost, the valve is held open for a few seconds by a time delay switch and then closed. After an examination, the condensing flow rate was successfully measured with the uncertainty of ±5.7% of the full scale for the chamber.

Keywords: chamber, condensation, flow meter, milli-grams

Procedia PDF Downloads 284
4719 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 137
4718 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment

Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee

Abstract:

Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.

Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation

Procedia PDF Downloads 352
4717 The Usage of Mudbrick in Historical Structures of Van City

Authors: Mustafa Gulen, Eylem Guzel, Soner Guler

Abstract:

The studies concentrated on the historical background of Van city show the fact that Van city has had a significant position as a settlement since ancient times and that it has hosted many civilizations during history. With the dominance of Ottoman Empire in 16th century, the region had been re-constructed by building new walls at the southern side of Van Castle. These construction activities had mostly been fulfilled by the usage of mudbrick which had been a fundamental material for thousands of years. As a result of natural disasters, battles and the move at the threshold of 20th century to the new settlement which is 9 kilometers away from the Ancient City Van is an open-air museum with the ruins of churches, mosques and baths. In this study, the usage of mudbrick from past till today in historical structures of Van city is evaluated in detail.

Keywords: historical structures, history, mudbrick, Van city

Procedia PDF Downloads 535
4716 Considerations for Effectively Using Probability of Failure as a Means of Slope Design Appraisal for Homogeneous and Heterogeneous Rock Masses

Authors: Neil Bar, Andrew Heweston

Abstract:

Probability of failure (PF) often appears alongside factor of safety (FS) in design acceptance criteria for rock slope, underground excavation and open pit mine designs. However, the design acceptance criteria generally provide no guidance relating to how PF should be calculated for homogeneous and heterogeneous rock masses, or what qualifies a ‘reasonable’ PF assessment for a given slope design. Observational and kinematic methods were widely used in the 1990s until advances in computing permitted the routine use of numerical modelling. In the 2000s and early 2010s, PF in numerical models was generally calculated using the point estimate method. More recently, some limit equilibrium analysis software offer statistical parameter inputs along with Monte-Carlo or Latin-Hypercube sampling methods to automatically calculate PF. Factors including rock type and density, weathering and alteration, intact rock strength, rock mass quality and shear strength, the location and orientation of geologic structure, shear strength of geologic structure and groundwater pore pressure influence the stability of rock slopes. Significant engineering and geological judgment, interpretation and data interpolation is usually applied in determining these factors and amalgamating them into a geotechnical model which can then be analysed. Most factors are estimated ‘approximately’ or with allowances for some variability rather than ‘exactly’. When it comes to numerical modelling, some of these factors are then treated deterministically (i.e. as exact values), while others have probabilistic inputs based on the user’s discretion and understanding of the problem being analysed. This paper discusses the importance of understanding the key aspects of slope design for homogeneous and heterogeneous rock masses and how they can be translated into reasonable PF assessments where the data permits. A case study from a large open pit gold mine in a complex geological setting in Western Australia is presented to illustrate how PF can be calculated using different methods and obtain markedly different results. Ultimately sound engineering judgement and logic is often required to decipher the true meaning and significance (if any) of some PF results.

Keywords: probability of failure, point estimate method, Monte-Carlo simulations, sensitivity analysis, slope stability

Procedia PDF Downloads 210
4715 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System

Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu

Abstract:

In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.

Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission

Procedia PDF Downloads 149
4714 A Comparative Semantic Network Study between Chinese and Western Festivals

Authors: Jianwei Qian, Rob Law

Abstract:

With the expansion of globalization and the increment of market competition, the festival, especially the traditional one, has demonstrated its vitality under the new context. As a new tourist attraction, festivals play a critically important role in promoting the tourism economy, because the organization of a festival can engage more tourists, generate more revenues and win a wider media concern. However, in the current stage of China, traditional festivals as a way to disseminate national culture are undergoing the challenge of foreign festivals and the related culture. Different from those special events created solely for developing economy, traditional festivals have their own culture and connotation. Therefore, it is necessary to conduct a study on not only protecting the tradition, but promoting its development as well. This study conducts a comparative study of the development of China’s Valentine’s Day and Western Valentine’s Day under the Chinese context and centers on newspaper reports in China from 2000 to 2016. Based on the literature, two main research focuses can be established: one is concerned about the festival’s impact and the other is about tourists’ motivation to engage in a festival. Newspaper reports serve as the research discourse and can help cover the two focal points. With the assistance of content mining techniques, semantic networks for both Days are constructed separately to help depict the status quo of these two festivals in China. Based on the networks, two models are established to show the key component system of traditional festivals in the hope of perfecting the positive role festival tourism plays in the promotion of economy and culture. According to the semantic networks, newspaper reports on both festivals have similarities and differences. The difference is mainly reflected in its cultural connotation, because westerners and Chinese may show their love in different ways. Nevertheless, they share more common points in terms of economy, tourism, and society. They also have a similar living environment and stakeholders. Thus, they can be promoted together to revitalize some traditions in China. Three strategies are proposed to realize the aforementioned aim. Firstly, localize international festivals to suit the Chinese context to make it function better. Secondly, facilitate the internationalization process of traditional Chinese festivals to receive more recognition worldwide. Finally, allow traditional festivals to compete with foreign ones to help them learn from each other and elucidate the development of other festivals. It is believed that if all these can be realized, not only the traditional Chinese festivals can obtain a more promising future, but foreign ones are the same as well. Accordingly, the paper can contribute to the theoretical construction of festival images by the presentation of the semantic network. Meanwhile, the identified features and issues of festivals from two different cultures can enlighten the organization and marketing of festivals as a vital tourism activity. In the long run, the study can enhance the festival as a key attraction to keep the sustainable development of both the economy and the society.

Keywords: Chinese context, comparative study, festival tourism, semantic network analysis, valentine’s day

Procedia PDF Downloads 239
4713 Experimental Evaluation of UDP in Wireless LAN

Authors: Omar Imhemed Alramli

Abstract:

As Transmission Control Protocol (TCP), User Datagram Protocol (UDP) is transfer protocol in the transportation layer in Open Systems Interconnection model (OSI model) or in TCP/IP model of networks. The UDP aspects evaluation were not recognized by using the pcattcp tool on the windows operating system platform like TCP. The study has been carried out to find a tool which supports UDP aspects evolution. After the information collection about different tools, iperf tool was chosen and implemented on Cygwin tool which is installed on both Windows XP platform and also on Windows XP on virtual box machine on one computer only. Iperf is used to make experimental evaluation of UDP and to see what will happen during the sending the packets between the Host and Guest in wired and wireless networks. Many test scenarios have been done and the major UDP aspects such as jitter, packet losses, and throughput are evaluated.

Keywords: TCP, UDP, IPERF, wireless LAN

Procedia PDF Downloads 360
4712 Isolation of Nitrosoguanidine Induced NaCl Tolerant Mutant of Spirulina platensis with Improved Growth and Phycocyanin Production

Authors: Apurva Gupta, Surendra Singh

Abstract:

Spirulina spp., as a promising source of many commercially valuable products, is grown photo autotrophically in open ponds and raceways on a large scale. However, the economic exploitation in an open system seems to have been limited because of lack of multiple stress-tolerant strains. The present study aims to isolate a stable stress tolerant mutant of Spirulina platensis with improved growth rate and enhanced potential to produce its commercially valuable bioactive compounds. N-methyl-n'-nitro-n-nitrosoguanidine (NTG) at 250 μg/mL (concentration permitted 1% survival) was employed for chemical mutagenesis to generate random mutants and screened against NaCl. In a preliminary experiment, wild type S. platensis was treated with NaCl concentrations from 0.5-1.5 M to calculate its LC₅₀. Mutagenized colonies were then screened for tolerance at 0.8 M NaCl (LC₅₀), and the surviving colonies were designated as NaCl tolerant mutants of S. platensis. The mutant cells exhibited 1.5 times improved growth against NaCl stress as compared to the wild type strain in control conditions. This might be due to the ability of the mutant cells to protect its metabolic machinery against inhibitory effects of salt stress. Salt stress is known to adversely affect the rate of photosynthesis in cyanobacteria by causing degradation of the pigments. Interestingly, the mutant cells were able to protect its photosynthetic machinery and exhibited 4.23 and 1.72 times enhanced accumulation of Chl a and phycobiliproteins, respectively, which resulted in enhanced rate of photosynthesis (2.43 times) and respiration (1.38 times) against salt stress. Phycocyanin production in mutant cells was observed to enhance by 1.63 fold. Nitrogen metabolism plays a vital role in conferring halotolerance to cyanobacterial cells by influx of nitrate and efflux of Na+ ions from the cell. The NaCl tolerant mutant cells took up 2.29 times more nitrate as compared to the wild type and efficiently reduce it. Nitrate reductase and nitrite reductase activity in the mutant cells also improved by 2.45 and 2.31 times, respectively against salt stress. From these preliminary results, it could be deduced that enhanced nitrogen uptake and its efficient reduction might be a reason for adaptive and halotolerant behavior of the S. platensis mutant cells. Also, the NaCl tolerant mutant of S. platensis with significant improved growth and phycocyanin accumulation compared to the wild type can be commercially promising.

Keywords: chemical mutagenesis, NaCl tolerant mutant, nitrogen metabolism, photosynthetic machinery, phycocyanin

Procedia PDF Downloads 171
4711 Life Expansion: Visual Autobiography, Identity, Representation and the Degrees of Fictionalization of the Self on Instagram

Authors: Pablo De Macedo Silveira Vallejos

Abstract:

This article aims to observe autobiographical and visual narrative practices among users on Instagram. In this way, the work proposes to reflect on how image resources are used to develop edited representations of the self in that social network. The research aims to explore the uses of editing and the degrees of fictionalization present on Instagram.

Keywords: autobiography, visual narratives, representation, fiction, social media

Procedia PDF Downloads 80
4710 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack

Authors: Varun Agarwal

Abstract:

Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.

Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images

Procedia PDF Downloads 136
4709 A Settlement Strategy for Health Facilities in Emerging Countries: A Case Study in Brazil

Authors: Domenico Chizzoniti, Monica Moscatelli, Letizia Cattani, Piero Favino, Luca Preis

Abstract:

A settlement strategy is to anticipate and respond the needs of existing and future communities through the provision of primary health care facilities in marginalized areas. Access to a health care network is important to improving healthcare coverage, often lacking, in developing countries. The study explores that a good sanitary system strategy of rural contexts brings advantages to an existing settlement: improving transport, communication, water and social facilities. The objective of this paper is to define a possible methodology to implement primary health care facilities in disadvantaged areas of emerging countries. In this research, we analyze the case study of Lauro de Freitas, a municipality in the Brazilian state of Bahia, part of the Metropolitan Region of Salvador, with an area of 57,662 km² and 194.641 inhabitants. The health localization system in Lauro de Freitas is an integrated process that involves not only geographical aspects, but also a set of factors: population density, epidemiological data, allocation of services, road networks, and more. Data were collected also using semi-structured interviews and questionnaires to the local population. Synthesized data suggest that moving away from the coast where there is the greatest concentration of population and services, a network of primary health care facilities is able to improve the living conditions of small-dispersed communities. Based on the health service needs of populations, we have developed a methodological approach that is particularly useful in rural and remote contexts in emerging countries.

Keywords: healthcare, settlement strategy, urban health, rural

Procedia PDF Downloads 373
4708 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane

Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo

Abstract:

Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.

Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining

Procedia PDF Downloads 92
4707 First and Second Order Gm-C Filters

Authors: Rana Mahmoud

Abstract:

This study represents a systematic study of the Operational Transconductance Amplifiers capacitance (OTA-C) filters or as it is often called Gm-C filters. OTA-C filters have been paid a great attention for the last decades. As Gm-C filters operate in an open loop topology, this makes them flexible to perform in low and high frequencies. As such, Gm-C filters can be used in various wireless communication applications. Another property of Gm-C filters is its electronic tunability, thus different filter frequency characteristics can be obtained without changing the inductance and resistance values. This can be achieved by an OTA (Operational Transconductance Amplifier) and a capacitor. By tuning the OTA transconductance, the cut-off frequency will be tuned and different frequency responses are achieved. Different high-order analog filters can be design using Gm-C filters including low pass, high pass and band pass filters. 1st and 2nd order low pass, high pass and band pass filters are presented in this paper.

Keywords: Gm-C, filters, low-pass, high-pass, band-pass

Procedia PDF Downloads 137
4706 Periurban Landscape as an Opportunity Field to Solve Ecological Urban Conflicts

Authors: Cristina Galiana Carballo, Ibon Doval Martínez

Abstract:

Urban boundaries often result in a controversial limit between countryside and city in Europe. This territory is normally defined by the very limited land uses and the abundance of open space. The dimension and dynamics of peri-urbanization in the last decades have increased this land stock, which has influenced/impacted in several factors in terms of economic costs (maintenance, transport), ecological disturbances of the territory and changes in inhabitant´s behaviour. In an increasingly urbanised world and a growing urban population, cities also face challenges such as Climate Change. In this context, new near-future corrective trends including circular economies for local food supply or decentralised waste management became key strategies towards more sustainable urban models. Those new solutions need to be planned and implemented considering the potential conflict with current land uses. The city of Vitoria-Gasteiz (Basque Country, Spain) has triplicated land consumption per habitant in 10 years, resulting in a vast extension of low-density urban type confronting rural land and threatening agricultural uses, landscape and urban sustainability. Urban planning allows managing and optimum use allocation based on soil vocation and socio-ecosystem needs, while peri-urban space arises as an opportunity for developing different uses which do not match either within the compact city, not in open agricultural lands, such as medium-size agrocomposting systems or biomass plants. Therefore, a qualitative multi-criteria methodology has been developed for Vitoria-Gasteiz city to assess the spatial definition of peri-urban land. Therefore, a qualitative multi-criteria methodology has been developed for Vitoria-Gasteiz city to assess the spatial definition of peri-urban land. Climate change and circular economy were identified as frameworks where to determine future land, soil vocation and urban planning requirements which eventually become estimations of required local food and renewable energy supply along with alternative waste management system´s implementation. By means of it, it has been developed an urban planning proposal which overcomes urban-non urban dichotomy in Vitoria-Gasteiz. The proposal aims to enhance rural system and improve urban sustainability performance through the normative recognition of an agricultural peri-urban belt.

Keywords: landscape ecology, land-use management, periurban, urban planning

Procedia PDF Downloads 165
4705 Social Media as a Tool for Political Communication: A Case Study of India

Authors: Srikanth Bade

Abstract:

This paper discusses how the usage of social media has altered certain discourses and communicated with the political institutions for major actions in Indian scenario. The advent of new technology in the form of social media has engrossed the general public to discuss in the open forum. How they promulgated their ideas into action is captured in this study. Moreover, these discourses happening in the social media is analyzed from certain philosophical traditions by adopting a framework. Hence, this paper analyses the role of social media in political communication and change the political discourse. Also, this paper tries to address the issue that whether the deliberation made through social media had indeed communicated the issue of political matters to the decision making authorities.

Keywords: collective action and social capital, political communication, political discourse, social media

Procedia PDF Downloads 163
4704 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: redox enzyme, nanomaterials, biosensors, electrical communication

Procedia PDF Downloads 459
4703 Architecture for Hearing Impaired: A Study on Conducive Learning Environments for Deaf Children with Reference to Sri Lanka

Authors: Champa Gunawardana, Anishka Hettiarachchi

Abstract:

Conducive Architecture for learning environments is an area of interest for many scholars around the world. Loss of sense of hearing leads to the assumption that deaf students are visual learners. Comprehending favorable non-hearing attributes of architecture can lead to effective, rich and friendly learning environments for hearing impaired. The objective of the current qualitative investigation is to explore the nature and parameters of a sense of place of deaf children to support optimal learning. The investigation was conducted with hearing-impaired children (age: between 8-19, Gender: 15 male and 15 female) of Yashodhara deaf and blind school at Balangoda, Sri Lanka. A sensory ethnography study was adopted to identify the nature of perception and the parameters of most preferred and least preferred spaces of the learning environment. The common perceptions behind most preferred places in the learning environment were found as being calm and quiet, sense of freedom, volumes characterized by openness and spaciousness, sense of safety, wide spaces, privacy and belongingness, less crowded, undisturbed, availability of natural light and ventilation, sense of comfort and the view of green colour in the surroundings. On the other hand, the least preferred spaces were found to be perceived as dark, gloomy, warm, crowded, lack of freedom, smells (bad), unsafe and having glare. Perception of space by deaf considering the hierarchy of sensory modalities involved was identified as; light - color perception (34 %), sight - visual perception (32%), touch - haptic perception (26%), smell - olfactory perception (7%) and sound – auditory perception (1%) respectively. Sense of freedom (32%) and sense of comfort (23%) were the predominant psychological parameters leading to an optimal sense of place perceived by hearing impaired. Privacy (16%), rhythm (14%), belonging (9%) and safety (6%) were found as secondary factors. Open and wide flowing spaces without visual barriers, transparent doors and windows or open port holes to ease their communication, comfortable volumes, naturally ventilated spaces, natural lighting or diffused artificial lighting conditions without glare, sloping walkways, wider stairways, walkways and corridors with ample distance for signing were identified as positive characteristics of the learning environment investigated.

Keywords: deaf, visual learning environment, perception, sensory ethnography

Procedia PDF Downloads 234
4702 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Crosslinked Redox Enzyme/Carbon Nanotube on a Thiol-Modified Au Surface

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: biosensor, nanomaterials, redox enzyme, thiol-modified Au surface

Procedia PDF Downloads 333
4701 Neural Network Approach For Clustering Host Community: Based on Perceptions Toward Tourism, Their Satisfaction Level and Demographic Attributes in Iran (Lahijan)

Authors: Nasibeh Mohammadpour, Ali Rajabzadeh, Adel Azar, Hamid Zargham Borujeni,

Abstract:

Generally, various industries development depends on their stakeholders and beneficiaries supports. One of the most important stakeholders in tourism industry ( which has become one of the most important lucrative and employment-generating activities at the international level these days) are host communities in tourist destination which are affected and effect on this industry development. Recognizing host community and its segmentations can be important to get their support for future decisions and policy making. In order to identify these segments, in this study, clustering of the residents has been done by using some tools that are designed to encounter human complexities and have ability to model and generalize complex systems without any needs for the initial clusters’ seeds like classic methods. Neural networks can help to meet these expectations. The research have been planned to design neural networks-based mathematical model for clustering the host community effectively according to multi criteria, and identifies differences among segments. In order to achieve this goal, the residents’ segmentation has been done by demographic characteristics, their attitude towards the tourism development, the level of satisfaction and the type of their support in this field. The applied method is self-organized neural networks and the results have compared with K-means. As the results show, the use of Self- Organized Map (SOM) method provides much better results by considering the Cophenetic correlation and between clusters variance coefficients. Based on these criteria, the host community is divided into five sections with unique and distinctive features, which are in the best condition (in comparison other modes) according to Cophenetic correlation coefficient of 0.8769 and between clusters variance of 0.1412.

Keywords: Artificial Nural Network, Clustering , Resident, SOM, Tourism

Procedia PDF Downloads 189
4700 Influence of Thickness on Electrical and Structural Properties of Zinc Oxide (ZnO) Thin Films Prepared by RF Sputtering Technique

Authors: M. Momoh, S. Abdullahi, A. U. Moreh

Abstract:

Zinc oxide (ZnO) thin films were prepared on corning (7059) glass substrates at a thickness of 75.5 and 130.5 nm by RF sputtering technique. The deposition was carried out at room temperature after which the samples were annealed in open air at 150°C. The electrical and structural properties of these films were studied. The electrical properties of the films were monitored by four-point probe method while the structural properties were studied by X-ray diffraction (XRD). It was found that the electrical resistance of the films decreases with increase in the thickness of the films. The XRD analysis of the films showed that the films have a peak located at 34.31°-34.35° with hkl (002). Other parameters calculated include the stress (σ) and the grain size (D).

Keywords: electrical properties, film thickness, structural properties, zinc oxide

Procedia PDF Downloads 384
4699 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach

Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista

Abstract:

The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.

Keywords: depth, deep learning, geovisualisation, satellite images

Procedia PDF Downloads 18