Search results for: adsorption mechanism
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3849

Search results for: adsorption mechanism

939 Sudden Death in Young Patients: A Study of 312 Autopsy Cases

Authors: N. Haj Salem, M. Belhadj, S. Ben Jomâa, S. Saadi, R. Dhouieb, A. Chadly

Abstract:

Introduction: Sudden death in young is seen as a dramatic phenomenon requiring knowledge of its impact and determining their causes. Aim: We aim to study the epidemiological characteristics of sudden death in young, and to discuss the mechanism and the importance of autopsy in these situations. Material and methods: We performed a retrospective cohort study using autopsy data from the department of forensic medicine at the University Hospital of Fattouma Bourguiba, Monastir-Tunisia. A review of all autopsies performed during 23 years was done. In each case, clinical information and circumstances of death were obtained. We have included all sudden death in persons aged between 1 year and 35 years for the male and from one year to 45 years for female. We collected 312 cases of sudden death during the studied period. The collected data were processed using SPSS 20. The significance level was set at 0.05. Results: Thirty-two cases of cardiac ischemic sudden death have been collected. Myocardial infarction was the second cause of sudden death in young patients. There was a male predominance. The most affected subjects were aged between 25-45 years. The death occurred more frequently at rest. Coronary artery disease has been discovered in twenty-four cases (75%). A severe coronary artery disease was observed in two children with medical history of familial hypercholesterolemia. The myocardial infarction occurred in healthy coronary arteries in eight cases. An anomalous course of coronary arteries, in particular, myocardial bridging, was found in eight cases (25%). Toxicological screening was negative in all cases. Second cause of death was hypertrophic cardiomyopathy. Neurological and respiratory causes of death were implicated respectively in 10% and 15%. Conclusion: Identifying epidemiological characteristics of sudden death in this population is important for guiding approaches to prevention that must be based on dietary hygienic measures and the control of cardiovascular risk factors.

Keywords: autopsy, cardiac death, sudden death, young

Procedia PDF Downloads 215
938 Receptor-Independent Effects of Endocannabinoid Anandamide on Contractility and Electrophysiological Properties of Rat Ventricular Myocytes

Authors: Lina T. Al Kury, Oleg I. Voitychuk, Ramiz M. Ali, Sehamuddin Galadari, Keun-Hang Susan Yang, Frank Christopher Howarth, Yaroslav M. Shuba, Murat Oz

Abstract:

A role for anandamide (N-arachidonoyl ethanolamide; AEA), a major endocannabinoid, in the cardiovascular system in various pathological conditions has been reported in earlier studies. In the present work, we have hypothesized that the antiarrhythmic effects reported for AEA are due to its negative inotropic effect and altered action potential (AP) characteristics. Therefore, we tested the effects of AEA on contractility and electrophysiological properties of rat ventricular myocytes. Video edge detection was used to measure myocyte shortening. Intracellular Ca2+ was measured in cells loaded with the fluorescent indicator fura-2 AM. Whole-cell patch-clamp technique was employed to investigate the effect of AEA on the characteristics of APs. AEA (1 μM) caused a significant decrease in the amplitudes of electrically-evoked myocyte shortening and Ca2+ transients and significantly decreased the duration of AP. The effect of AEA on myocyte shortening and AP characteristics was not altered in the presence of pertussis toxin (PTX, 2 µg/ml for 4 h), AM251 and SR141716 (cannabinoid type 1 receptor antagonists) or AM630 and SR 144528 (cannabinoid type 2 receptor antagonists). Furthermore, AEA inhibited voltage-activated inward Na+ (INa) and Ca2+ (IL,Ca) currents; major ionic currents shaping the APs in ventricular myocytes, in a voltage and PTX-independent manner. Collectively, the results suggest that AEA depresses ventricular myocyte contractility, by decreasing the action potential duration (APD), and inhibits the function of voltage-dependent Na+ and L-type Ca2+ channels in a manner independent of cannabinoid receptors. This mechanism may be importantly involved in the antiarrhythmic effects of anandamide.

Keywords: action potential, anandamide, cannabinoid receptor, endocannabinoid, ventricular myocytes

Procedia PDF Downloads 329
937 Preparation of Flurbiprofen Derivative for Enhanced Brain Penetration

Authors: Jungkyun Im

Abstract:

Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective for relieving pain and reducing inflammation. They are nonselective inhibitors of two isoforms of COX, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), and thereby inhibiting the production of hormone-like lipid compounds such as, prostaglandins and thromboxanes which cause inflammation, pain, fever, platelet aggregation, etc. In addition, recently there are many research articles reporting the neuroprotective effect of NSAIDs in neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). However, the clinical use of NSAIDs in these diseases is limited by low brain distribution. Therefore, in order to assist the in-depth investigation on the pharmaceutical mechanism of flurbiprofen in neuroprotection and to make flurbiprofen a more potent drug to prevent or alleviate neurodegenerative diseases, delivery of flurbiprofen to brain should be effective and sufficient amount of flurbiprofen must penetrate the BBB thus gaining access into the patient’s brain. We have recently developed several types of guanidine-rich molecular carriers with high molecular weights and good water solubility that readily cross the blood-brain barrier (BBB) and display efficient distributions in the mouse brain. The G8 (having eight guanidine groups) molecular carrier based on D-sorbitol was found to be very effective in delivering anticancer drugs to a mouse brain. In the present study, employing the same molecular carrier, we prepared the flurbiprofen conjugate and studied its BBB permeation by mouse tissue distribution study. Flurbiprofen was attached to a molecular carrier with a fluorescein probe and multiple terminal guanidiniums. The conjugate was found to internalize into live cells and readily cross the BBB to enter the mouse brain. Our novel synthetic flurbiprofen conjugate will hopefully delivery NSAIDs into brain, and is therefore applicable to the neurodegenerative diseases treatment or prevention.

Keywords: flurbiprofen, drug delivery, molecular carrier, organic synthesis

Procedia PDF Downloads 211
936 Recurrent Neural Networks for Complex Survival Models

Authors: Pius Marthin, Nihal Ata Tutkun

Abstract:

Survival analysis has become one of the paramount procedures in the modeling of time-to-event data. When we encounter complex survival problems, the traditional approach remains limited in accounting for the complex correlational structure between the covariates and the outcome due to the strong assumptions that limit the inference and prediction ability of the resulting models. Several studies exist on the deep learning approach to survival modeling; moreover, the application for the case of complex survival problems still needs to be improved. In addition, the existing models need to address the data structure's complexity fully and are subject to noise and redundant information. In this study, we design a deep learning technique (CmpXRnnSurv_AE) that obliterates the limitations imposed by traditional approaches and addresses the above issues to jointly predict the risk-specific probabilities and survival function for recurrent events with competing risks. We introduce the component termed Risks Information Weights (RIW) as an attention mechanism to compute the weighted cumulative incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to extract complex characteristics among the set of covariates responsible for the cause-specific events. We train our model using synthetic and real data sets and employ the appropriate metrics for complex survival models for evaluation. As benchmarks, we selected both traditional and machine learning models and our model demonstrates better performance across all datasets.

Keywords: cumulative incidence function (CIF), risk information weight (RIW), autoencoders (AE), survival analysis, recurrent events with competing risks, recurrent neural networks (RNN), long short-term memory (LSTM), self-attention, multilayers perceptrons (MLPs)

Procedia PDF Downloads 59
935 Effect of Slope Angle on Gougerd Landslide Stability in Northwest of Iran

Authors: Akbar Khodavirdizadeh

Abstract:

Gougerd village landslide with area about 150 hectares is located in southwest of Khoy city in northwest of the Iran. This Landslide was commenced more than 21 years and caused some damages in houses like some fissures on walls and some cracks on ground and foundations. The main mechanism of landslide is rotational with the high different of top and foot is about 230 m. The thickness of slide mass based on geoelectrical investigation is about 16m obtained. The upper layer of slope is silty sand and the lower layer of clayey gravel. In this paper, the stability of landslide are analyzed based in static analysis under different groundwater surface conditions and at slope angle changes with limit eqlibrium method and the simplified Bishop method. The results of the 72 stability analysis showed that the slope stability of Gougerd landslide increased with increasing of the groundwater surface depth of slope crown. And especially when decreased of slope angle, the safety facter more than in previous state is increased. The required of safety factor for stability in groundwater surface depth from slope crown equal 14 m and with decreased of slope angle to 3 degree at decrease of groundwater surface depth from slope crown equal 6.5 m obtained. The safety factor in critical conditions under groundwater surface depth from slope crown equal 3.5 m and at decreased of slope angle to 3 degree equal 0.5 m obtained. At groudwater surface depth from slope crown of 3 m, 7 m and 10 m respectively equal to 0.97, 1.19 and 1.33 obtained. At groudwater surface depth from slope crown of 3 m, 7 m and 10 m with decreased of slope angle to 3 degree, respectively equal to 1.27, 1.54 and 1.72 obtained. According to the results of this study, for 1 m of groundwater level decrease, the safety factor increased by 5%, and for 1 degree of reduction of the slope angle, safety factor increased by 15%. And the effect of slope angle on Gougerd landslide stability was felt more than groundwater effect.

Keywords: Gougerd landslide, stability analysis, slope angle, groundwater, Khoy

Procedia PDF Downloads 145
934 Effect of Austenitizing Temperature, Soaking Time and Grain Size on Charpy Impact Toughness of Quenched and Tempered Steel

Authors: S. Gupta, R. Sarkar, S. Pathak, D. H. Kela, A. Pramanick, P. Talukdar

Abstract:

Low alloy quenched and tempered steels are typically used in cast railway components such as knuckles, yokes, and couplers. Since these components experience extensive impact loading during their service life, adequate impact toughness of these grades need to be ensured to avoid catastrophic failure of parts in service. Because of the general availability of Charpy V Test equipment, Charpy test is the most common and economical means to evaluate the impact toughness of materials and is generally used in quality control applications. With this backdrop, an experiment was designed to evaluate the effect of austenitizing temperature, soaking time and resultant grain size on the Charpy impact toughness and the related fracture mechanisms in a quenched and tempered low alloy steel, with the aim of optimizing the heat treatment parameters (i.e. austenitizing temperature and soaking time) with respect to impact toughness. In the first phase, samples were austenitized at different temperatures viz. 760, 800, 840, 880, 920 and 960°C, followed by quenching and tempering at 600°C for 4 hours. In the next phase, samples were subjected to different soaking times (0, 2, 4 and 6 hours) at a fixed austenitizing temperature (980°C), followed by quenching and tempering at 600°C for 4 hours. The samples corresponding to different test conditions were then subjected to instrumented Charpy tests at -40°C and energy absorbed were recorded. Subsequently, microstructure and fracture surface of samples corresponding to different test conditions were observed under scanning electron microscope, and the corresponding grain sizes were measured. In the final stage, austenitizing temperature, soaking time and measured grain sizes were correlated with impact toughness and the fracture morphology and mechanism.

Keywords: heat treatment, grain size, microstructure, retained austenite and impact toughness

Procedia PDF Downloads 306
933 The Acute Effects of Higher Versus Lower Load Duration and Intensity on Morphological and Mechanical Properties of the Healthy Achilles Tendon: A Randomized Crossover Trial

Authors: Eman Merza, Stephen Pearson, Glen Lichtwark, Peter Malliaras

Abstract:

The Achilles tendon (AT) exhibits volume changes related to fluid flow under acute load which may be linked to changes in stiffness. Fluid flow provides a mechanical signal for cellular activity and may be one mechanism that facilitates tendon adaptation. This study aimed to investigate whether isometric intervention involving a high level of load duration and intensity could maximize the immediate reduction in AT volume and stiffness compared to interventions involving a lower level of load duration and intensity. Sixteen healthy participants (12 males, 4 females; age= 24.4 ± 9.4 years; body mass= 70.9 ± 16.1 kg; height= 1.7 ± 0.1 m) performed three isometric interventions of varying levels of load duration (2 s and 8 s) and intensity (35% and 75% maximal voluntary isometric contraction) over a 3 week period. Freehand 3D ultrasound was used to measure free AT volume (at rest) and length (at 35%, 55%, and 75% of maximum plantarflexion force) pre- and post-interventions. The slope of the force-elongation curve over these force levels represented individual stiffness (N/mm). Large reductions in free AT volume and stiffness resulted in response to long-duration high-intensity loading whilst less reduction was produced with a lower load intensity. In contrast, no change in free AT volume and a small increase in AT stiffness occurred with lower load duration. These findings suggest that the applied load on the AT must be heavy and sustained for a long duration to maximize immediate volume reduction, which might be an acute response that enables optimal long-term tendon adaptation via mechanotransduction pathways.

Keywords: Achilles tendon, volume, stiffness, free tendon, 3d ultrasound

Procedia PDF Downloads 62
932 Validity of Universe Structure Conception as Nested Vortexes

Authors: Khaled M. Nabil

Abstract:

This paper introduces the Nested Vortexes conception of the universe structure and interprets all the physical phenomena according this conception. The paper first reviews recent physics theories, either in microscopic scale or macroscopic scale, to collect evidence that the space is not empty. But, these theories describe the property of the space medium without determining its structure. Determining the structure of space medium is essential to understand the mechanism that leads to its properties. Without determining the space medium structure, many phenomena; such as electric and magnetic fields, gravity, or wave-particle duality remain uninterpreted. Thus, this paper introduces a conception about the structure of the universe. It assumes that the universe is a medium of ultra-tiny homogeneous particles which are still undiscovered. Like any medium with certain movements, possibly because of a great asymmetric explosion, vortexes have occurred. A vortex condenses the ultra-tiny particles in its center forming a bigger particle, the bigger particles, in turn, could be trapped in a bigger vortex and condense in its center forming a much bigger particle and so on. This conception describes galaxies, stars, protons as particles at different levels. Existing of the particle’s vortexes make the consistency of the speed of light postulate is not true. This conception shows that the vortex motion dynamic agrees with the motion of all the universe particles at any level. An experiment has been carried out to detect the orbiting effect of aggregated vortexes of aligned atoms of a permanent magnet. Based on the described particle’s structure, the gravity force of a particle and attraction between particles as well as charge, electric and magnetic fields and quantum mechanics characteristics are interpreted. All augmented physics phenomena are solved.

Keywords: astrophysics, cosmology, particles’ structure model, particles’ forces

Procedia PDF Downloads 101
931 Conducting Quality Planning, Assurance and Control According to GMP (Good Manufacturing Practices) Standards and Benchmarking Data for Kuwait Food Industries

Authors: Alaa Alateeqi, Sara Aldhulaiee, Sara Alibraheem, Noura Alsaleh

Abstract:

For the past few decades or so, Kuwait's local food industry has grown remarkably due to increase in demand for processed or semi processed food products in the market. It is important that the ever increasing food manufacturing/processing units maintain the required quality standards as per regional and to some extent international quality requirements. It has been realized that all Kuwait food manufacturing units should understand and follow the international standard practices, and moreover a set of guidelines must be set for quality assurance such that any new business in this area is aware of the minimum requirements. The current study has been undertaken to identify the gaps in Kuwait food industries in following the Good Manufacturing Practices (GMP) in terms of quality planning, control and quality assurance. GMP refers to Good Manufacturing Practices, which are a set of rules, laws or regulations that certify producing products within quality standards and ensuring that it is safe, pure and effective. The present study therefore reports about a ‘case study’ in a reputed food manufacturing unit in Kuwait; starting from assessment of the current practices followed by diagnosis, report of the diagnosis and road map and corrective measures for GMP implementation in the unit. The case study has also been able to identify the best practices and establish a benchmarking data for other companies to follow, through measuring the selected company's quality, policies, products and strategies and compare it with the established benchmarking data. A set of questionnaires and assessment mechanism has been established for companies to identify their ‘benchmarking score’ in relation to the number of non-conformities and conformities with the GMP standard requirements.

Keywords: good manufacturing practices, GMP, benchmarking, Kuwait Food Industries, food quality

Procedia PDF Downloads 444
930 Motivational Strategies for Young Learners in Distance Education

Authors: Saziye Darendeli

Abstract:

Motivation has a significant impact on a second/foreign language learning process, so it plays a vital role while achieving the learning goal. As it is defined by Simon (1967, p. 29), motivation is “a goal terminating mechanism, permitting goals to be processed serially.”AccordingtoSimon, if a learning goal is activated and enough attention is given, the learner starts learning. In connection with this view, the more attention is given on a subject, and the more activation takes place on it, the quicker learning will occur. Moreover, today almost every teacher is familiar with the term “distance education” regardless of their student's age group. As it is stated by Visser (2002), when compared to the traditional classrooms, in distance education, the rate and success of language learningdecreasesandone of the most essential reasons is that motivating students in distance education contexts, in which interaction is lower, is much more challenging than face-to-face training especially with young learners(Lim& Kim, 2003). Besides, there are limited numbers of studies conducted on motivational strategies for young learners in distance education contexts since we have been experiencing full time the online schooling process recently, yet online teaching seems to be permanent in our lives with the new technological era. Therefore, there appears to be a need for various strategies to motivate young learners in distance education, and the current study aims to find out the strategies that young learners’ teachers use to increase their students’ motivation level in distance education. To achieve this aim, a qualitative research approach and a phenomenological method with an interpretive design will be used. The participants, who are teachers of young learners, will be interviewed using a structured interview format consisting of 7 questions. As the participants are young learners’teacherswhohavebeenexperiencingteaching online, exploring thestrategiesthattheyusetoincreasetheirstudents’ motivationlevelwillprovidesomesuggestionsaboutthemotivationalstrategiesforfuture online classes. Also, in this paper, I will move beyond the traditional classrooms that have face-to-face lessons and discuss the effective motivational strategies for young learners in distance education.

Keywords: motivation, distance education, young learners, strategies

Procedia PDF Downloads 164
929 Impact of Electric Field on the Optical Properties of Hydrophilic Quantum Dots

Authors: Valentina V. Goftman, Vladislav A. Pankratov, Alexey V. Markin, Tangi Aubert, Zeger Hens, Sarah De Saeger, Irina Yu. Goryacheva

Abstract:

The most important requirements for biochemical applicability of quantum dots (QDs) are: 1) the surface cap should render intact or improved optical properties; 2) mono-dispersion and good stability in aqueous phase in a wide range of pH and ionic strength values; 3) presence of functional groups, available for bioconjugation; 4) minimal impact from the environment on the QDs’ properties and, vice versa, minimal influence of the QDs’ components on the environment; and 5) stability against chemical/biochemical/physical influence. The latter is especially important for in vitro and in vivo applications. For example, some physical intracellular delivery strategies (e.g., electroporation) imply a rapid high-voltage electric field impulse in order to temporarily generate hydrophilic pores in the cell plasma membrane, necessary for the passive transportation of QDs into the cell. In this regard, it is interesting to investigate how different capping layers, which can provide high stability and sufficient fluorescent properties of QDs in a water solution, behave under these abnormal conditions. In this contribution, hydrophobic core-shell CdSe/CdS/CdZnS/ZnS QDs (λem=600 nm), produced by means of the Successive Ion Layer Adsorption and Reaction (SILAR) technique, were transferred to a water solution using two of the most commonly used methods: (i) encapsulation in an amphiphilic brush polymer based on poly(maleic anhydride-alt-1-octadecene) (PMAO) modified with polyethylene glycol (PEG) chains and (ii) silica covering. Polymer encapsulation preserves the initial ligands on the QDs’ surface owing to the hydrophobic attraction between the hydrophobic groups of the amphiphilic molecules and the surface hydrophobic groups of the QDs. This covering process allows maintaining the initial fluorescent properties, but it leads to a considerable increase of the QDs’ size. However, covering with a silica shell, by means of the reverse microemulsion method, allows maintaining both size and fluorescent properties of the initial QDs. The obtained water solutions of polymer covered and silica-coated QDs in three different concentrations were exposed to a low-voltage electric field for a short time and the fluorescent properties were investigated. It is shown that the PMAO-PEG polymer acquires some additional charges in the presence of the electric field, which causes repulsion between the polymer and the QDs’ surface. This process destroys the homogeneity of the whole amphiphilic shell and it dramatically decreases the fluorescent properties (dropping to 10% from its initial value) because of the direct contact of the QDs with the strongly oxidative environment (water). In contrast, a silica shell possesses dielectric properties which allow retaining 90% of its initial fluorescence intensity, even after a longer electric impact. Thus, silica shells are clearly a preferable covering for bio-application of QDs, because – besides the high uniform morphology, controlled size and biocompatibility – it allows protecting QDs from oxidation, even under the influence of an electric field.

Keywords: electric field, polymer coating, quantum dots, silica covering, stability

Procedia PDF Downloads 440
928 Genomics Approach for Excavation of NAS Genes from Nutri Rich Minor Millet Crops: Transforming Perspective from Orphan Plants to Future Food Crops

Authors: Mahima Dubey, Girish Chandel

Abstract:

Minor millets are highly nutritious and climate resilient cereal crops. These features make them ideal candidates to excavate the physiology of the underlying mechanism. In an attempt to understand the basis of mineral nutrition in minor millets, a set of five Barnyard millet genotypes were analyzed for grain Fe and Zn content under contrasting Fe-Zn supply to identify genotypes proficient in tolerating mineral deficiency. This resulted in the identification of Melghat-1 genotype to be nutritionally superior with better ability to withstand deficiency. Expression analysis of several Nicotianamine synthase (NAS) genes showed that HvNAS1 and OsNAS2 genes were prominent in positively mediating mineral deficiency response in Barnyard millet. Further, strategic efforts were employed for fast-track identification of more effective orthologous NAS genes from Barnyard millet. This resulted in the identification of two genes namely EfNAS1 (orthologous to HvNAS1 of barley) and EfNAS2 (orthologous to OsNAS2 gene of rice). Sequencing and thorough characterization of these sequences revealed the presence of intact NAS domain and signature tyrosine and di-leucine motifs in their predicted proteins and thus established their candidature as functional NAS genes in Barnyard millet. Moreover, EfNAS1 showed structural superiority over previously known NAS genes and is anticipated to have role in more efficient metal transport. Findings of the study provide insight into Fe-Zn deficiency response and mineral nutrition in millets. This provides millets with a physiological edge over micronutrient deficient staple cereals such as rice in withstanding Fe-Zn deficiency and subsequently accumulating higher levels of Fe and Zn in millet grains.

Keywords: gene expression, micronutrient, millet, ortholog

Procedia PDF Downloads 212
927 Fluorescence Resonance Energy Transfer in a Supramolecular Assembly of Luminescent Silver Nanoclusters and Cucurbit[8]uril Based Host-Guest System

Authors: Srikrishna Pramanik, Sree Chithra, Saurabh Rai, Sameeksha Agrawal, Debanggana Shil, Saptarshi Mukherjee

Abstract:

The understanding of interactions between organic chromophores and biologically useful luminescent noble metal nanoclusters (NCs) leading to an energy transfer process that has applications in light-harvesting materials is still in its nascent stage. This work describes a photoluminescent supramolecular assembly, made in two stages, employing an energy transfer process between silver (Ag) NCs as the donor and a host-guest system as the acceptor that can find potential applications in diverse fields. Initially, we explored the host-guest chemistry between a cationic guest, Ethidium Bromide and the anionic host Cucurbit[8]uril using spectroscopic and calorimetric techniques to decipher their interaction mechanism in modulating photophysical properties of the chromophore. Next, we synthesized a series of blue-emitting AgNCs using different templates such as protein, peptides, and cyclodextrin. The as-prepared AgNCs were characterized by various spectroscopic techniques. We have established that these AgNCs can be employed as donors in the FRET process with the above acceptor for FRET-based emission color tuning. Our in-depth studies revealed that surface ligands play a key role in modulating FRET efficiency. Overall, by employing a non-covalent strategy, we have tried to develop FRET pairs using blue-emitting NCs and a host-guest complex, which could find potential applications in constructing advanced white light-emitting, anti-counterfeiting materials, and developing biosensors.

Keywords: absorption spectroscopy, cavities, energy transfer, fluorescence, fluorescence resonance energy transfer

Procedia PDF Downloads 13
926 Investigation of Heat Transfer Mechanism Inside Shell and Tube Latent Heat Thermal Energy Storage Systems

Authors: Saeid Seddegh, Xiaolin Wang, Alan D. Henderson, Dong Chen, Oliver Oims

Abstract:

The main objective of this research is to study the heat transfer processes and phase change behaviour of a phase change material (PCM) in shell and tube latent heat thermal energy storage (LHTES) systems. The thermal behaviour in a vertical and horizontal shell-and-tube heat energy storage system using a pure thermal conduction model and a combined conduction-convection heat transfer model is compared in this paper. The model is first validated using published experimental data available in literature and then used to study the temperature variation, solid-liquid interface, phase distribution, total melting and solidification time during melting and solidification processes of PCMs. The simulated results show that the combined convection and conduction model can better describe the energy transfer in PCMs during melting process. In contrast, heat transfer by conduction is more significant during the solidification process since the two models show little difference. Also, it was concluded that during the charging process for the horizontal orientation, convective heat transfer has a strong effect on melting of the upper part of the solid PCM and is less significant during melting of the lower half of the solid PCM. However, in the vertical orientation, convective heat transfer is the same active during the entire charging process. In the solidification process, the thermal behavior does not show any difference between horizontal and vertical systems.

Keywords: latent heat thermal energy storage, phase change material, natural convection, melting, shell and tube heat exchanger, melting, solidification

Procedia PDF Downloads 531
925 Manipulating The PAAR Proteins of Acinetobacter Baumannii

Authors: Irene Alevizos, Jessica Lewis, Marina Harper, John Boyce

Abstract:

Acinetobacter baumannii causes a range of severe nosocomial-acquired infections, and many strains are multi-drug resistant. A. baumannii possesses survival mechanisms allowing it to thrive in competitive polymicrobial environments, including a Type VI Secretion System (T6SS) that injects effector proteins into other bacteria to give a competitive advantage. The effects of T6SS firing are broad and depend entirely on the effector that is delivered. Effects can include toxicity against prokaryotic or eukaryotic cells and the acquisition of essential nutrients. The T6SS of some species can deliver ‘specialised effectors’ that are fused directly to T6SS components, such as PAAR proteins. PAAR proteins are predicted to form the piercing tip of the T6SS and are essential for T6SS function. Although no specialised effectors have been identified in A. baumannii, many strains encode multiple PAAR proteins. Analysis of PAAR proteins across the species identified 12 families of PAAR proteins with distinct C-terminal extensions. A. baumannii AB307-0294 encodes two PAAR proteins, one of which has a C-terminal extension. Mutation of one or both of the PAAR-encoding genes in this strain showed that expression of either PAAR protein was sufficient for T6SS function. We employed a heterologous expression approach and determined that PAAR proteins from different A. baumannii strains, as well as the closely related A. baylyi species, could complement the A. baumannii ∆paar mutant and restore T6SS function. Furthermore, we showed that PAAR fusions could be used to deliver artificially cloned protein fragments by generating Histidine- and Streptavidin- tagged PAAR specialised effectors, which restored T6SS activity. This provides evidence that the fusion of protein fragments onto PAAR proteins in A. baumannii is compatible with a functional T6SS. Successful delivery by this mechanism extends the scope of what the T6SS can deliver, including user designed proteins.

Keywords: A. baumannii, effectors, PAAR, T6SS

Procedia PDF Downloads 63
924 Applications of Forensics/DNA Tools in Combating Gender-Based Violence: A Case Study in Nigeria

Authors: Edeaghe Ehikhamenor, Jennifer Nnamdi

Abstract:

Introduction: Gender-based violence (GBV) was a well-known global crisis before the COVID-19 pandemic. The pandemic burden only intensified the crisis. With prevailing lockdowns, increased poverty due to high unemployment, especially affecting females, and other mobility restrictions that have left many women trapped with their abusers, plus isolation from social contact and support networks, GBV cases spiraled out of control. Prevalence of economic with cultural disparity, which is greatly manifested in Nigeria, is a major contributory factor to GBV. This is made worst by religious adherents where the females are virtually relegated to the background. Our societal approaches to investigations and sanctions to culprits have not sufficiently applied forensic/DNA tools in combating these major vices. Violence against women or some rare cases against men can prevent them from carrying out their duties regardless of the position they hold. Objective: The main objective of this research is to highlight the origin of GBV, the victims, types, contributing factors, and the applications of forensics/DNA tools and remedies so as to minimize GBV in our society. Methods: Descriptive information was obtained through the search on our daily newspapers, electronic media, google scholar websites, other authors' observations and personal experiences, plus anecdotal reports. Results: Findings from our exploratory searches revealed a high incidence of GBV with very limited or no applications of Forensics/DNA tools as an intervening mechanism to reduce GBV in Nigeria. Conclusion: Nigeria needs to develop clear-cut policies on forensics/DNA tools in terms of institutional framework to develop a curriculum for the training of all stakeholders to fast-track justice for victims of GBV so as to serve as a deterrent to other culprits.

Keywords: gender-based violence, forensics, DNA, justice

Procedia PDF Downloads 59
923 Experimental Investigation of Beams Having Spring Mass Resonators

Authors: Somya R. Patro, Arnab Banerjee, G. V. Ramana

Abstract:

A flexural beam carrying elastically mounted concentrated masses, such as engines, motors, oscillators, or vibration absorbers, is often encountered in mechanical, civil, and aeronautical engineering domains. To prevent resonance conditions, the designers must predict the natural frequencies of such a constrained beam system. This paper investigates experimental and analytical studies on vibration suppression in a cantilever beam with a tip mass with the help of spring-mass to achieve local resonance conditions. The system consists of a 3D printed polylactic acid (PLA) beam screwed at the base plate of the shaker system. The top of the free end is connected by an accelerometer which also acts as a tip mass. A spring and a mass are attached at the bottom to replicate the mechanism of the spring-mass resonator. The Fast Fourier Transform (FFT) algorithm converts time acceleration plots into frequency amplitude plots from which transmittance is calculated as a function of the excitation frequency. The mathematical formulation is based on the transfer matrix method, and the governing differential equations are based on Euler Bernoulli's beam theory. The experimental results are successfully validated with the analytical results, providing us essential confidence in our proposed methodology. The beam spring-mass system is then converted to an equivalent two-degree of freedom system, from which frequency response function is obtained. The H2 optimization technique is also used to obtain the closed-form expression of optimum spring stiffness, which shows the influence of spring stiffness on the system's natural frequency and vibration response.

Keywords: euler bernoulli beam theory, fast fourier transform, natural frequencies, polylactic acid, transmittance, vibration absorbers

Procedia PDF Downloads 79
922 Fabrication and Characterization of Ceramic Matrix Composite

Authors: Yahya Asanoglu, Celaletdin Ergun

Abstract:

Ceramic-matrix composites (CMC) have significant prominence in various engineering applications because of their heat resistance associated with an ability to withstand the brittle type of catastrophic failure. In this study, specific raw materials have been chosen for the purpose of having suitable CMC material for high-temperature dielectric applications. CMC material will be manufactured through the polymer infiltration and pyrolysis (PIP) method. During the manufacturing process, vacuum infiltration and autoclave will be applied so as to decrease porosity and obtain higher mechanical properties, although this advantage leads to a decrease in the electrical performance of the material. Time and temperature adjustment in pyrolysis parameters provide a significant difference in the properties of the resulting material. The mechanical and thermal properties will be investigated in addition to the measurement of dielectric constant and tangent loss values within the spectrum of Ku-band (12 to 18 GHz). Also, XRD, TGA/PTA analyses will be employed to prove the transition of precursor to ceramic phases and to detect critical transition temperatures. Additionally, SEM analysis on the fracture surfaces will be performed to see failure mechanism whether there is fiber pull-out, crack deflection and others which lead to ductility and toughness in the material. In this research, the cost-effectiveness and applicability of the PIP method will be proven in the manufacture of CMC materials while optimization of pyrolysis time, temperature and cycle for specific materials is detected by experiment. Also, several resins will be shown to be a potential raw material for CMC radome and antenna applications. This research will be distinguished from previous related papers due to the fact that in this research, the combination of different precursors and fabrics will be experimented with to specify the unique cons and pros of each combination. In this way, this is an experimental sum of previous works with unique PIP parameters and a guide to the manufacture of CMC radome and antenna.

Keywords: CMC, PIP, precursor, quartz

Procedia PDF Downloads 136
921 Mobi Navi Tour for Rescue Operations

Authors: V. R. Sadasivam, M. Vipin, P. Vineeth, M. Sajith, G. Sathiskumar, R. Manikandan, N. Vijayarangan

Abstract:

Global positioning system technology is what leads to such things as navigation systems, GPS tracking devices, GPS surveying and GPS mapping. All that GPS does is provide a set of coordinates which represent the location of GPS units with respect to its latitude, longitude and elevation on planet Earth. It also provides time, which is accurate. The tracking devices themselves come in different flavors. They will contain a GPS receiver, and GPS software, along with some way of transmitting the resulting coordinates. GPS in mobile tend to use radio waves to transmit their location to another GPS device. The purpose of this prototype “Mobi Navi Tour for Rescue Operation” timely communication, and lightning fast decision-making with a group of people located in different places with a common goal. Timely communication and tracking the people are a critical issue in many situations, environments. Expedited can find missing person by sending the location and other related information to them through mobile. Information must be drawn from the caller and entered into the system by the administrator or a group leader and transferred to the group leader. This system will locate the closest available person, a group of people working in an organization/company or vehicle to determine availability and their position to track them. Misinformation cannot lead to the wrong decision in the rapidly paced environment in a normal and an abnormal situation. In “Mobi Navi Tour for Rescue Operation” we use Google Cloud Messaging for android (GCM) which is a service that helps developers send data from servers to their android applications on android devices. The service provides a simple, lightweight mechanism that servers can use to tell mobile applications to contact the server directly, to fetch updated application or user data.

Keywords: android, gps, tour, communication, service

Procedia PDF Downloads 373
920 The Evolution Characteristics of Urban Ecological Patterns in Parallel Range-Valley Areas, China

Authors: Wen Feiming

Abstract:

As the ecological barrier of the Yangtze River, the ecological security of the Parallel Range-Valley area is very important. However, the unique geomorphic features aggravate the contradiction between man and land, resulting in the encroachment of ecological space. In recent years , relevant researches has focused on the single field of land science, ecology and landscape ecology, and it is difficult to systematically reflect the regularities of distribution and evolution trends of ecological patterns in the process of urban development. Therefore, from the perspective of "Production-Living-Ecological space", using spatial analysis methods such as Remote Sensing (RS) and Geographic Information Systems (GIS), this paper analyzes the evolution characteristics and driving factors of the ecological pattern of mountain towns in the parallel range-valley region from the aspects of land use structure, change rate, transformation relationship, and spatial correlation. It is concluded that the ecological pattern of mountain towns presents a trend from expansion and diffusion to agglomeration, and the dynamic spatial transfer is a trend from artificial transformation to the natural origin, while the driving effect analysis shows the significant characteristics of terrain attraction and construction barrier. Finally, combined with the evolution characteristics and driving mechanism, the evolution modes of "mountain area - concentrated growth", "trough area - diffusion attenuation" and "flat area - concentrated attenuation" are summarized, and the differentiated zoning and stratification ecological planning strategies are proposed here, in order to provide the theoretical basis for the sustainable development of mountain towns in parallel range-valley areas.

Keywords: parallel range-valley, ecological pattern, evolution characteristics, driving factors

Procedia PDF Downloads 69
919 Radiation Stability of Structural Steel in the Presence of Hydrogen

Authors: E. A. Krasikov

Abstract:

As the service life of an operating nuclear power plant (NPP) increases, the potential misunderstanding of the degradation of aging components must receive more attention. Integrity assurance analysis contributes to the effective maintenance of adequate plant safety margins. In essence, the reactor pressure vessel (RPV) is the key structural component determining the NPP lifetime. Environmentally induced cracking in the stainless steel corrosion-preventing cladding of RPV’s has been recognized to be one of the technical problems in the maintenance and development of light-water reactors. Extensive cracking leading to failure of the cladding was found after 13000 net hours of operation in JPDR (Japan Power Demonstration Reactor). Some of the cracks have reached the base metal and further penetrated into the RPV in the form of localized corrosion. Failures of reactor internal components in both boiling water reactors and pressurized water reactors have increased after the accumulation of relatively high neutron fluences (5´1020 cm–2, E>0,5MeV). Therefore, in the case of cladding failure, the problem arises of hydrogen (as a corrosion product) embrittlement of irradiated RPV steel because of exposure to the coolant. At present when notable progress in plasma physics has been obtained practical energy utilization from fusion reactors (FR) is determined by the state of material science problems. The last includes not only the routine problems of nuclear engineering but also a number of entirely new problems connected with extreme conditions of materials operation – irradiation environment, hydrogenation, thermocycling, etc. Limiting data suggest that the combined effect of these factors is more severe than any one of them alone. To clarify the possible influence of the in-service synergistic phenomena on the FR structural materials properties we have studied hydrogen-irradiated steel interaction including alternating hydrogenation and heat treatment (annealing). Available information indicates that the life of the first wall could be expanded by means of periodic in-place annealing. The effects of neutron fluence and irradiation temperature on steel/hydrogen interactions (adsorption, desorption, diffusion, mechanical properties at different loading velocities, post-irradiation annealing) were studied. Experiments clearly reveal that the higher the neutron fluence and the lower the irradiation temperature, the more hydrogen-radiation defects occur, with corresponding effects on the steel mechanical properties. Hydrogen accumulation analyses and thermal desorption investigations were performed to prove the evidence of hydrogen trapping at irradiation defects. Extremely high susceptibility to hydrogen embrittlement was observed with specimens which had been irradiated at relatively low temperature. However, the susceptibility decreases with increasing irradiation temperature. To evaluate methods for the RPV’s residual lifetime evaluation and prediction, more work should be done on the irradiated metal–hydrogen interaction in order to monitor more reliably the status of irradiated materials.

Keywords: hydrogen, radiation, stability, structural steel

Procedia PDF Downloads 237
918 Advanced Biosensor Characterization of Phage-Mediated Lysis in Real-Time and under Native Conditions

Authors: Radka Obořilová, Hana Šimečková, Matěj Pastucha, Jan Přibyl, Petr Skládal, Ivana Mašlaňová, Zdeněk Farka

Abstract:

Due to the spreading of antimicrobial resistance, alternative approaches to combat superinfections are being sought, both in the field of lysing agents and methods for studying bacterial lysis. A suitable alternative to antibiotics is phage therapy and enzybiotics, for which it is also necessary to study the mechanism of their action. Biosensor-based techniques allow rapid detection of pathogens in real time, verification of sensitivity to commonly used antimicrobial agents, and selection of suitable lysis agents. The detection of lysis takes place on the surface of the biosensor with immobilized bacteria, which has the potential to be used to study biofilms. An example of such a biosensor is surface plasmon resonance (SPR), which records the kinetics of bacterial lysis based on a change in the resonance angle. The bacteria are immobilized on the surface of the SPR chip, and the action of phage as the mass loss is monitored after a typical lytic cycle delay. Atomic force microscopy (AFM) is a technique for imaging of samples on the surface. In contrast to electron microscopy, it has the advantage of real-time imaging in the native conditions of the nutrient medium. In our case, Staphylococcus aureus was lysed using the enzyme lysostaphin and phage P68 from the familyPodoviridae at 37 ° C. In addition to visualization, AFM was used to study changes in mechanical properties during lysis, which resulted in a reduction of Young’s modulus (E) after disruption of the bacterial wall. Changes in E reflect the stiffness of the bacterium. These advanced methods provide deeper insight into bacterial lysis and can help to fight against bacterial diseases.

Keywords: biosensors, atomic force microscopy, surface plasmon resonance, bacterial lysis, staphylococcus aureus, phage P68

Procedia PDF Downloads 111
917 Synergistic Effect of Curcumin and Insulin on GLUT4 Translocation in C2C12 Cell

Authors: Javad Mohiti-Ardekani, Shabodin Asadii, Ali Moradi

Abstract:

Introduction: Curcumin, the yellow pigment in turmeric, has been shown as an anti-diabetic agent for centuries but only in recent few years, its mechanism of action has been under investigation. Some studies showed that curcumin might exert its anti-diabetic effect via increasing glucose transporter isotype-4 (GLUT4) gene and glycoprotein contents in cells. To investigate this possibility, we investigate the effects of extract and commercial curcumin with and without insulin on GLUT4 translocation from intracellular compartments of nuclear or endoplasmic reticulum membranes (N/ER) into the cytoplasmic membrane (CM). Methods and Material: C2C12 myoblastic cell line were seeded in DMEM plus 20 % FBS and differentiated to myotubes using 2 % horse serum. After myotubes formation, 40 µmolar Extract and Commercial curcumin, with or without insulin as intervention, and as control 1 % DMSO were added for 3 h. Cells were washed and homogenized followed by ultracentrifuge fractionation, protein separation by SDS-PAGE and GLUT4 detection using semi-quantitative Western blotting. Data analysis was done by two independent samples t-test for comparison of mean ± SD of GLUT4 percent in categories. GLUT4 contents were higher in CM groups curcumin and curcumin with insulin in comparison to 1 % DMSO-treated myotubes control group. Results: As our results have shown extract and commercial curcumin induces GLUT4 translocation from intra-cell into cell surface. The results have also shown synergic effect of curcumin on translocation of GLUT4 from intra-cell into cell surface in the presence of 100 nm insulin. Discussion: We conclude that curcumin may be a choice of type-2 diabetes mellitus treatment because its extract and commercial enhances GLUT4 contents in CM where it facilitates glucose entrance into the cell. However, it is necessary to trace the signaling pathways which are activated by curcumin.

Keywords: Curcumin, insulin, Diabetes type-2, GLUT4

Procedia PDF Downloads 217
916 The Effect of Agricultural Waste as a Filler in Fibre Cement Board Reinforced with Natural Cellulosic Fibres

Authors: Anuoluwapo S. Taiwo, David S. Ayre, Morteza Khorami, Sameer S. Rahatekar

Abstract:

This investigation aims to characterize the effect of Corn Cob (CC), an agricultural waste, for potential use as a filler material, reducing cement in natural fibre-reinforced cement composite boards used for building applications in low-cost housing estates in developing countries. The corn cob, an agro-waste, is readily and abundantly available in many West African States. However, this agricultural waste product has not been put to any effective use. Hence, the objective of the current research is to convert this massive agro-waste resource into a potential material for use as partial cement replacement in fibre-cement board production. Kraft pulp fibre-reinforced cement composite boards were developed with the incorporation of the corn cob at a varying percentage of 1 - 4 wt.% as partial cement replacement using a laboratory-simulated Hatschek process. The mechanical properties of the developed cement boards were characterized through a three-point bending test, while the fractured morphology of the cement boards was examined through a scanning electron microscope (SEM). Results revealed that the flexural strength of the composite board improved significantly with an optimum enhancement of 40% when compared to the reference sample without corn cob replacement; however, the flexural behaviour (toughness) of the composite board was slightly affected by the addition of the corn cob. SEM observation of the fractured surfaces revealed good bonding at the fibre-matrix interface as well as a ductile-to-brittle fracture mechanism. Overall, the composite board incorporated with 2 wt.% corn cob replacement for cement had the optimum properties, which satisfied the minimum requirements of relevant standards for fibre cement flat sheets.

Keywords: agricultural waste, building applications, fibre-cement board, kraft pulp fibre, sustainability

Procedia PDF Downloads 62
915 Microbubbles Enhanced Synthetic Phorbol Ester Degradation by Ozonolysis

Authors: D. Kuvshinov, A. Siswanto, W. Zimmerman

Abstract:

A phorbol-12-myristate-13-acetate (TPA) is a synthetic analogue of phorbol ester (PE), a natural toxic compound of Euphorbiaceae plant. The oil extracted from plants of this family is useful source for primarily biofuel. However this oil can also be used as a food stock due to its significant nutrition content. The limitations for utilizing the oil as a food stock are mainly due to a toxicity of PE. Nowadays a majority of PE detoxification processes are expensive as include multi steps alcohol extraction sequence. Ozone is considered as a strong oxidative agent. It reaction with PE it attacks the carbon double bond of PE. This modification of PE molecular structure results into nontoxic ester with high lipid content. This report presents data on development of simple and cheap PE detoxification process with water application as a buffer and ozone as reactive component. The core of this new technique is a simultaneous application of new microscale plasma unit for ozone production and patented gas oscillation technology. In combination with a reactor design the technology permits ozone injection to the water-TPA mixture in form of microbubbles. The efficacy of a heterogeneous process depends on diffusion coefficient which can be controlled by contact time and interface area. The low velocity of rising microbubbles and high surface to volume ratio allow fast mass transfer to be achieved during the process. Direct injection of ozone is the most efficient process for a highly reactive and short lived chemical. Data on the plasma unit behavior are presented and influence of the gas oscillation technology to the microbubbles production mechanism has been discussed. Data on overall process efficacy for TPA degradation is shown.

Keywords: microbubble, ozonolysis, synthetic phorbol ester, chemical engineering

Procedia PDF Downloads 192
914 Quantitative Detection of the Conformational Transitions between Open and Closed Forms of Cytochrome P450 Oxidoreductase (CYPOR) at the Membrane Surface in Different Functional States

Authors: Sara Arafeh, Kovriguine Evguine

Abstract:

Cytochromes P450 are enzymes that require a supply of electrons to catalyze the synthesis of steroid hormones, fatty acids, and prostaglandin hormone. Cytochrome P450 Oxidoreductase (CYPOR), a membrane bound enzyme, provides these electrons in its open conformation. CYPOR has two cytosolic domains (FAD domain and FMN domain) and an N-terminal in the membrane. In its open conformation, electrons flow from NADPH, FAD, and finally to FMN where cytochrome P450 picks up these electrons. In the closed conformation, cytochrome P450 does not bind to the FMN domain to take the electrons. It was found that when the cytosolic domains are isolated, CYPOR could not bind to cytochrome P450. This suggested that the membrane environment is important for CYPOR function. This project takes the initiative to better understand the dynamics of CYPOR in its full length. Here, we determine the distance between specific sites in the FAD and FMN binding domains in CYPOR by Forster Resonance Energy Transfer (FRET) and Ultrafast TA spectroscopy with and without NADPH. The approach to determine these distances will rely on labeling these sites with red and infrared fluorophores. Mimic membrane attachment is done by inserting CYPOR in lipid nanodiscs. By determining the distances between the donor-acceptor sites in these domains, we can observe the open/closed conformations upon reducing CYPOR in the presence and absence of cytochrome P450. Such study is important to better understand CYPOR mechanism of action in various endosomal membranes including hepatic CYPOR which is vital in plasma cholesterol homeostasis. By investigating the conformational cycles of CYPOR, we can synthesize drugs that would be more efficient in affecting the steroid hormonal levels and metabolism of toxins catalyzed by Cytochrome P450.

Keywords: conformational cycle of CYPOR, cytochrome P450, cytochrome P450 oxidoreductase, FAD domain, FMN domain, FRET, Ultrafast TA Spectroscopy

Procedia PDF Downloads 249
913 Photo-Fenton Degradation of Organic Compounds by Iron(II)-Embedded Composites

Authors: Marius Sebastian Secula, Andreea Vajda, Benoit Cagnon, Ioan Mamaliga

Abstract:

One of the most important classes of pollutants is represented by dyes. The synthetic character and complex molecular structure make them more stable and difficult to be biodegraded in water. The treatment of wastewaters containing dyes in order to separate/degrade dyes is of major importance. Various techniques have been employed to remove and/or degrade dyes in water. Advanced oxidation processes (AOPs) are known as among the most efficient ones towards dye degradation. The aim of this work is to investigate the efficiency of a cheap Iron-impregnated activated carbon Fenton-like catalyst in order to degrade organic compounds in aqueous solutions. In the presented study an anionic dye, Indigo Carmine, is considered as a model pollutant. Various AOPs are evaluated for the degradation of Indigo Carmine to establish the effect of the prepared catalyst. It was found that the Iron(II)-embedded activated carbon composite enhances significantly the degradation process of Indigo Carmine. Using the wet impregnation procedure, 5 g of L27 AC material were contacted with Fe(II) solutions of FeSO4 precursor at a theoretical iron content in the resulted composite of 1 %. The L27 AC was impregnated for 3h at 45°C, then filtered, washed several times with water and ethanol and dried at 55 °C for 24 h. Thermogravimetric analysis, Fourier transform infrared, X-ray diffraction, and transmission electron microscopy were employed to investigate the structural, textural, and micromorphology of the catalyst. Total iron content in the obtained composites and iron leakage were determined by spectrophotometric method using phenantroline. Photo-catalytic tests were performed using an UV - Consulting Peschl Laboratory Reactor System. UV light irradiation tests were carried out to determine the performance of the prepared Iron-impregnated composite towards the degradation of Indigo Carmine in aqueous solution using different conditions (17 W UV lamps, with and without in-situ generation of O3; different concentrations of H2O2, different initial concentrations of Indigo Carmine, different values of pH, different doses of NH4-OH enhancer). The photocatalytic tests were performed after the adsorption equilibrium has been established. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. The investigated process obeys the pseudo-first order kinetics. The photo-Fenton degradation of IC was tested at different values of initial concentration. The obtained results emphasize an enhancement of Indigo Carmine degradation in case of the heterogeneous photo-Fenton process conducted with an O3 generating UV lamp in the presence of hydrogen peroxide. Acknowledgments: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.

Keywords: photodegradation, heterogeneous Fenton, anionic dye, carbonaceous composite, screening factorial design

Procedia PDF Downloads 232
912 Greenhouse Controlled with Graphical Plotting in Matlab

Authors: Bruno R. A. Oliveira, Italo V. V. Braga, Jonas P. Reges, Luiz P. O. Santos, Sidney C. Duarte, Emilson R. R. Melo, Auzuir R. Alexandria

Abstract:

This project aims to building a controlled greenhouse, or for better understanding, a structure where one can maintain a given range of temperature values (°C) coming from radiation emitted by an incandescent light, as previously defined, characterizing as a kind of on-off control and a differential, which is the plotting of temperature versus time graphs assisted by MATLAB software via serial communication. That way it is possible to connect the stove with a computer and monitor parameters. In the control, it was performed using a PIC 16F877A microprocessor which enabled convert analog signals to digital, perform serial communication with the IC MAX232 and enable signal transistors. The language used in the PIC's management is Basic. There are also a cooling system realized by two coolers 12V distributed in lateral structure, being used for venting and the other for exhaust air. To find out existing temperature inside is used LM35DZ sensor. Other mechanism used in the greenhouse construction was comprised of a reed switch and a magnet; their function is in recognition of the door position where a signal is sent to a buzzer when the door is open. Beyond it exist LEDs that help to identify the operation which the stove is located. To facilitate human-machine communication is employed an LCD display that tells real-time temperature and other information. The average range of design operating without any major problems, taking into account the limitations of the construction material and structure of electrical current conduction, is approximately 65 to 70 ° C. The project is efficient in these conditions, that is, when you wish to get information from a given material to be tested at temperatures not as high. With the implementation of the greenhouse automation, facilitating the temperature control and the development of a structure that encourages correct environment for the most diverse applications.

Keywords: greenhouse, microcontroller, temperature, control, MATLAB

Procedia PDF Downloads 380
911 Association of MMP-2,-9 Overexpression and Imbalance PGR-A/PGR-B Ratio in Endometriosis

Authors: P. Afsharian, S. Mousazadeh, M. Shahhoseini, R. Aflatoonian

Abstract:

Introduction: Matrix MetalloProteinases (MMPs) degrade extracellular matrix components to provide normal remodeling and contribute to pathological tissue destruction and cell migration in endometriosis. It is accepted that MMPs are resistant to suppression by progesterone in endometriotic tissues. The physiological effects of progesterone are mediated by its two progesterone receptor (PGR) isoforms, namely PGR-A and PGR-B. The capacity of progesterone affect to gene expression is dependent on the PGR-A/PGR-B ratio. The imbalance ratio in endometriotic tissue may be an important mechanism to be resulted in Progesterone resistance and modify progesterone action via differential regulation of specific progesterone response genes and improve endometriosis disease. Material and methods: RNA was extracted from twenty ectopic (endometriotic) and eutopic (endometrial) tissue samples of women undergoing laparoscopy for endometriosis and 20 healthy fertile women at Royan Institute, Tehran, Iran. Analysis of PGR-A, PGR-B, MMP-2 and MMP-9 mRNA expression was performed using Real-time PCR in ectopic and eutopic tissues. Then, Statistical analysis was calculated according to the 2-ΔΔCT equation for all samples. Results: Quantitative RT–PCR analyses of PGR-A and PGR-B mRNA revealed that there were differences in both isoformes of PGRs mRNA expressions between ectopic and control eutopic tissues. We were able to demonstrate low expression levels of PGR-B isoforms in ectopic tissues. Although, PGR-A expression was significantly higher in the same ectopic samples compare to controls.This method permitted us to demonstrate significant overexpression of MMP-2 and MMP-9 in ectopic samples compared to control endometrial tissues, as well. Conclusions: Our data suggest that low expression levels of PGR-B and overexpression of PGR-A can alter PGR-A/PGR-B ratio in endometriotic ectopic tissues. Imbalance ratio of PGRs in endometriotic tissue may be able to consequence MMP-2 and MMP-9 overexpression which can be important in pathogenesis and treatment of disease.

Keywords: endometriosis, matrix metalloproteinases, progesterone receptor -A and -B, PGR-A/PGR-B ratio

Procedia PDF Downloads 293
910 Nanostructure Formation and Characterization of Eco-Friendly Banana Peels Nanosorbent

Authors: Opeyemi Atiba-Oyewo, Maurice S. Onya, Christian Wolkersdorfer

Abstract:

Nanostructure formation and characterization of eco-friendly banana peels nanosorbent are thoroughly described in this paper. The transformation of material during mechanical milling to enhance certain properties such as changes in microstructure and surface area to solve the current problems involving water pollution and water quality were studied. The mechanical milling was employed using planetary continuous milling machine and ethanol as process control agent, the sample were taken at time interval between 10 h to 30 h to examine the structural changes. The samples were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR), Transmission electron microscopy (TEM) and Brunauer Emmett and teller (BET). Results revealed that the three typical structures with different grain-size, lattice strain and shapes were observed, and the deformation mechanisms in these structures were found to be different, further particles fracturing results to surface area increment which was confirmed by Brunauer Emmett and teller (BET) analysis. X-ray diffraction (XRD) shows high densities of dislocations in large crystallites, implying that dislocation slip is the dominant deformation mechanism. Scanning electron microscopy revealed the morphological properties of the materials at different milling time, nanostructure of the particles and fibres were confirmed by Transmission electron microscopy and FT-IR identified the functional groups responsible for its capacity to coordinate and remove metal ions, such as the carboxylic and amine groups at absorption bands of 1730 and 889 cm-1, respectively. However, the choice of this sorbent material for the sorption of any contaminants will depend on the composition of the effluent to be treated.

Keywords: banana peels, eco-friendly, mechanical milling, nanosorbent, nanostructure water quality

Procedia PDF Downloads 230