Search results for: fluid limit
808 A Facile One Step Modification of Poly(dimethylsiloxane) via Smart Polymers for Biomicrofluidics
Authors: A. Aslihan Gokaltun, Martin L. Yarmush, Ayse Asatekin, O. Berk Usta
Abstract:
Poly(dimethylsiloxane) (PDMS) is one of the most widely used materials in the fabrication of microfluidic devices. It is easily patterned and can replicate features down to nanometers. Its flexibility, gas permeability that allows oxygenation, and low cost also drive its wide adoption. However, a major drawback of PDMS is its hydrophobicity and fast hydrophobic recovery after surface hydrophilization. This results in significant non-specific adsorption of proteins as well as small hydrophobic molecules such as therapeutic drugs limiting the utility of PDMS in biomedical microfluidic circuitry. While silicon, glass, and thermoplastics have been used, they come with problems of their own such as rigidity, high cost, and special tooling needs, which limit their use to a smaller user base. Many strategies to alleviate these common problems with PDMS are lack of general practical applicability, or have limited shelf lives in terms of the modifications they achieve. This restricts large scale implementation and adoption by industrial and research communities. Accordingly, we aim to tailor biocompatible PDMS surfaces by developing a simple and one step bulk modification approach with novel smart materials to reduce non-specific molecular adsorption and to stabilize long-term cell analysis with PDMS substrates. Smart polymers that blended with PDMS during device manufacture, spontaneously segregate to surfaces when in contact with aqueous solutions and create a < 1 nm layer that reduces non-specific adsorption of organic and biomolecules. Our methods are fully compatible with existing PDMS device manufacture protocols without any additional processing steps. We have demonstrated that our modified PDMS microfluidic system is effective at blocking the adsorption of proteins while retaining the viability of primary rat hepatocytes and preserving the biocompatibility, oxygen permeability, and transparency of the material. We expect this work will enable the development of fouling-resistant biomedical materials from microfluidics to hospital surfaces and tubing.Keywords: cell culture, microfluidics, non-specific protein adsorption, PDMS, smart polymers
Procedia PDF Downloads 292807 Empirical Analysis of the Effect of Cloud Movement in a Basic Off-Grid Photovoltaic System: Case Study Using Transient Response of DC-DC Converters
Authors: Asowata Osamede, Christo Pienaar, Johan Bekker
Abstract:
Mismatch in electrical energy (power) or outage from commercial providers, in general, does not promote development to the public and private sector, these basically limit the development of industries. The necessity for a well-structured photovoltaic (PV) system is of importance for an efficient and cost-effective monitoring system. The major renewable energy potential on earth is provided from solar radiation and solar photovoltaics (PV) are considered a promising technological solution to support the global transformation to a low-carbon economy and reduction on the dependence on fossil fuels. Solar arrays which consist of various PV module should be operated at the maximum power point in order to reduce the overall cost of the system. So power regulation and conditioning circuits should be incorporated in the set-up of a PV system. Power regulation circuits used in PV systems include maximum power point trackers, DC-DC converters and solar chargers. Inappropriate choice of power conditioning device in a basic off-grid PV system can attribute to power loss, hence the need for a right choice of power conditioning device to be coupled with the system of the essence. This paper presents the design and implementation of a power conditioning devices in order to improve the overall yield from the availability of solar energy and the system’s total efficiency. The power conditioning devices taken into consideration in the project includes the Buck and Boost DC-DC converters as well as solar chargers with MPPT. A logging interface circuit (LIC) is designed and employed into the system. The LIC is designed on a printed circuit board. It basically has DC current signalling sensors, specifically the LTS 6-NP. The LIC is consequently required to program the voltages in the system (these include the PV voltage and the power conditioning device voltage). The voltage is structured in such a way that it can be accommodated by the data logger. Preliminary results which include availability of power as well as power loss in the system and efficiency will be presented and this would be used to draw the final conclusion.Keywords: tilt and orientation angles, solar chargers, PV panels, storage devices, direct solar radiation
Procedia PDF Downloads 135806 Relationship Between In-Service Training and Employees’ Feeling of Psychological Ownership
Authors: Mahsa Kallhor Mohammadi, Hamideh Reshadatjoo
Abstract:
This study verified the relationship between in-service training and employees’ feeling of psychological ownership. This research applied a descriptive survey that investigated a correlation between variables. The target population was 140 employees of a Drilling Fluid and Waste Management Service Company, and the sample was 123 employees who were selected randomly and encouraged to complete an electronic questionnaire which was designed based on standard questionnaires for research variables covering 62 questions. The face validity of the questionnaire was supported by an experimental test, and its content validity was approved by the thesis supervisor and consulting advisor. For the descriptive statistics frequency tables and diagrams, measures of central tendency such as mode, median, and mean and measures of variability such as variance, standards deviation, and quartile deviation were used. In the inferential statistics section, the Pearson correlation coefficient was used to verify the relationship between the variables of the research. According to the results, all of the research hypotheses were supported. According to hypothesis 1, there was a positive and significant relationship between training policy-making and employees’ psychological ownership (r=0/408, α=0/05). According to hypothesis 2, there was a positive and significant relationship between training planning and employees’ psychological ownership (r=0/446, α=0/05). According to hypothesis 3, there was a positive and significant relationship between providing the training and employees’ psychological ownership (r=0/512, α=0/05). According to hypothesis 4, there was a positive and significant relationship between training performance management and employees’ psychological ownership (r=0/462, α=0/05). According to hypothesis 5, there was a positive and significant relationship between employees’ motivation and psychological ownership (r=0/694, α=0/05). Therefore, through systematic in-service training, which is in the same line with the strategic goals of an organization and is based on scientific needs analysis, design, implementation, and evaluation, it is possible to improve employees’ sense of psychological ownership toward an organization.Keywords: in-service training, motivation, organizational behavior, psychological ownership
Procedia PDF Downloads 59805 Reduction of the Cellular Infectivity of SARS-CoV-2 by a Mucoadhesive Nasal Spray
Authors: Adam M. Pitz, Gillian L. Phillipson, Jayant E. Khanolkar, Andrew M. Middleton
Abstract:
New emerging evidence suggests that the nose is the predominant route for entry of the SARS-CoV-2 virus into the host. A virucidal suspension test (conforming in principle to the European Standard EN14476) was conducted to determine whether a commercial liquid gel intranasal spray containing 1% of the mucoadhesive hydroxypropyl methylcellulose (HPMC) could inhibit the cellular infectivity of the SARS-CoV-2 coronavirus. Virus was added to the test product samples and to controls in a 1:8 ratio and mixed with one part bovine serum albumin as an interfering substance. The test samples were pre-equilibrated to 34 ± 2°C (representing the temperature of the nasopharynx) with the temperature maintained at 34 ± 2°C for virus contact times of 1, 5 and 10 minutes. Neutralized aliquots were inoculated onto host cells (Vero E6 cells, ATCC CRL-1586). The host cells were then incubated at 36 ± 2°C for a period of 7 days. The residual infectious virus in both test and controls was detected by viral-induced cytopathic effect. The 50% tissue culture infective dose per mL (TCID50/mL) was determined using the Spearman-Karber method with results reported as the reduction of the virus titer due to treatment with test product, expressed as log10. The controls confirmed the validity of the results with no cytotoxicity or viral interference observed in the neutralized test product samples. The HPMC formulation reduced SARS-CoV-2 titer, expressed as log10TCID50, by 2.30 ( ± 0.17), 2.60 ( ± 0.19), and 3.88 ( ± 0.19) with the respective contact times of 1, 5 and 10 minutes. The results demonstrate that this 1% HPMC gel formulation can reduce the cellular infectivity of the SARS-CoV-2 virus with an increasing viral inhibition observed with increasing exposure time. This 1% HMPC gel is well tolerated and can reside, when delivered via nasal spray, for up to one hour in the nasal cavity. We conclude that this intranasal gel spray with 1% HPMC repeat-dosed every few hours may offer an effective preventive or early intervention solution to limit the transmission and impact of the SARS-CoV-2 coronavirus.Keywords: hydroxypropyl methylcellulose, mucoadhesive nasal spray, respiratory viruses, SARS-CoV-2
Procedia PDF Downloads 142804 Efficient Implementation of Finite Volume Multi-Resolution Weno Scheme on Adaptive Cartesian Grids
Authors: Yuchen Yang, Zhenming Wang, Jun Zhu, Ning Zhao
Abstract:
An easy-to-implement and robust finite volume multi-resolution Weighted Essentially Non-Oscillatory (WENO) scheme is proposed on adaptive cartesian grids in this paper. Such a multi-resolution WENO scheme is combined with the ghost cell immersed boundary method (IBM) and wall-function technique to solve Navier-Stokes equations. Unlike the k-exact finite volume WENO schemes which involve large amounts of extra storage, repeatedly solving the matrix generated in a least-square method or the process of calculating optimal linear weights on adaptive cartesian grids, the present methodology only adds very small overhead and can be easily implemented in existing edge-based computational fluid dynamics (CFD) codes with minor modifications. Also, the linear weights of this adaptive finite volume multi-resolution WENO scheme can be any positive numbers on condition that their sum is one. It is a way of bypassing the calculation of the optimal linear weights and such a multi-resolution WENO scheme avoids dealing with the negative linear weights on adaptive cartesian grids. Some benchmark viscous problems are numerical solved to show the efficiency and good performance of this adaptive multi-resolution WENO scheme. Compared with a second-order edge-based method, the presented method can be implemented into an adaptive cartesian grid with slight modification for big Reynolds number problems.Keywords: adaptive mesh refinement method, finite volume multi-resolution WENO scheme, immersed boundary method, wall-function technique.
Procedia PDF Downloads 146803 Theoretical Analysis of the Existing Sheet Thickness in the Calendering of Pseudoplastic Material
Authors: Muhammad Zahid
Abstract:
The mechanical process of smoothing and compressing a molten material by passing it through a number of pairs of heated rolls in order to produce a sheet of desired thickness is called calendering. The rolls that are in combination are called calenders, a term derived from kylindros the Greek word for the cylinder. It infects the finishing process used on cloth, paper, textiles, leather cloth, or plastic film and so on. It is a mechanism which is used to strengthen surface properties, minimize sheet thickness, and yield special effects such as a glaze or polish. It has a wide variety of applications in industries in the manufacturing of textile fabrics, coated fabrics, and plastic sheeting to provide the desired surface finish and texture. An analysis has been presented for the calendering of Pseudoplastic material. The lubrication approximation theory (LAT) has been used to simplify the equations of motion. For the investigation of the nature of the steady solutions that exist, we make use of the combination of exact solution and numerical methods. The expressions for the velocity profile, rate of volumetric flow and pressure gradient are found in the form of exact solutions. Furthermore, the quantities of interest by engineering point of view, such as pressure distribution, roll-separating force, and power transmitted to the fluid by the rolls are also computed. Some results are shown graphically while others are given in the tabulated form. It is found that the non-Newtonian parameter and Reynolds number serve as the controlling parameters for the calendering process.Keywords: calendering, exact solutions, lubrication approximation theory, numerical solutions, pseudoplastic material
Procedia PDF Downloads 146802 Electrochemical Impedance Spectroscopy Based Label-Free Detection of TSG101 by Electric Field Lysis of Immobilized Exosomes from Human Serum
Authors: Nusrat Praween, Krishna Thej Pammi Guru, Palash Kumar Basu
Abstract:
Designing non-invasive biosensors for cancer diagnosis is essential for developing an affordable and specific tool to measure cancer-related exosome biomarkers. Exosomes, released by healthy as well as cancer cells, contain valuable information about the biomarkers of various diseases, including cancer. Despite the availability of various isolation techniques, ultracentrifugation is the standard technique that is being employed. Post isolation, exosomes are traditionally exposed to detergents for extracting their proteins, which can often lead to protein degradation. Further to this, it is very essential to develop a sensing platform for the quantification of clinically relevant proteins in a wider range to ensure practicality. In this study, exosomes were immobilized on the Au Screen Printed Electrode (SPE) using EDC/NHS chemistry to facilitate binding. After immobilizing the exosomes on the screen-printed electrode (SPE), we investigated the impact of the electric field by applying various voltages to induce exosome lysis and release their contents. The lysed solution was used for sensing TSG101, a crucial biomarker associated with various cancers, using both faradaic and non-faradaic electrochemical impedance spectroscopy (EIS) methods. The results of non-faradaic and faradaic EIS were comparable and showed good consistency, indicating that non-faradaic sensing can be a reliable alternative. Hence, the non-faradaic sensing technique was used for label-free quantification of the TSG101 biomarker. The results were validated using ELISA. Our electrochemical immunosensor demonstrated a consistent response of TSG101 from 125 pg/mL to 8000 pg/mL, with a detection limit of 0.125 pg/mL at room temperature. Additionally, since non-faradic sensing is label-free, the ease of usage and cost of the final sensor developed can be reduced. The proposed immunosensor is capable of detecting the TSG101 protein at low levels in healthy serum with good sensitivity and specificity, making it a promising platform for biomarker detection.Keywords: biosensor, exosomes isolation on SPE, electric field lysis of exosome, EIS sensing of TSG101
Procedia PDF Downloads 44801 Modeling and Numerical Simulation of Heat Transfer and Internal Loads at Insulating Glass Units
Authors: Nina Penkova, Kalin Krumov, Liliana Zashcova, Ivan Kassabov
Abstract:
The insulating glass units (IGU) are widely used in the advanced and renovated buildings in order to reduce the energy for heating and cooling. Rules for the choice of IGU to ensure energy efficiency and thermal comfort in the indoor space are well known. The existing of internal loads - gage or vacuum pressure in the hermetized gas space, requires additional attention at the design of the facades. The internal loads appear at variations of the altitude, meteorological pressure and gas temperature according to the same at the process of sealing. The gas temperature depends on the presence of coatings, coating position in the transparent multi-layer system, IGU geometry and space orientation, its fixing on the facades and varies with the climate conditions. An algorithm for modeling and numerical simulation of thermal fields and internal pressure in the gas cavity at insulating glass units as function of the meteorological conditions is developed. It includes models of the radiation heat transfer in solar and infrared wave length, indoor and outdoor convection heat transfer and free convection in the hermetized gas space, assuming the gas as compressible. The algorithm allows prediction of temperature and pressure stratification in the gas domain of the IGU at different fixing system. The models are validated by comparison of the numerical results with experimental data obtained by Hot-box testing. Numerical calculations and estimation of 3D temperature, fluid flow fields, thermal performances and internal loads at IGU in window system are implemented.Keywords: insulating glass units, thermal loads, internal pressure, CFD analysis
Procedia PDF Downloads 272800 In-House Fatty Meal Cholescintigraphy as a Screening Tool in Patients Presenting with Dyspepsia
Authors: Avani Jain, S. Shelley, M. Indirani, Shilpa Kalal, Jaykanth Amalachandran
Abstract:
Aim: To evaluate the prevalence of gall bladder dysfunction in patients with dyspepsia using In-House fatty meal cholescintigraphy. Materials & Methods: This study is a prospective cohort study. 59 healthy volunteers with no dyspeptic complaints and negative ultrasound and endoscopy were recruited in study. 61 patients having complaint of dyspepsia for duration of more than 6 months were included. All of them underwent 99mTc-Mebrofenin fatty meal cholescintigraphy following a standard protocol. Dynamic acquisitions were acquired for 120 minutes with an In-House fatty meal being given at 45th minute. Gall bladder emptying kinetics was determined with gall bladder ejection fractions (GBEF) calculated at 30minutes, 45minutes and at 60 minutes (30min, 45min & 60 min). Standardization of fatty meal was done for volunteers. Receiver operating characteristic (ROC) analysis was used assess the diagnostic accuracy of 3 time points (30min, 45min & 60 min) used for measuring gall bladder emptying. On the basis of cut off derived from volunteers, the patients were assessed for gall bladder dysfunction. Results: In volunteers, the GBEF at 30 min was 74.42±8.26 % (mean ±SD), at 45 min was 82.61 ± 6.5 % and at 60 min was 89.37±4.48%, compared to patients where at 30min it was 33.73±22.87%, at 45 min it was 43.03±26.97% and at 60 min it was 51.85±29.60%. The lower limit of GBEF in volunteers at 30 min was 60%, 45 min was 69% and at 60 min was 81%. ROC analysis showed that area under curve was largest for 30 min GBEF (0.952; 95% CI = 0.914-0.989) and that all the 3 measures were statistically significant (p < 0.005). Majority of the volunteers had 74% of gall bladder emptying by 30 minutes; hence it was taken as an optimum cutoff time to assess gall bladder contraction. > 60% GBEF at 30 min post fatty meal was considered as normal and < 60% GBEF as indicative of gall bladder dysfunction. In patients, various causes for dyspepsia were identified: GB dysfunction (63.93%), Peptic ulcer (8.19 %), Gastroesophageal reflux disease (8.19%), Gastritis (4.91%). In 18.03% of cases GB dysfunction coexisted with other gastrointestinal conditions. The diagnosis of functional dyspepsia was made in 14.75% of cases. Conclusions: Gall bladder dysfunction contributes significantly to the causation of dyspepsia. It could coexist with various other gastrointestinal diseases. Fatty meal was well tolerated and devoid of any side effects. Many patients who are labeled as functional dyspeptics could actually have gall bladder dysfunction. Hence as an adjunct to ultrasound and endoscopy, fatty meal cholescintigraphy can also be used as a screening modality in characterization of dyspepsia.Keywords: in-house fatty meal, choescintigraphy, dyspepsia, gall bladder ejection fraction, functional dyspepsia
Procedia PDF Downloads 507799 Enhanced Near-Infrared Upconversion Emission Based Lateral Flow Immunoassay for Background-Free Detection of Avian Influenza Viruses
Authors: Jaeyoung Kim, Heeju Lee, Huijin Jung, Heesoo Pyo, Seungki Kim, Joonseok Lee
Abstract:
Avian influenza viruses (AIV) are the primary cause of highly contagious respiratory diseases caused by type A influenza viruses of the Orthomyxoviridae family. AIV are categorized on the basis of types of surface glycoproteins such as hemagglutinin and neuraminidase. Certain H5 and H7 subtypes of AIV have evolved to the high pathogenic avian influenza (HPAI) virus, which has caused considerable economic loss to the poultry industry and led to severe public health crisis. Several commercial kits have been developed for on-site detection of AIV. However, the sensitivity of these methods is too low to detect low virus concentrations in clinical samples and opaque stool samples. Here, we introduced a background-free near-infrared (NIR)-to-NIR upconversion nanoparticle-based lateral flow immunoassay (NNLFA) platform to yield a sensor that detects AIV within 20 minutes. Ca²⁺ ion in the shell was used to enhance the NIR-to-NIR upconversion photoluminescence (PL) emission as a heterogeneous dopant without inducing significant changes in the morphology and size of the UCNPs. In a mixture of opaque stool samples and gold nanoparticles (GNPs), which are components of commercial AIV LFA, the background signal of the stool samples mask the absorption peak of GNPs. However, UCNPs dispersed in the stool samples still show strong emission centered at 800 nm when excited at 980 nm, which enables the NNLFA platform to detect 10-times lower viral load than a commercial GNP-based AIV LFA. The detection limit of NNLFA for low pathogenic avian influenza (LPAI) H5N2 and HPAI H5N6 viruses was 10² EID₅₀/mL and 10³.⁵ EID₅₀/mL, respectively. Moreover, when opaque brown-colored samples were used as the target analytes, strong NIR emission signal from the test line in NNLFA confirmed the presence of AIV, whereas commercial AIV LFA detected AIV with difficulty. Therefore, we propose that this rapid and background-free NNLFA platform has the potential of detecting AIV in the field, which could effectively prevent the spread of these viruses at an early stage.Keywords: avian influenza viruses, lateral flow immunoassay on-site detection, upconversion nanoparticles
Procedia PDF Downloads 163798 Experimental Study of Hydrothermal Properties of Cool Pavements to Mitigate Urban Heat Islands
Authors: Youssef Wardeh, Elias Kinab, Pierre Rahme, Gilles Escadeillas, Stephane Ginestet
Abstract:
Urban heat islands designate a local phenomenon that appears in high density cities. This results in a rise ofambient temperature in the urban area compared to the neighboring rural area. Solar radiation plays an important role in this phenomenon since it is partially absorbed by the materials, especially roads and parking lots. Cool pavements constitute an innovative and promising technique to mitigate urban heat islands. The cool pavements studied in this work allow to limit the increase of the surface temperature, thanks to evaporation of the water conducted through capillary pores, from the humidified base to the surface exposed to solar radiation. However, the performance or the cooling capacity of a pavement sometimes remained difficult to characterize. In this work, a new definition of the cooling capacity of a pavement is presented, and a correlation between the latter and the hydrothermal properties of cool pavements is revealed. Firstly, several porous concrete pavements were characterized through their hydrothermal properties, which can be related to the cooling effect, such as albedo, thermal conductivity, water absorption, etc. Secondly, these pavements initially saturated and continuously supplied with water through their bases, were exposed to external solar radiation during three sunny summer days, and their surface temperatures were measured. For draining pavements, a strong second-degreepolynomial correlation(R² = 0.945) was found between the cooling capacity and the term, which reflects the interconnection of capillary water to the surface. Moreover, it was noticed that the cooling capacity reaches its maximum for an optimal range of capillary pores for which the capillary rise is stronger than gravity. For non-draining pavements, a good negative linear correlation (R² = 0.828) was obtained between the cooling capacity and the term, which expresses the ability to heat the capillary water by the energystored far from the surface, and, therefore, the dominance of the evaporation process by diffusion. The latest tests showed that this process is, however, likely to be disturbed by the material resistance to the water vapor diffusion.Keywords: urban heat islands, cool pavement, cooling capacity, hydrothermal properties, evaporation
Procedia PDF Downloads 96797 Mode of Action of Surface Bound Antimicrobial Peptides Melimine and Mel4 against Pseudomonas aeruginosa
Authors: Muhammad Yasir, Debarun Dutta, Mark Willcox
Abstract:
Biomaterial-associated infections are a multi-billion dollar burden globally. Antimicrobial peptide-based coatings may be able to prevent such infections. The aim of this study was to investigate the mechanism of action surface bound peptides (AMPs) against Pseudomonas aeruginosa 6294. Melimine and Mel4 were covalently attached to glass coverslips using azido-benzoic acid. Attachment was confirmed using X-ray photoelectron spectroscopy. P. aeruginosa was allowed to attach to AMP-coated glass for up to 6 hours. The effect of the surface-bound AMPs on bacterial cell membranes was evaluated using the dyes DiSC3-(5), Sytox green, SYTO 9 and propidium iodide with fluorescence microscopy. Release of cytoplasmic materials ATP and DNA/RNA were determined in the surrounding fluid. The amount of cell death was estimated by agar plate counts. The AMPs were successfully covalently bound to the glass as demonstrated by increases in %nitrogen of 3.6% (melimine) and 2.3% (Mel4) compared to controls. Immobilized peptides disrupted the cytoplasmic membrane potential of P. aeruginosa within 10 min. This was followed by the release of ATP after 2 h. Membrane permeabilization started at 3 h of contact with glass coated AMPs. There was a significant number of bacteria (59% for melimine; 36% for Mel-4) with damaged membranes after 4 h of contact. At the 6 h time point, release of DNA occurred with melimine releasing 2 times the amount of DNA/RNA than Mel4 surfaces (p < 0.05). Surface bound AMPs were able to disrupt cell membranes with subsequent release of cytoplasmic materials, and ultimately resulting in bacterial death.Keywords: biomaterials, immobilized antimicrobial peptides, P. aeruginosa, mode of action
Procedia PDF Downloads 134796 Development of Micelle-Mediated Sr(II) Fluorescent Analysis System
Authors: K. Akutsu, S. Mori, T. Hanashima
Abstract:
Fluorescent probes are useful for the selective detection of trace amount of ions and biomolecular imaging in living cells. Various kinds of metal ion-selective fluorescent compounds have been developed, and some compounds have been applied as effective metal ion-selective fluorescent probes. However, because competition between the ligand and water molecules for the metal ion constitutes a major contribution to the stability of a complex in aqueous solution, it is difficult to develop a highly sensitive, selective, and stable fluorescent probe in aqueous solution. The micelles, these are formed in the surfactant aqueous solution, provides a unique hydrophobic nano-environment for stabilizing metal-organic complexes in aqueous solution. Therefore, we focused on the unique properties of micelles to develop a new fluorescence analysis system. We have been developed a fluorescence analysis system for Sr(II) by using a Sr(II) fluorescent sensor, N-(2-hydroxy-3-(1H-benzimidazol-2-yl)-phenyl)-1-aza-18-crown-6-ether (BIC), and studied its complexation behavior with Sr(II) in micellar solution. We revealed that the stability constant of Sr(II)-BIC complex was 10 times higher than that in aqueous solution. In addition, its detection limit value was also improved up to 300 times by this system. However, the mechanisms of these phenomena have remained obscure. In this study, we investigated the structure of Sr(II)-BIC complex in aqueous micellar solution by combining use the extended X-ray absorption fine structure (EXAFS) and neutron reflectivity (NR) method to understand the unique properties of the fluorescence analysis system from the view point of structural chemistry. EXAFS and NR experiments were performed on BL-27B at KEK-PF and on BL17 SHARAKU at J-PARC MLF, respectively. The obtained EXAFS spectra and their fitting results indicated that Sr(II) and BIC formed a Sr(18-crown-6-ether)-like complex in aqueous micellar solution. The EXAFS results also indicated that the hydrophilic head group of surfactant molecule was directly coordinated with Sr(II). In addition, the NR results also indicated that Sr(II)-BIC complex would interact with the surface of micelle molecules. Therefore, we concluded that Sr(II), BIC, and surfactant molecule formed a ternary complexes in aqueous micellar solution, and at least, it is clear that the improvement of the stability constant in micellar solution is attributed to the result of the formation of Sr(BIC)(surfactant) complex.Keywords: micell, fluorescent probe, neutron reflectivity, EXAFS
Procedia PDF Downloads 179795 Study on Accumulation of Heavy Metals in Sweet Potato, Grown in Industrially Polluted Regions
Authors: Violina Angelova, Galina Pevicharova
Abstract:
A comparative research had been carried out to allow us to determine the quantities and the centers of accumulation of Pb, Cu, Zn and Cd in the vegetative and reproductive organs of the sweet potatoes and to ascertain the possibilities for growing them on soils, polluted with heavy metals. The experiments were performed on agricultural fields contaminated by the (1) Non-Ferrous-Metal Works near Plovdiv, (2) Lead and Zinc Complex near Kardjali and (3) a copper smelter near Pirdop, Bulgaria. The soils used in this experiment were characterized by acid, neutral and slightly alkaline reaction, loamy texture and a moderate content of organic matter. The total content of Zn, Pb, and Cd was high and exceeded the limit value in agriculture soils. Sweet potatoes were in a 2-year rotation scheme on three blocks in the experimental field. On reaching commercial ripeness the sweet potatoes were gathered and the contents of heavy metals in their different parts – root, tuber (peel and core), leaves and stems, were determined after microwave mineralization. The quantitative measurements were carried out with inductively coupled plasma atomic emission spectroscopy. The contamination of the sweet potatoes was due mainly to the presence of heavy metals in the soil, which entered the plants through their root system, as well as by diffusion through the peel. Pb, Cu, Zn, and Cd were selectively accumulated in the underground parts of the sweet potatoes, and most of all in the root system and the peel. Heavy metals have an impact on the development and productivity of the sweet potatoes. The high anthropogenic contamination leads to an increased assimilation of heavy metals which reduces the yield and the quality of the production of sweet potatoes, as well as leads to decrease of the absolute dry substance and the quantity of sugars in sweet potatoes. Sweet potatoes could be grown on soils, which are light to medium polluted with lead, zinc, and cadmium, as they do not accumulate these elements. On heavily polluted soils, however, (Pb – 1504 mg/kg, Zn – 3322 mg/kg, Cd – 47 mg/kg) the growing of sweet potatoes is not allowed, as the accumulation of Pb and Cd in the core of the potatoes exceeds the Maximum Acceptable Concentration. Acknowledgment: The authors gratefully acknowledge the financial support by the Bulgarian National Science Fund (Project DFNI DH04/9).Keywords: heavy metals, polluted soils, sweet potatoes, uptake
Procedia PDF Downloads 211794 Carbonaceous Monolithic Multi-Channel Denuders as a Gas-Particle Partitioning Tool for the Occupational Sampling of Aerosols from Semi-Volatile Organic Compounds
Authors: Vesta Kohlmeier, George C. Dragan, Juergen Orasche, Juergen Schnelle-Kreis, Dietmar Breuer, Ralf Zimmermann
Abstract:
Aerosols from hazardous semi-volatile organic compounds (SVOC) may occur in workplace air and can simultaneously be found as particle and gas phase. For health risk assessment, it is necessary to collect particles and gases separately. This can be achieved by using a denuder for the gas phase collection, combined with a filter and an adsorber for particle collection. The study focused on the suitability of carbonaceous monolithic multi-channel denuders, so-called Novacarb™-Denuders (MastCarbon International Ltd., Guilford, UK), to achieve gas-particle separation. Particle transmission efficiency experiments were performed with polystyrene latex (PSL) particles (size range 0.51-3 µm), while the time dependent gas phase collection efficiency was analysed for polar and nonpolar SVOC (mass concentrations 7-10 mg/m3) over 2 h at 5 or 10 l/min. The experimental gas phase collection efficiency was also compared with theoretical predictions. For n-hexadecane (C16), the gas phase collection efficiency was max. 91 % for one denuder and max. 98 % for two denuders, while for diethylene glycol (DEG), a maximal gas phase collection efficiency of 93 % for one denuder and 97 % for two denuders was observed. At 5 l/min higher gas phase collection efficiencies were achieved than at 10 l/min. The deviations between the theoretical and experimental gas phase collection efficiencies were up to 5 % for C16 and 23 % for DEG. Since the theoretical efficiency depends on the geometric shape and length of the denuder, flow rate and diffusion coefficients of the tested substances, the obtained values define an upper limit which could be reached. Regarding the particle transmission through the denuders, the use of one denuder showed transmission efficiencies around 98 % for 1-3 µm particle diameters. The use of three denuders resulted in transmission efficiencies from 93-97 % for the same particle sizes. In summary, NovaCarb™-Denuders are well applicable for sampling aerosols of polar/nonpolar substances with particle diameters ≤3 µm and flow rates of 5 l/min or lower. These properties and their compact size make them suitable for use in personal aerosol samplers. This work is supported by the German Social Accident Insurance (DGUV), research contract FP371.Keywords: gas phase collection efficiency, particle transmission, personal aerosol sampler, SVOC
Procedia PDF Downloads 175793 Analyzing the Ergonomic Design of Manual Material Handling in Chemical Industry: Case Study of Activity Task Weigh Liquid Catalyst to the Container Storage
Authors: Yayan Harry Yadi, L. Meily Kurniawidjaja
Abstract:
Work activities for MMH (Manual Material Handling) in the storage of liquid catalyst raw material workstations in chemical industries identify high-risk MSDs (Musculoskeletal Disorders). Their work is often performed frequently requires an awkward body posture, twisting, bending because of physical space limited, cold, slippery, and limited tools for transfer container and weighing the liquid chemistry of the catalyst into the container. This study aims to develop an ergonomic work system design on the transfer and weighing process of liquid catalyst raw materials at the storage warehouse. A triangulation method through an interview, observation, and detail study team with assessing the level of risk work posture and complaints. Work postures were analyzed using the RULA method, through the support of CATIA software. The study concludes that ergonomic design can make reduce 3 levels of risk scores awkward posture. CATIA Software simulation provided a comprehensive solution for a better posture of manual material handling at task weigh. An addition of manual material handling tools such as adjustable conveyors, trolley and modification tools semi-mechanical weighing with techniques based on rule ergonomic design can reduce the hazard of chemical fluid spills.Keywords: ergonomic design, MSDs, CATIA software, RULA, chemical industry
Procedia PDF Downloads 162792 Russian ‘Active Measures’: An Applicable Supporting Tool for Russia`s Foreign Policy Objectives in the 21st Century
Authors: Håkon Riiber
Abstract:
This paper explores the extent to which Russian ‘Active Measures’ play a role in contemporary Russian foreign policy and in what way the legacy of the Soviet Union is still apparent in these practices. The analysis draws on a set of case studies from the 21st century to examine these aspects, showing which ‘Active Measures’ features are old and which are new in the post-Cold War era. The paper highlights that the topic has gained significant academic and political interest in recent years, largely due to the aggressive posture of the Russian Federation on the world stage, exemplified through interventions in Estonia, Georgia, and Ukraine and interference in several democratic elections in the West. However, the paper argues that the long-term impact of these measures may have unintended implications for Russia. While Russia is unlikely to stop using Active Measures, increased awareness of the exploitation of weaknesses, institutions, or other targets may lead to greater security measures and an ability to identify and defend against these activities. The paper contends that Soviet-style ‘Active Measures’ from the Cold War era have been modernized and are now utilized to create an advantageous atmosphere for further exploitation to support contemporary Russian foreign policy. It offers three key points to support this argument: the reenergized legacy of the Cold War era, the use of ‘Active Measures’ in a number of cases in the 21st century, and the applicability of AM to the Russian approach to foreign policy. The analysis reveals that while this is not a new Russian phenomenon, it is still oversimplified and inaccurately understood by the West, which may result in a decreased ability to defend against these activities and limit the unwarranted escalation of the ongoing security situation between the West and Russia. The paper concludes that the legacy of Soviet-era Active Measures continues to influence Russian foreign policy, and modern technological advances have only made them more applicable to the current political climate. Overall, this paper sheds light on the important issue of Russian ‘Active Measures’ and the role they play in contemporary Russian foreign policy. It emphasizes the need for increased awareness, understanding, and security measures to defend against these activities and prevent further escalation of the security situation between the West and Russia.Keywords: Russian espionage, active measures, disinformation, Russian intelligence
Procedia PDF Downloads 102791 Challenges of Management of Acute Pancreatitis in Low Resource Setting
Authors: Md. Shakhawat Hossain, Jimma Hossain, Md. Naushad Ali
Abstract:
Acute pancreatitis is a dangerous medical emergency in the practice of gastroenterology. Management of acute pancreatitis needs multidisciplinary approach with support starts from emergency to ICU. So, there is a chance of mismanagement in every steps, especially in low resource settings. Other factors such as patient’s financial condition, education, social custom, transport facility, referral system from periphery may also challenge the current guidelines for management. The present study is intended to determine the clinico-pathological profile, severity assessment and challenges of management of acute pancreatitis in a government laid tertiary care hospital to image the real scenario of management in a low resource place. A total 100 patients of acute pancreatitis were studied in this prospective study, held in the Department of Gastroenterology, Rangpur medical college hospital, Bangladesh from July 2017 to July 2018 within one year. Regarding severity, 85 % of the patients were mild, whereas 13 were moderately severe, and 2 had severe acute pancreatitis according to the revised Atlanta criteria. The most common etiologies of acute pancreatitis in our study were gall stone (15%) and biliary sludge (15%), whereas 54% were idiopathic. The most common challenges we faced were delay in hospital admission (59%) and delay in hospital diagnosis (20%). Others are non-adherence of patient party, and lack of investigation facility, physician’s poor knowledge about current guidelines. We were able to give early aggressive fluid to only 18% of patients as per current guideline. Conclusion: Management of acute pancreatitis as per guideline is challenging when optimum facility is lacking. So, modified guidelines for assessment and management of acute pancreatitis should be prepared for low resource setting.Keywords: acute pancreatitis, challenges of management, severity, prognosis
Procedia PDF Downloads 128790 Synthesis of Microencapsulated Phase Change Material for Adhesives with Thermoregulating Properties
Authors: Christin Koch, Andreas Winkel, Martin Kahlmeyer, Stefan Böhm
Abstract:
Due to environmental regulations on greenhouse gas emissions and the depletion of fossil fuels, there is an increasing interest in electric vehicles.To maximize their driving range, batteries with high storage capacities are needed. In most electric cars, rechargeable lithium-ion batteries are used because of their high energy density. However, it has to be taken into account that these batteries generate a large amount of heat during the charge and discharge processes. This leads to a decrease in a lifetime and damage to the battery cells when the temperature exceeds the defined operating range. To ensure an efficient performance of the battery cells, reliable thermal management is required. Currently, the cooling is achieved by heat sinks (e.g., cooling plates) bonded to the battery cells with a thermally conductive adhesive (TCA) that directs the heat away from the components. Especially when large amounts of heat have to be dissipated spontaneously due to peak loads, the principle of heat conduction is not sufficient, so attention must be paid to the mechanism of heat storage. An efficient method to store thermal energy is the use of phase change materials (PCM). Through an isothermal phase change, PCM can briefly absorb or release thermal energy at a constant temperature. If the phase change takes place in the transition from solid to liquid, heat is stored during melting and is released to the ambient during the freezing process upon cooling. The presented work displays the great potential of thermally conductive adhesives filled with microencapsulated PCM to limit peak temperatures in battery systems. The encapsulation of the PCM avoids the effects of aging (e.g., migration) and chemical reactions between the PCM and the adhesive matrix components. In this study, microencapsulation has been carried out by in situ polymerization. The microencapsulated PCM was characterized by FT-IR spectroscopy, and the thermal properties were measured by DSC and laser flash method. The mechanical properties, electrical and thermal conductivity, and adhesive toughness of the TCA/PCM composite were also investigated.Keywords: phase change material, microencapsulation, adhesive bonding, thermal management
Procedia PDF Downloads 71789 Modeling and Simulation of Secondary Breakup and Its Influence on Fuel Spray in High Torque Low Speed Diesel Engine
Authors: Mohsin Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi
Abstract:
High torque low-speed diesel engine has a wide range of industrial and commercial applications. In literature, it’s found that lot of work has been done for the high-speed diesel engine and research on High Torque low-speed is rare. The fuel injection plays a key role in the efficiency of engine and reduction in exhaust emission. The fuel breakup plays a critical role in air-fuel mixture and spray combustion. The current study explains numerically an important phenomenon in spray combustion which is deformation and breakup of liquid drops in compression ignition internal combustion engine. The secondary breakup and its influence on spray and characteristics of compressed gas in-cylinder have been calculated by using simulation software in the backdrop of high torque low-speed diesel like conditions. The secondary spray breakup is modeled with KH - RT instabilities. The continuous field is described by turbulence model and dynamics of the dispersed droplet is modeled by Lagrangian tracking scheme. The results by using KH - RT model are compared against other default methods in OpenFOAM and published experimental data from research and implemented in CFD (Computational Fluid Dynamics). These numerical simulation, done in OpenFoam and Matlab, results are analyzed for the complete 720- degree 4 stroke engine cycle at a low engine speed, for favorable agreement to be achieved. Results thus obtained will be analyzed for better evaporation in near nozzle region. The proposed analyses will further help in better engine efficiency, low emission and improved fuel economy.Keywords: diesel fuel, KH-RT, Lagrangian , Open FOAM, secondary breakup
Procedia PDF Downloads 263788 Safety-critical Alarming Strategy Based on Statistically Defined Slope Deformation Behaviour Model Case Study: Upright-dipping Highwall in a Coal Mining Area
Authors: Lintang Putra Sadewa, Ilham Prasetya Budhi
Abstract:
Slope monitoring program has now become a mandatory campaign for any open pit mines around the world to operate safely. Utilizing various slope monitoring instruments and strategies, miners are now able to deliver precise decisions in mitigating the risk of slope failures which can be catastrophic. Currently, the most sophisticated slope monitoring technology available is the Slope Stability Radar (SSR), whichcan measure wall deformation in submillimeter accuracy. One of its eminent features is that SSRcan provide a timely warning by automatically raise an alarm when a predetermined rate-of-movement threshold is reached. However, establishing proper alarm thresholds is arguably one of the onerous challenges faced in any slope monitoring program. The difficulty mainly lies in the number of considerations that must be taken when generating a threshold becausean alarm must be effectivethat it should limit the occurrences of false alarms while alsobeing able to capture any real wall deformations. In this sense, experience shows that a site-specific alarm thresholdtendsto produce more reliable results because it considers site distinctive variables. This study will attempt to determinealarming thresholds for safety-critical monitoring based on an empirical model of slope deformation behaviour that is defined statistically fromdeformation data captured by the Slope Stability Radar (SSR). The study area comprises of upright-dipping highwall setting in a coal mining area with intense mining activities, andthe deformation data used for the study were recorded by the SSR throughout the year 2022. The model is site-specific in nature thus, valuable information extracted from the model (e.g., time-to-failure, onset-of-acceleration, and velocity) will be applicable in setting up site-specific alarm thresholds and will give a clear understanding of how deformation trends evolve over the area.Keywords: safety-critical monitoring, alarming strategy, slope deformation behaviour model, coal mining
Procedia PDF Downloads 88787 Flirting with Ephemerality and the Daily Production of the Fleeting City
Authors: Rafael Martinez
Abstract:
Our view of cities is dominated by the built environment. Buildings, streets, avenues, bridges, flyovers, and so on virtually exclude anything not fixed, permanently alterable or indefinitely temporal. Yet, city environments can also be shaped by temporally produced structures which, regardless of their transience, act as thresholds separating or segregating people and spaces. Academic works on cities conceptualize them, whether temporary or permanent, as tangible environments. This paper considers the idea of the ephemeral city, a city purposely produced and lived in as an impermanent, fluid and transitional environment resulting from an alignment of different forces. In particular, the paper proposes to observe how certain performative practices inform the emergence of ephemeral spaces in the city’s daily life. With Singapore as its backdrop and focusing foreign workers, the paper aims at documenting how everyday life practices, such as flirting, result in production of transitional space, informed by semiotic blurs, and yet material, perceptible, human and tangible for some. In this paper, it is argued that flirting for Singapore's foreign workers entails skillful understanding of what is proposed as the 'flirting cartography.' Thus, spatially, flirtation becomes not only a matter to be taken for granted but also a form of producing a fleeting space that requires deployment of various techniques drawn upon a particular knowledge. The paper is based upon a performative methodology which seeks to understand the praxis and rationale of the ephemerality of some spaces produced by foreign workers within this cosmopolitan city. By resorting to this methodological approach, the paper aims to establish the connection between the visibility gained by usually marginalized populations through their ephemeral reclamation of public spaces in the city.Keywords: ephemeral, flirting, Singapore, space
Procedia PDF Downloads 107786 In vivo Antidiarrheal and ex-vivo Spasmolytic Activities of the Aqueous Extract of the Roots of Echinops kebericho Mesfin in Rodents and Isolated Guinea-Pig Ileum
Authors: Fisseha Shiferie (Bpharm, Mpharm)
Abstract:
Diarrhea is a common gastrointestinal disorder characterized by an increase in stool frequency and a change in stool consistency. Inspite of the availability of many drugs as antidiarrheal agents, the search for a drug with affordable cost and better efficacy is essential to overcome diarrheal problems. The root extract of Echinops kebericho, is used by traditional practitioners for the treatment of diarrhea. However, the scientific basis for this usage has not been yet established. The purpose of the present study was to evaluate the antidiarrheal and spasmolytic activities of the aqueous extract of the roots of E. kebericho in rodents and isolated guinea-pig ileum preparations. In the castor oil induced intestinal transit test, E. kebericho produced a significant (p < 0.01) dose dependent decrease in propulsion with peristaltic index values of 45.05±3.3, 42.71±2.25 and 33.17±3.3%, respectively at doses of 100, 200 and 400 mg/kg compared with 63.43±7.3% for control. In the castor oil-induced diarrhea test, the mean defecation was reduced from 1.81±0.18 to 0.99 ± 0.21 compared with 2.59 ±0.81 for control. The extract (at doses stated above) significantly decreased the volume of intestinal fluid secretion induced by castor oil (2.31±0.1 to 2.01±0.2) in relation to 3.28±0.3 for control. When tested on a guinea-pig ileum, root extract of Echinops kebericho exhibited a dose dependent spasmolytic effect, 23.07 % being its highest inhibitory effect. The results obtained in this study give some scientific support to the use of Echinops kebericho as an antidiarrheal agent due to its inhibitory effects on the different diarrheal parameters used in this study.Keywords: antidiarrheal activity, E. kebericho, traditional medicine, diarrhea, enteropooling, and intestinal transit
Procedia PDF Downloads 317785 Low-Cost Reusable Thermal Energy Storage Particle for Concentrating Solar Power
Authors: Kyu Bum Han, Eunjin Jeon, Kimberly Watts, Brenda Payan Medina
Abstract:
Gen3 Concentrating Solar Power (CSP) high-temperature thermal systems have the potential to lower the cost of a CSP system. When compared to the other systems (chloride salt blends and supercritical fluids), the particle transport system can avoid many of the issues associated with high fluid temperature systems at high temperature because of its ability to operate at ambient pressure with limited corrosion or thermal stability risk. Furthermore, identifying and demonstrating low-cost particles that have excellent optical properties and durability can significantly reduce the levelized cost of electricity (LCOE) of particle receivers. The currently available thermal transfer particle in the study and market is oxidized at about 700oC, which reduces its durability, generates particle loss by high friction loads, and causes the color change. To meet the CSP SunShot goal, the durability of particles must be improved by identifying particles that are less abrasive to other structural materials. Furthermore, the particles must be economically affordable and the solar absorptance of the particles must be increased while minimizing thermal emittance. We are studying a novel thermal transfer particle, which has low cost, high durability, and high solar absorptance at high temperatures. The particle minimizes thermal emittance and will be less abrasive to other structural materials. Additionally, the particle demonstrates reusability, which significantly lowers the LCOE. This study will contribute to two principal disciplines of energy science: materials synthesis and manufacturing. Developing this particle for thermal transfer will have a positive impact on the ceramic study and industry as well as the society.Keywords: concentrating solar power, thermal energy storage, particle, reusability, economics
Procedia PDF Downloads 221784 A Simplified, Low-Cost Mechanical Design for an Automated Motorized Mechanism to Clean Large Diameter Pipes
Authors: Imad Khan, Imran Shafi, Sarmad Farooq
Abstract:
Large diameter pipes, barrels, tubes, and ducts are used in a variety of applications covering civil and defense-related technologies. This may include heating/cooling networks, sign poles, bracing, casing, and artillery and tank gun barrels. These large diameter assemblies require regular inspection and cleaning to increase their life and reduce replacement costs. This paper describes the design, development, and testing results of an efficient yet simplified, low maintenance mechanical design controlled with minimal essential electronics using an electric motor for a non-technical staff. The proposed solution provides a simplified user interface and an automated cleaning mechanism that requires a single user to optimally clean pipes and barrels in the range of 105 mm to 203 mm caliber. The proposed system employs linear motion of specially designed brush along the barrel using a chain of specific strength and a pulley anchor attached to both ends of the barrel. A specially designed and manufactured gearbox is coupled with an AC motor to allow movement of contact brush with high torque to allow efficient cleaning. A suitably powered AC motor is fixed to the front adapter mounted on the muzzle side whereas the rear adapter has a pulley-based anchor mounted towards the breach block in case of a gun barrel. A mix of soft nylon and hard copper bristles-based large surface brush is connected through a strong steel chain to motor and anchor pulley. The system is equipped with limit switches to auto switch the direction when one end is reached on its operation. The testing results based on carefully established performance indicators indicate the superiority of the proposed user-friendly cleaning mechanism vis-à-vis its life cycle cost.Keywords: pipe cleaning mechanism, limiting switch, pipe cleaning robot, large pipes
Procedia PDF Downloads 110783 Investigation of Heat Conduction through Particulate Filled Polymer Composite
Authors: Alok Agrawal, Alok Satapathy
Abstract:
In this paper, an attempt to determine the effective thermal conductivity (keff) of particulate filled polymer composites using finite element method (FEM) a powerful computational technique is made. A commercially available finite element package ANSYS is used for this numerical analysis. Three-dimensional spheres-in-cube lattice array models are constructed to simulate the microstructures of micro-sized particulate filled polymer composites with filler content ranging from 2.35 to 26.8 vol %. Based on the temperature profiles across the composite body, the keff of each composition is estimated theoretically by FEM. Composites with similar filler contents are than fabricated using compression molding technique by reinforcing micro-sized aluminium oxide (Al2O3) in polypropylene (PP) resin. Thermal conductivities of these composite samples are measured according to the ASTM standard E-1530 by using the Unitherm™ Model 2022 tester, which operates on the double guarded heat flow principle. The experimentally measured conductivity values are compared with the numerical values and also with those obtained from existing empirical models. This comparison reveals that the FEM simulated values are found to be in reasonable good agreement with the experimental data. Values obtained from the theoretical model proposed by the authors are also found to be in even closer approximation with the measured values within percolation limit. Further, this study shows that there is gradual enhancement in the conductivity of PP resin with increase in filler percentage and thereby its heat conduction capability is improved. It is noticed that with addition of 26.8 vol % of filler, the keff of composite increases to around 6.3 times that of neat PP. This study validates the proposed model for PP-Al2O3 composite system and proves that finite element analysis can be an excellent methodology for such investigations. With such improved heat conduction ability, these composites can find potential applications in micro-electronics, printed circuit boards, encapsulations etc.Keywords: analytical modelling, effective thermal conductivity, finite element method, polymer matrix composite
Procedia PDF Downloads 320782 Study of the Effect of the Contra-Rotating Component on the Performance of the Centrifugal Compressor
Authors: Van Thang Nguyen, Amelie Danlos, Richard Paridaens, Farid Bakir
Abstract:
This article presents a study of the effect of a contra-rotating component on the efficiency of centrifugal compressors. A contra-rotating centrifugal compressor (CRCC) is constructed using two independent rotors, rotating in the opposite direction and replacing the single rotor of a conventional centrifugal compressor (REF). To respect the geometrical parameters of the REF one, two rotors of the CRCC are designed, based on a single rotor geometry, using the hub and shroud length ratio parameter of the meridional contour. Firstly, the first rotor is designed by choosing a value of length ratio. Then, the second rotor is calculated to be adapted to the fluid flow of the first rotor according aerodynamics principles. In this study, four values of length ratios 0.3, 0.4, 0.5, and 0.6 are used to create four configurations CF1, CF2, CF3, and CF4 respectively. For comparison purpose, the circumferential velocity at the outlet of the REF and the CRCC are preserved, which means that the single rotor of the REF and the second rotor of the CRCC rotate with the same speed of 16000rpm. The speed of the first rotor in this case is chosen to be equal to the speed of the second rotor. The CFD simulation is conducted to compare the performance of the CRCC and the REF with the same boundary conditions. The results show that the configuration with a higher length ratio gives higher pressure rise. However, its efficiency is lower. An investigation over the entire operating range shows that the CF1 is the best configuration in this case. In addition, the CRCC can improve the pressure rise as well as the efficiency by changing the speed of each rotor independently. The results of changing the first rotor speed show with a 130% speed increase, the pressure ratio rises of 8.7% while the efficiency remains stable at the flow rate of the design operating point.Keywords: centrifugal compressor, contra-rotating, interaction rotor, vacuum
Procedia PDF Downloads 133781 [Keynote Talk]: Mathematical and Numerical Modelling of the Cardiovascular System: Macroscale, Mesoscale and Microscale Applications
Authors: Aymen Laadhari
Abstract:
The cardiovascular system is centered on the heart and is characterized by a very complex structure with different physical scales in space (e.g. micrometers for erythrocytes and centimeters for organs) and time (e.g. milliseconds for human brain activity and several years for development of some pathologies). The development and numerical implementation of mathematical models of the cardiovascular system is a tremendously challenging topic at the theoretical and computational levels, inducing consequently a growing interest over the past decade. The accurate computational investigations in both healthy and pathological cases of processes related to the functioning of the human cardiovascular system can be of great potential in tackling several problems of clinical relevance and in improving the diagnosis of specific diseases. In this talk, we focus on the specific task of simulating three particular phenomena related to the cardiovascular system on the macroscopic, mesoscopic and microscopic scales, respectively. Namely, we develop numerical methodologies tailored for the simulation of (i) the haemodynamics (i.e., fluid mechanics of blood) in the aorta and sinus of Valsalva interacting with highly deformable thin leaflets, (ii) the hyperelastic anisotropic behaviour of cardiomyocytes and the influence of calcium concentrations on the contraction of single cells, and (iii) the dynamics of red blood cells in microvasculature. For each problem, we present an appropriate fully Eulerian finite element methodology. We report several numerical examples to address in detail the relevance of the mathematical models in terms of physiological meaning and to illustrate the accuracy and efficiency of the numerical methods.Keywords: finite element method, cardiovascular system, Eulerian framework, haemodynamics, heart valve, cardiomyocyte, red blood cell
Procedia PDF Downloads 251780 Fabrication of Cheap Novel 3d Porous Scaffolds Activated by Nano-Particles and Active Molecules for Bone Regeneration and Drug Delivery Applications
Authors: Mostafa Mabrouk, Basma E. Abdel-Ghany, Mona Moaness, Bothaina M. Abdel-Hady, Hanan H. Beherei
Abstract:
Tissue engineering became a promising field for bone repair and regenerative medicine in which cultured cells, scaffolds and osteogenic inductive signals are used to regenerate tissues. The annual cost of treating bone defects in Egypt has been estimated to be many billions, while enormous costs are spent on imported bone grafts for bone injuries, tumors, and other pathologies associated with defective fracture healing. The current study is aimed at developing a more strategic approach in order to speed-up recovery after bone damage. This will reduce the risk of fatal surgical complications and improve the quality of life of people affected with such fractures. 3D scaffolds loaded with cheap nano-particles that possess an osteogenic effect were prepared by nano-electrospinning. The Microstructure and morphology characterizations of the 3D scaffolds were monitored using scanning electron microscopy (SEM). The physicochemical characterization was investigated using X-ray diffractometry (XRD) and infrared spectroscopy (IR). The Physicomechanical properties of the 3D scaffold were determined by a universal testing machine. The in vitro bioactivity of the 3D scaffold was assessed in simulated body fluid (SBF). The bone-bonding ability of novel 3D scaffolds was also evaluated. The obtained nanofibrous scaffolds demonstrated promising microstructure, physicochemical and physicomechanical features appropriate for enhanced bone regeneration. Therefore, the utilized nanomaterials loaded with the drug are greatly recommended as cheap alternatives to growth factors.Keywords: bone regeneration, cheap scaffolds, nanomaterials, active molecules
Procedia PDF Downloads 186779 Radiation Protection and Licensing for an Experimental Fusion Facility: The Italian and European Approaches
Authors: S. Sandri, G. M. Contessa, C. Poggi
Abstract:
An experimental nuclear fusion device could be seen as a step toward the development of the future nuclear fusion power plant. If compared with other possible solutions to the energy problem, nuclear fusion has advantages that ensure sustainability and security. In particular considering the radioactivity and the radioactive waste produced, in a nuclear fusion plant the component materials could be selected in order to limit the decay period, making it possible the recycling in a new reactor after about 100 years from the beginning of the decommissioning. To achieve this and other pertinent goals many experimental machines have been developed and operated worldwide in the last decades, underlining that radiation protection and workers exposure are critical aspects of these facilities due to the high flux, high energy neutrons produced in the fusion reactions. Direct radiation, material activation, tritium diffusion and other related issues pose a real challenge to the demonstration that these devices are safer than the nuclear fission facilities. In Italy, a limited number of fusion facilities have been constructed and operated since 30 years ago, mainly at the ENEA Frascati Center, and the radiation protection approach, addressed by the national licensing requirements, shows that it is not always easy to respect the constraints for the workers' exposure to ionizing radiation. In the current analysis, the main radiation protection issues encountered in the Italian Fusion facilities are considered and discussed, and the technical and legal requirements are described. The licensing process for these kinds of devices is outlined and compared with that of other European countries. The following aspects are considered throughout the current study: i) description of the installation, plant and systems, ii) suitability of the area, buildings, and structures, iii) radioprotection structures and organization, iv) exposure of personnel, v) accident analysis and relevant radiological consequences, vi) radioactive wastes assessment and management. In conclusion, the analysis points out the needing of a special attention to the radiological exposure of the workers in order to demonstrate at least the same level of safety as that reached at the nuclear fission facilities.Keywords: fusion facilities, high energy neutrons, licensing process, radiation protection
Procedia PDF Downloads 350