Search results for: heat recovery
1767 Development and Sound Absorption and Insulation Performance Evaluation of Nonwoven Fabric Material including Paper Honeycomb Structure for Insulator Covering Shelf Trim
Authors: In-Sung Lee, Un-Hwan Park, Jun-Hyeok Heo, Dae-Gyu Park
Abstract:
Insulator Covering Shelf Trim is one of the automotive interior parts located in the rear seat of a car, and it is a component that is the most strongly demanded for impact resistance, strength, and heat resistance. Such an Insulator Covering Shelf Trim is composed of a polyethylene terephthalate (PET) nonwoven fabric which is a surface material appearing externally and a substrate layer which exerts shape and mechanical strength. In this paper, we develop a lightweight Insulator Covering Shelf Trim using the nonwoven fabric material with a high strength honeycomb structure and evaluate sound absorption and insulation performance by using acoustic impedance tubes.Keywords: sound absorption and insulation, insulator covering shelf trim, nonwoven fabric, honeycomb
Procedia PDF Downloads 7321766 Oryzanol Recovery from Rice Bran Oil: Adsorption Equilibrium Models Through Kinetics Data Approachments
Authors: A.D. Susanti, W. B. Sediawan, S.K. Wirawan, Budhijanto, Ritmaleni
Abstract:
Oryzanol content in rice bran oil (RBO) naturally has high antioxidant activity. Its reviewed has several health properties and high interested in pharmacy, cosmetics, and nutrition’s. Because of the low concentration of oryzanol in crude RBO (0.9-2.9%) then its need to be further processed for practical usage, such as via adsorption process. In this study, investigation and adjustment of adsorption equilibrium models were conducted through the kinetic data approachments. Mathematical modeling on kinetics of batch adsorption of oryzanol separation from RBO has been set-up and then applied for equilibrium results. The size of adsorbent particles used in this case are usually relatively small then the concentration in the adsorbent is assumed to be not different. Hence, the adsorption rate is controlled by the rate of oryzanol mass transfer from the bulk fluid of RBO to the surface of silica gel. In this approachments, the rate of mass transfer is assumed to be proportional to the concentration deviation from the equilibrium state. The equilibrium models applied were Langmuir, coefficient distribution, and Freundlich with the values of the parameters obtained from equilibrium results. It turned out that the models set-up can quantitatively describe the experimental kinetics data and the adjustment of the values of equilibrium isotherm parameters significantly improves the accuracy of the model. And then the value of mass transfer coefficient per unit adsorbent mass (kca) is obtained by curve fitting.Keywords: adsorption equilibrium, adsorption kinetics, oryzanol, rice bran oil
Procedia PDF Downloads 3231765 Strength of Fine Concrete Used in Textile Reinforced Concrete by Changing Water-Binder Ratio
Authors: Taekyun Kim, Jongho Park, Jinwoong Choi, Sun-Kyu Park
Abstract:
Recently, the abnormal climate phenomenon has enlarged due to the global warming. As a result, temperature variation is increasing and the term is being prolonged, frequency of high and low temperature is increasing by heat wave and severe cold. Especially for reinforced concrete structure, the corrosion of reinforcement has occurred by concrete crack due to temperature change and the durability of the structure that has decreased by concrete crack. Accordingly, the textile reinforced concrete (TRC) which does not corrode due to using textile is getting the interest and the investigation of TRC is proceeding. The study of TRC structure behavior has proceeded, but the characteristic study of the concrete used in TRC is insufficient. Therefore, characteristic of the concrete by changing mixing ratio is studied in this paper. As a result, mixing ratio with different water-binder ratio has influenced to the strength of concrete. Also, as the water-binder ratio has decreased, strength of concrete has increased.Keywords: concrete, mixing ratio, textile, TRC
Procedia PDF Downloads 4051764 Thermal Energy Storage Based on Molten Salts Containing Nano-Particles: Dispersion Stability and Thermal Conductivity Using Multi-Scale Computational Modelling
Authors: Bashar Mahmoud, Lee Mortimer, Michael Fairweather
Abstract:
New methods have recently been introduced to improve the thermal property values of molten nitrate salts (a binary mixture of NaNO3:KNO3in 60:40 wt. %), by doping them with minute concentration of nanoparticles in the range of 0.5 to 1.5 wt. % to form the so-called: Nano-heat-transfer-fluid, apt for thermal energy transfer and storage applications. The present study aims to assess the stability of these nanofluids using the advanced computational modelling technique, Lagrangian particle tracking. A multi-phase solid-liquid model is used, where the motion of embedded nanoparticles in the suspended fluid is treated by an Euler-Lagrange hybrid scheme with fixed time stepping. This technique enables measurements of various multi-scale forces whose characteristic (length and timescales) are quite different. Two systems are considered, both consisting of 50 nm Al2O3 ceramic nanoparticles suspended in fluids of different density ratios. This includes both water (5 to 95 °C) and molten nitrate salt (220 to 500 °C) at various volume fractions ranging between 1% to 5%. Dynamic properties of both phases are coupled to the ambient temperature of the fluid suspension. The three-dimensional computational region consists of a 1μm cube and particles are homogeneously distributed across the domain. Periodic boundary conditions are enforced. The particle equations of motion are integrated using the fourth order Runge-Kutta algorithm with a very small time-step, Δts, set at 10-11 s. The implemented technique demonstrates the key dynamics of aggregated nanoparticles and this involves: Brownian motion, soft-sphere particle-particle collisions, and Derjaguin, Landau, Vervey, and Overbeek (DLVO) forces. These mechanisms are responsible for the predictive model of aggregation of nano-suspensions. An energy transport-based method of predicting the thermal conductivity of the nanofluids is also used to determine thermal properties of the suspension. The simulation results confirms the effectiveness of the technique. The values are in excellent agreement with the theoretical and experimental data obtained from similar studies. The predictions indicates the role of Brownian motion and DLVO force (represented by both the repulsive electric double layer and an attractive Van der Waals) and its influence in the level of nanoparticles agglomeration. As to the nano-aggregates formed that was found to play a key role in governing the thermal behavior of nanofluids at various particle concentration. The presentation will include a quantitative assessment of these forces and mechanisms, which would lead to conclusions about nanofluids, heat transfer performance and thermal characteristics and its potential application in solar thermal energy plants.Keywords: thermal energy storage, molten salt, nano-fluids, multi-scale computational modelling
Procedia PDF Downloads 1911763 On the Exergy Analysis of the Aluminum Smelter
Authors: Ayoola T. Brimmo, Mohamed I. Hassan
Abstract:
The push to mitigate the aluminum smelting industry’s enormous energy consumption and high emission releases is now even more persistent with the recent climate change happenings. Common approaches to achieve this have been focused on improving energy efficiency in the pot line and cast house sections of the smelter. However, the conventional energy efficiency analyses are based on the first law of thermodynamics, which do not shed proper light on the smelter’s degradation of energy. This just gives a general idea of the furnace’s performance with no reference to locations where improvement is a possibility based on the second law of thermodynamics. In this study, we apply exergy analyses on the pot line and cast house sections of the smelter to identify the locality and causes of energy degradation. The exergy analyses, which are based on a real life smelter conditions, highlight the possible locations for technology improvement in a typical smelter. With this established, methods of minimizing the smelter’s exergy losses are assessed.Keywords: exergy analysis, electrolytic cell, furnace, heat transfer
Procedia PDF Downloads 2891762 After-Cooling Analysis of RC Structural Members Exposed to High Temperature by Using Numerical Approach
Authors: Ju-Young Hwang, Hyo-Gyoung Kwak
Abstract:
This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical nonlinearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.Keywords: RC, high temperature, after-cooling analysis, nonlinear analysis
Procedia PDF Downloads 4141761 Effects of Transcranial Direct Current Stimulation on Post-Stroke Dysphagia
Authors: Ehsan Kaviani, Azin Golmoradizade
Abstract:
Introduction: Traditionally, tendons are considered to only contain tenocytes that are responsible for the maintenance, repair, and remodeling of tendons. Stem cells, which are termed tendon-derived stem cells, so this study we investigate the effect of transcranial direct current stimulation combined with swallowing training on post-stroke dysphagia. Methods: This review article is about effects of transcranial direct current stimulation (tDCS) on post-stroke dysphagia that were extracted from Science Direct, Pro quest, and Pub med Data Bases. 15 articles had been selected according to inclusion criteria from 2014 to 2019, and 6 of them had been deleted by exclusion criteria. Results: The results of our systematic review suggest that tDCS may represent a promising novel treatment for post-stroke dysphagia. However, to date, little is known about the optimal parameters of tDCS for relieving post-stroke dysphagia. Further studies are warranted to refine this promising intervention by exploring the optimal parameters of tDCS. Conclusion: anodal tDCS over the affected hemisphere may be as effective as cathodal tDCS on the unaffected hemisphere to enhance recovery after subacute ischemic stroke and anodal tdcs applied over the affected pharyngeal motor cortex can enhance the outcome of swallowing training in post-stroke dysphagia.Keywords: dysphagia, stroke, cortical stimulation, transcranial direct current stimulation
Procedia PDF Downloads 1351760 Characterization and Predictors of Community Integration of People with Psychiatric Problems: Comparisons with the General Population
Authors: J. Cabral, C. Barreto Carvalho, C. da Motta, M. Sousa
Abstract:
Community integration is a construct that an increasing body of research has shown to have a significant impact in well-being and recovery of people with psychiatric problems. However, there are few studies that explore which factors can be associated and predict community integration. Moreover, community integration has been mostly studied in minority groups, and currently literature on the definition and manifestation of community integration in the more general population is scarce. Thus, the current study aims to characterize community integration and explore possible predictor variables in a sample of participants with psychiatric problems (PP, N=183) and a sample of participants from the general population (GP, N=211). Results show that people with psychiatric problems present above average values of community integration, but are significantly lower than their healthy counterparts. It was also possible to observe that community integration does not vary in terms of the socio-demographic characteristics of both groups in this study. Correlation and multiple regression showed that, among several variables that literature present as relevant in the community integration process, only three variables emerged as having the most explanatory value in community integration of both groups: sense of community, basic needs satisfaction and submission. These results also shown that those variables have increased explanatory power in the PP sample, which leads us to emphasize the need to address this issue in future studies and increase the understanding of the factors that can be involved in the promotion of community integration, in order to devise more effective interventions in this field.Keywords: community integration, mental illness, predictors, psychiatric problems
Procedia PDF Downloads 4871759 Aqueous Two Phase Extraction of Jonesia denitrificans Xylanase 6 in PEG 1000/Phosphate System
Authors: Nawel Boucherba, Azzedine Bettache, Abdelaziz Messis, Francis Duchiron, Said Benallaoua
Abstract:
The impetus for research in the field of bioseparation has been sparked by the difficulty and complexity in the downstream processing of biological products. Indeed, 50% to 90% of the production cost for a typical biological product resides in the purification strategy. There is a need for efficient and economical large scale bioseparation techniques which will achieve high purity and high recovery while maintaining the biological activity of the molecule. One such purification technique which meets these criteria involves the partitioning of biomolecules between two immiscible phases in an aqueous system (ATPS). The Production of xylanases is carried out in 500ml of a liquid medium based on birchwood xylan. In each ATPS, PEG 1000 is added to a mixture consisting of dipotassium phosphate, sodium chloride and the culture medium inoculated with the strain Jonesia denitrificans, the mixture was adjusted to different pH. The concentration of PEG 1000 was varied: 8 to 16 % and the NaCl percentages are also varied from 2 to 4% while maintaining the other parameters constant. The results showed that the best ATPS for purification of xylanases is composed of PEG 1000 at 8.33%, 13.14 % of K2HPO4, 1.62% NaCl at pH 7. We obtained a yield of 96.62 %, a partition coefficient of 86.66 and a purification factor of 2.9. The zymogram showed that the activity is mainly detected in the top phase.Keywords: Jonesia denitrificans BN13, xylanase, aqueous two phases system, zymogram
Procedia PDF Downloads 3991758 The Effect of Supercritical Carbon Dioxide Process Variables on The Recovery of Extracts from Bentong Ginger: Study on Process Variables
Authors: Muhamad Syafiq Hakimi Kamaruddin, Norhidayah Suleiman
Abstract:
Ginger extracts (Zingiber officinale Rosc.) have been attributed therapeutic properties primarily as antioxidant, anticancer, and anti-inflammatory properties. Conventional extractions including Soxhlet and maceration are commonly used to extract the bioactive compounds from plant material. Nevertheless, high energy consumption and being non-environmentally friendly are the predominant limitations of the conventional extractions method. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. Herein, green technology, namely supercritical carbon dioxide (scCO2) extraction, is used to study process variables' effects on extract yields. A pressure (10-30 MPa), temperature (40-60 °C), and median particle size (300-600 µm) were conducted at a CO2 flow rate of 0.9 ± 0.2 g/min for 120 mins. The highest overall yield was 4.58% obtained by the scCO2 extraction conditions of 300 bar and 60 °C with 300µm of ginger powder for 120 mins. In comparison, the yield of the extract was increased considerably within a short extraction time. The results show that scCO2 has a remarkable ability over ginger extract and is a promising technology for extracting bioactive compounds from plant material.Keywords: conventional, ginger, non-environmentally, supercritical carbon dioxide, technology
Procedia PDF Downloads 1161757 Research on Resilience-Oriented Disintegration in System-of-System
Authors: Hang Yang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge
Abstract:
The system-of-systems (SoS) are utilized to characterize networks formed by integrating individual complex systems that demonstrate interdependence and interconnectedness. Research on the disintegration issue in SoS is significant in improving network survivability, maintaining network security, and optimizing SoS architecture. Accordingly, this study proposes an integrated framework called resilience-oriented disintegration in SoS (SoSRD), for modeling and solving the issue of SoS disintegration. Firstly, a SoS disintegration index (SoSDI) is presented to evaluate the disintegration effect of SoS. This index provides a practical description of the disintegration process and is the first integration of the network disintegration model and resilience models. Subsequently, we propose a resilience-oriented disintegration method based on reinforcement learning (RDRL) to enhance the efficiency of SoS disintegration. This method is not restricted by the problem scenario as well as considering the coexistence of disintegration (node/link removal) and recovery (node/link addition) during the process of SoS disintegration. Finally, the effectiveness and superiority of the proposed SoSRD are demonstrated through a case study. We demonstrate that our proposed framework outperforms existing indexes and methods in both node and link disintegration scenarios, providing a fresh perspective on network disintegration. The findings provide crucial insights into dismantling harmful SoS and designing a more resilient SoS.Keywords: system-of-systems, disintegration index, resilience, reinforcement learning
Procedia PDF Downloads 141756 Thermal and Flammability Properties of Paraffin/Nanoclay Composite Phase Change Materials Incorporated in Building Materials for Thermal Energy Storage
Authors: Awni H. Alkhazaleh, Baljinder K. Kandola
Abstract:
In this study, a form-stable composite Paraffin/Nanoclay (PA-NC) has been prepared by absorbing PA into porous particles of NC to be used for low-temperature latent heat thermal energy storage. The leakage test shows that the maximum mass fraction of PA that can be incorporated in NC without leakage is 60 wt.%. Differential scanning calorimetry (DSC) has been used to measure the thermal properties of the PA and PA-NC both before and after incorporation in plasterboard (PL). The mechanical performance of the samples has been evaluated in flexural mode. The thermal energy storage performance has been studied using a small test chamber (100 mm × 100 mm × 100 mm) made from 10 mm thick PL and measuring the temperatures using thermocouples. The flammability of the PL+PL-NC has been discussed using a cone calorimeter. The results indicate that the form composite PA has good potential for use as thermal energy storage materials in building applications.Keywords: building materials, flammability, phase change materials, thermal energy storage
Procedia PDF Downloads 3351755 Study on NOₓ Emission Characteristics of Internal Gas Recirculation Technique
Authors: DaeHae Kim, MinJun Kwon, Sewon Kim
Abstract:
This study is aimed to develop ultra-low NOₓ burner using the internal recirculation of flue gas inside the combustion chamber that utilizes the momentum of intake fuel and air. Detailed experimental investigations are carried out to study these fluid dynamic effects on the emission characteristics of newly developed burner in industrial steam boiler system. Experimental parameters are distance of Venturi tube from burner, Coanda nozzle gap distance, and air sleeve length at various fuel/air ratio and thermal heat load conditions. The results showed that NOₓ concentration decreases as the distance of Venturi tube from burner increases. The CO concentration values at all operating conditions were negligible. In addition, the increase of the Coanda nozzle gap distance decreased the NOₓ concentration. It is experimentally found out that both fuel injection recirculation and air injection recirculation technique was very effective in reducing NOₓ formation.Keywords: Coanda effect, combustion, burner, low NOₓ
Procedia PDF Downloads 2011754 Voxel Models as Input for Heat Transfer Simulations with Siemens NX Based on X-Ray Microtomography Images of Random Fibre Reinforced Composites
Authors: Steven Latré, Frederik Desplentere, Ilya Straumit, Stepan V. Lomov
Abstract:
A method is proposed in order to create a three-dimensional finite element model representing fibre reinforced insulation materials for the simulation software Siemens NX. VoxTex software, a tool for quantification of µCT images of fibrous materials, is used for the transformation of microtomography images of random fibre reinforced composites into finite element models. An automatic tool was developed to execute the import of the models to the thermal solver module of Siemens NX. The paper describes the numerical tools used for the image quantification and the transformation and illustrates them on several thermal simulations of fibre reinforced insulation blankets filled with low thermal conductive fillers. The calculation of thermal conductivity is validated by comparison with the experimental data.Keywords: analysis, modelling, thermal, voxel
Procedia PDF Downloads 2871753 The Mechanical Behavior of a Cement-Fiber Composite Material
Authors: K. Harrat, M. Hidjeb, M. T’kint
Abstract:
The aim of the present research work is to characterize a cement palm date fiber composite in order to be used in isolation and in the manufacture of new structural materials. This technique may possibly participate seriously in the preservation of the environment and develop a growing need for plant products. On one hand, It has been shown that the presence of natural fiber in the composite materials manufacture, based on hydraulic binder, has improved the mechanical behaviour of the material. On the Other hand, It has been proven that the durability of composite materials reinforced with untreated fibers was largely affected by the presence of organic matter. In order to extract the organic material, the fibers were treated with boiling water and then coated with different types of products. A considerable improvement in the sensitivity to water of the fibers, as well as in the mechanical strength and in the ductility of the composite material was observed. The fiber being sensitive to water, the study put the emphasis on its dimensional stability.Keywords: cement composite, durability, heat treatment, mechanical behaviour, vegetal fiber
Procedia PDF Downloads 4541752 Comparison Physicochemical Properties of Hexane Extracted Aniseed Oil from Cold Press Extraction Residue and Cold Press Aniseed Oil
Authors: Derya Ören, Şeyma Akalın
Abstract:
Cold pres technique is a traditional method to obtain oil. The cold-pressing procedure, involves neither heat nor chemical treatments, so cold press technique has low oil yield and cold pressed herbal material residue still contains some oil. In this study, the oil that is remained in the cold pressed aniseed extracted with hegzan and analysed to determine physicochemical properties and quality parameters. It is found that the aniseed after cold press process contains % 10 oil. Other analysis parametres free fatty acid (FFA) is 2,1 mgKOH/g, peroxide value is 7,6 meq02/kg. Cold pressed aniseed oil values are determined for fatty acid (FFA) value as 2,1 mgKOH/g, peroxide value 4,5 meq02/kg respectively. Also fatty acid composition is analysed, it is found that both of these oil have same fatty acid composition. The main fatty acids are; oleic, linoleic, and palmitic acids.Keywords: aniseed oil, cold press, extraction, residue
Procedia PDF Downloads 4051751 PPB-Level H₂ Gas-Sensor Based on Porous Ni-MOF Derived NiO@CuO Nanoflowers for Superior Sensing Performance
Authors: Shah Sufaid, Hussain Shahid, Tianyan You, Liu Guiwu, Qiao Guanjun
Abstract:
Nickel oxide (NiO) is an optimal material for precise detection of hydrogen (H₂) gas due to its high catalytic activity and low resistivity. However, the gas response kinetics of H₂ gas molecules with the surface of NiO concurrence limitation imposed by its solid structure, leading to a diminished gas response value and slow electron-hole transport. Herein, NiO@CuO NFs with porous sharp-tip and nanospheres morphology were successfully synthesized by using a metal-organic framework (MOFs) as a precursor. The fabricated porous 2 wt% NiO@CuO NFs present outstanding selectivity towards H₂ gas, including a high sensitivity of a response value (170 to 20 ppm at 150 °C) higher than that of porous Ni-MOF (6), low detection limit (300 ppb) with a notable response (21), short response and recovery times at (300 ppb, 40/63 s and 20 ppm, 100/167 s), exceptional long-term stability and repeatability. Furthermore, an understanding of NiO@CuO sensor functioning in an actual environment has been obtained by using the impact of relative humidity as well. The boosted hydrogen sensing properties may be attributed due to synergistic effects of numerous facts including p-p heterojunction at the interface between NiO and CuO nanoflowers. Particularly, a porous Ni-MOF structure combined with the chemical sensitization effect of NiO with the rough surface of CuO nanosphere, are examined. This research presents an effective method for development of Ni-MOF derived metal oxide semiconductor (MOS) heterostructures with rigorous morphology and composition, suitable for gas sensing application.Keywords: NiO@CuO NFs, metal organic framework, porous structure, H₂, gas sensing
Procedia PDF Downloads 441750 Tailoring Polythiophene Nanocomposites with MnS/CoS Nanoparticles for Enhanced Surface-Enhanced Raman Spectroscopy (SERS) Detection of Mercury Ions in Water
Authors: Temesgen Geremew
Abstract:
The excessive emission of heavy metal ions from industrial processes poses a serious threat to both the environment and human health. This study presents a distinct approach utilizing (PTh-MnS/CoS NPs) for the highly selective and sensitive detection of Hg²⁺ ions in water. Such detection is crucial for safeguarding human health, protecting the environment, and accurately assessing toxicity. The fabrication method employs a simple and efficient chemical precipitation technique, harmoniously combining polythiophene, MnS, and CoS NPs to create highly active substrates for SERS. The MnS@Hg²⁺ exhibits a distinct Raman shift at 1666 cm⁻¹, enabling specific identification and demonstrating the highest responsiveness among the studied semiconductor substrates with a detection limit of only 1 nM. This investigation demonstrates reliable and practical SERS detection for Hg²⁺ ions. Relative standard deviation (RSD) ranged from 0.49% to 9.8%, and recovery rates varied from 96% to 102%, indicating selective adsorption of Hg²⁺ ions on the synthesized substrate. Furthermore, this research led to the development of a remarkable set of substrates, including (MnS, CoS, MnS/CoS, and PTh-MnS/CoS) nanoparticles were created right there on SiO₂/Si substrate, all exhibiting sensitive, robust, and selective SERS for Hg²⁺ ion detection. These platforms effectively monitor Hg²⁺ concentrations in real environmental samples.Keywords: surface-enhanced raman spectroscopy (SERS), sensor, mercury ions, nanoparticles, and polythiophene.
Procedia PDF Downloads 771749 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection
Procedia PDF Downloads 1581748 Assessment of Fluid Flow Hydrodynamics for Cylindrical and Conical Fluidized Bed Reactor
Authors: N. G. Thangan, A. B. Deoghare, P. M. Padole
Abstract:
Computational Fluid Dynamics (CFD) aids in modeling the prototype of a real world processes. CFD approach is useful in predicting the fluid flow, heat transfer mass transfer and other flow related phenomenon. In present study, hydrodynamic characteristics of gas-solid cylindrical fluidized bed is compared with conical fluidized beds. A 2D fluidized bed consists of different configurations of particle size of iron oxide, bed height and superficial velocities of nitrogen. Simulations are performed to capture the complex physics associated with it. The Eulerian multiphase model is prepared in ANSYS FLUENT v.14 which is used to simulate fluidization process. It is analyzed with nitrogen as primary phase and iron oxide as secondary phase. The bed hydrodynamics is assessed prominently to examine effect on fluidization time, pressure drop, minimum fluidization velocity, and gas holdup in the system.Keywords: fluidized bed, bed hydrodynamics, Eulerian multiphase approach, computational fluid dynamics
Procedia PDF Downloads 4521747 Engoglaze Development for the Production of Glazed Porcelain Tiles
Authors: Sezgi Isik, Yasin Urersoy, Gizem Ustunel, Ilkyaz Yalcin
Abstract:
Improvement of the digital tile application, lots of process revolutions have occurred in the tile production. In order to create unique and inimitable designs, all the competitors start to try different applications. Both Europian and domestic ceramic producers focus on the deep and realistic surfaces. In this study, the trend of engoglaze, which is becoming widespread in glaze porcelain tile designs to create the most intensive colours, were investigated. The aim of the study is to develop engoglaze formulation that supports digital ink activation. Thermal expansion coefficient values were determined by a dilatometer. Chemical analyses and sintering behaviors of engoglazes were made by X-ray diffraction and heat microscopy analysis. According to these glaze formulation studies, it has been reported that using engoglaze could easily reduce the digital ink consumption of the design. On the other hand, the advantage of the production cost is gained, and deepness of the design is provided.Keywords: ceramic, engoglaze, digital ink activation, glazed porcelain tile
Procedia PDF Downloads 1321746 Defining the Turbulent Coefficients with the Effect of Atmospheric Stability in Wake of a Wind Turbine Wake
Authors: Mohammad A. Sazzad, Md M. Alam
Abstract:
Wind energy is one of the cleanest form of renewable energy. Despite wind industry is growing faster than ever there are some roadblocks towards the improvement. One of the difficulties the industry facing is insufficient knowledge about wake within the wind farms. As we know energy is generated in the lowest layer of the atmospheric boundary layer (ABL). This interaction between the wind turbine (WT) blades and wind introduces a low speed wind region which is defined as wake. This wake region shows different characteristics under each stability condition of the ABL. So, it is fundamental to know this wake region well which is defined mainly by turbulence transport and wake shear. Defining the wake recovery length and width are very crucial for wind farm to optimize the generation and reduce the waste of power to the grid. Therefore, in order to obtain the turbulent coefficients of velocity and length, this research focused on the large eddy simulation (LES) data for neutral ABL (NABL). According to turbulent theory, if we can present velocity defect and Reynolds stress in the form of local length and velocity scales, they become invariant. In our study velocity and length coefficients are 0.4867 and 0.4794 respectively which is close to the theoretical value of 0.5 for NABL. There are some invariant profiles because of the presence of thermal and wind shear power coefficients varied a little from the ideal condition.Keywords: atmospheric boundary layer, renewable energy, turbulent coefficient, wind turbine, wake
Procedia PDF Downloads 1321745 A Review on the Use of Salt in Building Construction
Authors: Vesna Pungercar, Florian Musso
Abstract:
Identifying materials that can substitute rare or expensive natural resources is one of the key challenges for improving resource efficiency in the building sector. With a growing world population and rising living standards, more and more salt is produced as waste through seawater desalination and potash mining processes. Unfortunately, most of the salt is directly disposed of into nature, where it causes environmental pollution. On the other hand, salt is affordable, is used therapeutically in various respiratory treatments, and can store humidity and heat. It was, therefore, necessary to determine salt materials already in use in building construction and their hygrothermal properties. This research aims to identify salt materials from different scientific branches and historically, to investigate their properties and prioritize the most promising salt materials for indoor applications in a thermal envelope. This was realized through literature review and classification of salt materials into three groups (raw salt materials, composite salt materials, and processed salt materials). The outcome of this research shows that salt has already been used as a building material for centuries and has a potential for future applications due to its hygrothermal properties in a thermal envelope.Keywords: salt, building material, hygrothermal properties, environment
Procedia PDF Downloads 1691744 Laser Welding of Titanium Alloy Ti64 to Polyamide 6.6: Effects of Welding Parameters on Temperature Profile Evolution
Authors: A. Al-Sayyad, P. Lama, J. Bardon, P. Hirchenhahn, L. Houssiau, P. Plapper
Abstract:
Composite metal–polymer materials, in particular titanium alloy (Ti-6Al-4V) to polyamide (PA6.6), fabricated by laser joining, have gained cogent interest among industries and researchers concerned with aerospace and biomedical applications. This work adopts infrared (IR) thermography technique to investigate effects of laser parameters used in the welding process on the three-dimensional temperature profile at the rear-side of titanium, at the region to be welded with polyamide. Cross sectional analysis of welded joints showed correlations between the morphology of titanium and polyamide at the weld zone with the corresponding temperature profile. In particular, spatial temperature profile was found to be correlated with the laser beam energy density, titanium molten pool width and depth, and polyamide heat affected zone depth.Keywords: laser welding, metals to polymers joining, process monitoring, temperature profile, thermography
Procedia PDF Downloads 1341743 Changing Left Ventricular Hypertrophy After Kidney Transplantation
Authors: Zohreh Rostami, Arezoo Khosravi, Mohammad Nikpoor Aghdam, Mahmood Salesi
Abstract:
Background: Cardiovascular mortality in chronic kidney disease (CKD) and end stage renal disease (ESRD) patients have a strong relationship with baseline or progressive left ventricular hypertrophy (LVH) meanwhile in hemodialysis patients 10% decrement in left ventricular mass was associated with 28% reduction in cardiovascular mortality risk. In consonance with these arguments, we designed a study to measure morphological and functional echocardiographic variations early after transplantation. Method: The patients with normal renal function underwent two advanced echocardiographic studies to examine the structural and functional changes in left ventricular mass before and 3-month after transplantation. Results: From a total of 23 participants 21(91.3%) presented with left ventricular hypertrophy, 60.9% in eccentric and 30.4% in concentric group. Diastolic dysfunction improved in concentric group after transplantation. Both in pre and post transplantation global longitudinal strain (GLS)- average in eccentric group was more than concentric (-17.45 ± 2.75 vs -14.3 ± 3.38 p=0.03) and (-18.08 ± 2.6 vs -16.1 ± 2.7 p= 0.04) respectively. Conclusion: Improvement and recovery of left ventricular function in concentric group was better and sooner than eccentric after kidney transplantation. Although fractional shortening and diastolic function and GLS-4C in pre-transplantation in concentric group was worse than eccentric, but therapeutic response to kidney transplantation in concentric was more and earlier than eccentric group.Keywords: chronic kidney disease, end stage renal disease, left ventricular hypertrophy, global longitudinal strain
Procedia PDF Downloads 621742 A Kinetic Study on Recovery of High-Purity Rutile TiO₂ Nanoparticles from Titanium Slag Using Sulfuric Acid under Sonochemical Procedure
Authors: Alireza Bahramian
Abstract:
High-purity TiO₂ nanoparticles (NPs) with size ranging between 50 nm and 100 nm are synthesized from titanium slag through sulphate route under sonochemical procedure. The effect of dissolution parameters such as the sulfuric acid/slag weight ratio, caustic soda concentration, digestion temperature and time, and initial particle size of the dried slag on the extraction efficiency of TiO₂ and removal of iron are examined. By optimizing the digestion conditions, a rutile TiO₂ powder with surface area of 42 m²/g and mean pore diameter of 22.4 nm were prepared. A thermo-kinetic analysis showed that the digestion temperature has an important effect, while the acid/slag weight ratio and initial size of the slag has a moderate effect on the dissolution rate. The shrinking-core model including both chemical surface reaction and surface diffusion is used to describe the leaching process. A low value of activation energy, 38.12 kJ/mol, indicates the surface chemical reaction model is a rate-controlling step. The kinetic analysis suggested a first order reaction mechanism with respect to the acid concentrations.Keywords: TiO₂ nanoparticles, titanium slag, dissolution rate, sonochemical method, thermo-kinetic study
Procedia PDF Downloads 2551741 Analysis of an High Voltage Direct Current (HVDC) Connection Using a Real-Time Simulator Under Various Disturbances
Authors: Mankour Mohamed, Miloudi Mohamed
Abstract:
A thorough and accurate simulation is necessary for the study of a High Voltage Direct Current (HVDC) link system during various types of disturbances, including internal faults on both converters, either on the rectifier or on the inverter, as well as external faults, such as AC or DC faults on both converter sides inside the DC link party. In this study, we examine how an HVDC inverter responds to three different types of failures, including faults at the inverter valve, system control faults, and single-phase-to-ground AC faults at the sending end of the inverter side. As this phenomenon represents the most frequent problem that may affect inverter valves, particularly those based on thyristor valves (LCC (line-Commutated converter)), it is more precise to explore which circumstance generates and raises the commutation failure on inverter valves. Because of the techniques used to accelerate the simulation, digital real-time simulators are now the most potent tools that provide simulation results. The real-time-lab RT-LAB platform HYPERSIM OP-5600 is used to implement the Simulation in the Loop (SIL) technique, which is used to validate the results. It is demonstrated how to recover from both the internal faults and the AC problem. The simulation findings show how crucial a role the control system plays in fault recovery.Keywords: hypersim simulator, HVDC systems, mono-polar link, AC faults, misfiring faults
Procedia PDF Downloads 941740 Characteristics of Acute Poisoning in Emergency Departments: Multicenter Study in Korea
Authors: Hyuk-Hoon Kim, Young Gi Min
Abstract:
Background: Acute poisoning is the common cause of morbidity and mortality. Characteristics of acute poisoning differ between countries. While other countries operate the database system for poisoning, Korea has not collected the database for acute poisoning. Distribution of incidence of acute poisoning depending on the types of materials have also not studied in Korea. Our aims are to evaluate the etiologic and demographic characteristics of acute poisoning cases and to obtain up-to-date information on acute poisonings. Method: We retrospectively recorded cases of acute poisoning from eight emergency departments of second level or university hospitals from different cities in Gyeonggi province in Korea from April 2006 and March 2015. The distributions of incidence of acute poisoning depending on the types of materials are mapped by geographic information system. Result: A total of 3,449 poisoned cases were analyzed. Mean estimated age of patients was 39.56 ± 22.40 years. Mean male to female ratio of patients was 1:1.4. Mean proportion of intentional poisoning was 57.9%. Common materials are benzodiazepine (16.6%), carbon monoxide (10.5%), pesticide (8.1%) and zolpidem (7.1%) Common route of exposure is ingestion (79.5%) and followed by inhalation (16.5%). Common treatment methods are gastric lavage (20%) and activated charcoal (30%). Most cases had uneventful recovery; 61.4% were treated as outpatients and 0.1% of the poisoning resulted in death in ER. Conclusion: Even though the cases enrolled in our study is not the overall cases of acute poisoning in Korea, our study could be the basis of countermeasures for analysis and prevention of acute poisoning in Korea.Keywords: acute poisoning, emergency department, epidemiology, Korea
Procedia PDF Downloads 4031739 Acid Injection PTFE Internal Lining in Raw Water System
Authors: Fikri Suwaileh
Abstract:
In the reverse osmosis (RO) water treatment plant, operation was suffering from several leaks on the acid injection point spool and downstream spools, due to insufficient injection monitoring and the coating failure leading to pin holes. The paper will go over the background of the leaks in the acid injection point, the process in the RO plant, the material, and coating used in the existing spools, the impact of these repeated leaks, the type of damage mechanism that occurred in the system due to the manner of acid injection and the heat in the spools, which lead to coating failure, leaks and water release. This paper will also look at the analysis, both the short- and long-term recommendations, and the utilization of Teflon internal lining to stop the leaks. Sharing this case study will enhance the knowledge of the importance of taking all factors that will lead to leaks in the acid injection points, along with the importance of utilizing the appropriate coating material lining to enhance the full system.Keywords: corrosion, coating, raw water, lining
Procedia PDF Downloads 191738 Fabrication and Characterization of Cadmium Sulfide Nanowires on Aluminum Oxide Template
Authors: Malik Imran Afzal
Abstract:
Cadmium supplied nanowires have unique electrical and optical properties and applications. To obtain cadmium supplied nanowires with regular and good aspect ratio, they can be synthesized by template synthesis method. Porous anodized aluminum oxide is the most promising template with regular hexagonal shapes. Their aspect ratio can be controlled by controlling the pores’ depth and diameter which greatly depend on anodization voltage and temperature of the electrolyte. In this research, high purity aluminium was used to prepare nanotemplates at 5-6°C in 1M phosphoric acid and cadmium supplied was deposited electrochemically using a co-solution of thiourea, cadmium acetate and ammonium acetate. pH was maintained at 11 in a heat bath at 75°C with the help of aqueous ammonia solution. Both porous anodized alumina and cadmium supplied nanowires were characterized suing SEM. A good quality Nanowires were obtained in bunches with reasonably high aspect ratio.Keywords: bunches, electrodeposition, hexagonal, thiourea
Procedia PDF Downloads 328