Search results for: prediction equations
1085 The Influence of a Vertical Rotation on the Fluid Dynamics of Compositional Plumes
Authors: Khaled Suleiman Mohammed Al-Mashrafi
Abstract:
A compositional plume is a fluid flow in a directional channel of finite width in another fluid of different material composition. The study of the dynamics of compositional plumes plays an essential role in many real-life applications like industrial applications (e.g., iron casting), environmental applications (e.g., salt fingers and sea ice), and geophysical applications (e.g., solidification at the inner core boundary (ICB) of the Earth, and mantle plumes). The dynamics of compositional plumes have been investigated experimentally and theoretically. The experimental works observed that the plume flow seems to be stable, although some experiments showed that it can be unstable. At the same time, the theoretical investigations showed that the plume flow is unstable. This is found to be true even if the plume is subject to rotation or/and in the presence of a magnetic field and even if another plume of different composition is also present. It is noticeable that all the theoretical studies on the dynamics of compositional plumes are conducted in unbounded domains. The present work is to investigate theoretically the influence of vertical walls (boundaries) on the dynamics of compositional plumes in the absence/presence of a rotation field. The mathematical model of the dynamics of compositional plumes used the equations of continuity, motion, heat, concentration of light material, and state. It is found that the presence of boundaries has a strong influence on the basic state solution as well as the stability of the plume, particularly when the plume is close to the boundary, but the compositional plume remains unstable.Keywords: compositional plumes, stability, bounded domain, vertical boundaries
Procedia PDF Downloads 311084 Genome Sequencing of the Yeast Saccharomyces cerevisiae Strain 202-3
Authors: Yina A. Cifuentes Triana, Andrés M. Pinzón Velásco, Marío E. Velásquez Lozano
Abstract:
In this work the sequencing and genome characterization of a natural isolate of Saccharomyces cerevisiae yeast (strain 202-3), identified with potential for the production of second generation ethanol from sugarcane bagasse hydrolysates is presented. This strain was selected because its capability to consume xylose during the fermentation of sugarcane bagasse hydrolysates, taking into account that many strains of S. cerevisiae are incapable of processing this sugar. This advantage and other prominent positive aspects during fermentation profiles evaluated in bagasse hydrolysates made the strain 202-3 a candidate strain to improve the production of second-generation ethanol, which was proposed as a first step to study the strain at the genomic level. The molecular characterization was carried out by genome sequencing with the Illumina HiSeq 2000 platform paired end; the assembly was performed with different programs, finally choosing the assembler ABYSS with kmer 89. Gene prediction was developed with the approach of hidden Markov models with Augustus. The genes identified were scored based on similarity with public databases of nucleotide and protein. Records were organized from ontological functions at different hierarchical levels, which identified central metabolic functions and roles of the S. cerevisiae strain 202-3, highlighting the presence of four possible new proteins, two of them probably associated with the positive consumption of xylose.Keywords: cellulosic ethanol, Saccharomyces cerevisiae, genome sequencing, xylose consumption
Procedia PDF Downloads 3201083 Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships, PSO Technique, and Automatic Clustering Algorithm
Authors: A. K. M. Kamrul Islam, Abdelhamid Bouchachia, Suang Cang, Hongnian Yu
Abstract:
Forecasting model has a great impact in terms of prediction and continues to do so into the future. Although many forecasting models have been studied in recent years, most researchers focus on different forecasting methods based on fuzzy time series to solve forecasting problems. The forecasted models accuracy fully depends on the two terms that are the length of the interval in the universe of discourse and the content of the forecast rules. Moreover, a hybrid forecasting method can be an effective and efficient way to improve forecasts rather than an individual forecasting model. There are different hybrids forecasting models which combined fuzzy time series with evolutionary algorithms, but the performances are not quite satisfactory. In this paper, we proposed a hybrid forecasting model which deals with the first order as well as high order fuzzy time series and particle swarm optimization to improve the forecasted accuracy. The proposed method used the historical enrollments of the University of Alabama as dataset in the forecasting process. Firstly, we considered an automatic clustering algorithm to calculate the appropriate interval for the historical enrollments. Then particle swarm optimization and fuzzy time series are combined that shows better forecasting accuracy than other existing forecasting models.Keywords: fuzzy time series (fts), particle swarm optimization, clustering algorithm, hybrid forecasting model
Procedia PDF Downloads 2501082 Estimation of Pressure Profile and Boundary Layer Characteristics over NACA 4412 Airfoil
Authors: Anwar Ul Haque, Waqar Asrar, Erwin Sulaeman, Jaffar S. M. Ali
Abstract:
Pressure distribution data of the standard airfoils is usually used for the calibration purposes in subsonic wind tunnels. Results of such experiments are quite old and obtained by using the model in the spanwise direction. In this manuscript, pressure distribution over NACA 4412 airfoil model was presented by placing the 3D model in the lateral direction. The model is made of metal with pressure ports distributed longitudinally as well as in the lateral direction. The pressure model was attached to the floor of the tunnel with the help of the base plate to give the specified angle of attack to the model. Before the start of the experiments, the pressure tubes of the respective ports of the 128 ports pressure scanner are checked for leakage, and the losses due to the length of the pipes were also incorporated in the results for the specified pressure range. Growth rate maps of the boundary layer thickness were also plotted. It was found that with the increase in the velocity, the dynamic pressure distribution was also increased for the alpha seep. Plots of pressure distribution so obtained were overlapped with those obtained by using XFLR software, a low fidelity tool. It was found that at moderate and high angles of attack, the distribution of the pressure coefficients obtained from the experiments is high when compared with the XFLR ® results obtained along with the span of the wing. This under-prediction by XFLR ® is more obvious on the windward than on the leeward side.Keywords: subsonic flow, boundary layer, wind tunnel, pressure testing
Procedia PDF Downloads 3201081 Insulin Resistance in Children and Adolescents in Relation to Body Mass Index, Waist Circumference and Body Fat Weight
Authors: E. Vlachopapadopoulou, E. Dikaiakou, E. Anagnostou, I. Panagiotopoulos, E. Kaloumenou, M. Kafetzi, A. Fotinou, S. Michalacos
Abstract:
Aim: To investigate the relation and impact of Body Mass Index (BMI), Waist Circumference (WC) and Body Fat Weight (BFW) on insulin resistance (MATSUDA INDEX < 2.5) in children and adolescents. Methods: Data from 95 overweight and obese children (47 boys and 48 girls) with mean age 10.7 ± 2.2 years were analyzed. ROC analysis was used to investigate the predictive ability of BMI, WC and BFW for insulin resistance and find the optimal cut-offs. The overall performance of the ROC analysis was quantified by computing area under the curve (AUC). Results: ROC curve analysis indicated that the optimal-cut off of WC for the prediction of insulin resistance was 97 cm with sensitivity equal to 75% and specificity equal to 73.1%. AUC was 0.78 (95% CI: 0.63-0.92, p=0.001). The sensitivity and specificity of obesity for the discrimination of participants with insulin resistance from those without insulin resistance were equal to 58.3% and 75%, respectively (AUC=0.67). BFW had a borderline predictive ability for insulin resistance (AUC=0.58, 95% CI: 0.43-0.74, p=0.101). The predictive ability of WC was equivalent with the correspondence predictive ability of BMI (p=0.891). Obese subjects had 4.2 times greater odds for having insulin resistance (95% CI: 1.71-10.30, p < 0.001), while subjects with WC more than 97 had 8.1 times greater odds for having insulin resistance (95% CI: 2.14-30.86, p=0.002). Conclusion: BMI and WC are important clinical factors that have significant clinical relation with insulin resistance in children and adolescents. The cut off of 97 cm for WC can identify children with greater likelihood for insulin resistance.Keywords: body fat weight, body mass index, insulin resistance, obese children, waist circumference
Procedia PDF Downloads 3201080 Enhancing Aerodynamic Performance of Savonius Vertical Axis Turbine Used with Triboelectric Generator
Authors: Bhavesh Dadhich, Fenil Bamnoliya, Akshita Swaminathan
Abstract:
This project aims to design a system to generate energy from flowing wind due to the motion of a vehicle on the road or from the flow of wind in compact areas to utilize the wasteful energy into a useful one. It is envisaged through a design and aerodynamic performance improvement of a Savonius vertical axis wind turbine rotor and used in an integrated system with a Triboelectric Nanogenerator (TENG) that can generate a good amount of electrical energy. Aerodynamic calculations are performed numerically using Computational Fluid Dynamics software, and TENG's performance is evaluated analytically. The Turbine's coefficient of power is validated with published results for an inlet velocity of 7 m/s with a Tip Speed Ratio of 0.75 and found to reasonably agree with that of experiment results. The baseline design is modified with a new blade arc angle and rotor position angle based on the recommended parameter ranges suggested by previous researchers. Simulations have been performed for different T.S.R. values ranging from 0.25 to 1.5 with an interval of 0.25 with two applicable free stream velocities of 5 m/s and 7m/s. Finally, the newly designed VAWT CFD performance results are used as input for the analytical performance prediction of the triboelectric nanogenerator. The results show that this approach could be feasible and useful for small power source applications.Keywords: savonius turbine, power, overlap ratio, tip speed ratio, TENG
Procedia PDF Downloads 1221079 Distribution of HLA-DQA1 and HLA-DQB1 Alleles in Thais: Genetics Database Insight for COVID-19 Severity
Authors: Jinu Phonamontham
Abstract:
Coronavirus, also referred to as COVID-19, is a virus caused by the SARS-Cov-2 virus. The pandemic has caused over 10 million cases and 500,000 deaths worldwide through the end of June 2020. In a previous study, HLA-DQA1*01:02 allele was associated with COVID-19 disease (p-value = 0.0121). Furthermore, there was a statistical significance between HLA- DQB1*06:02 and COVID-19 in the Italian population by Bonferroni’s correction (p-value = 0.0016). Nevertheless, there is no data describing the distribution of HLA alleles as a valid marker for prediction of COVID-19 in the Thai population. We want to investigate the prevalence of HLA-DQA1*01:02 and HLA-DQB1*06:02 alleles that are associated with severe COVID-19 in the Thai population. In this study, we recruited 200 healthy Thai individuals. Genomic DNA samples were isolated from EDTA blood using Genomic DNA Mini Kit. HLA genotyping was conducted using the Lifecodes HLA SSO typing kits (Immucor, West Avenue, Stamford, USA). The frequency of HLA-DQA1 alleles in Thai population, consisting of HLA-DQA1*01:01 (27.75%), HLA-DQA1*01:02 (24.50%), HLA-DQA1*03:03 (13.00%), HLA-DQA1*06:01 (10.25%) and HLA-DQA1*02:01 (6.75%). Furthermore, the distributions of HLA-DQB1 alleles were HLA-DQB1*05:02 (21.50%), HLA-DQB1*03:01 (15.75%), HLA-DQB1*05:01 (14.50%), HLA-DQB1*03:03 (11.00%) and HLA-DQB1*02:02 (8.25%). Particularly, HLA- DQA1*01:02 (29.00%) allele was the highest frequency in the NorthEast group, but there was not significant difference when compared with the other regions in Thais (p-value = 0.4202). HLA-DQB1*06:02 allele was similarly distributed in Thai population and there was no significant difference between Thais and China (3.8%) and South Korea (6.4%) and Japan (8.2%) with p-value > 0.05. Whereas, South Africa (15.7%) has a significance with Thais by p-value of 0.0013. This study supports the specific genotyping of the HLA-DQA1*01:02 and HLA-DQB1*06:02 alleles to screen severe COVID-19 in Thai and many populations.Keywords: HLA-DQA1*01:02, HLA-DQB1*06:02, Asian, Thai population
Procedia PDF Downloads 991078 Crack Opening Investigation in Fiberconcrete
Authors: Arturs Macanovskis, Vitalijs Lusis, Andrejs Krasnikovs
Abstract:
Work has three stages. In the first stage was examined pull-out process for steel fiber was embedded into a concrete by one end and was pulled out of concrete under the angle to pulling out force direction. Angle was varied. Length of steel fiber was 26 mm, diameter 0.5 mm. On the obtained force- displacement diagrams were observed jumps. For such mechanical behavior explanation, fiber channel in concrete surface microscopical experimental investigation, using microscope KEYENCE VHX2000, was performed. Surface of fiber channel in concrete matrix after pull-out test (fiber angle to pulling out force direction 70°). At the second stage were obtained diagrams for load- crack opening displacement for breaking homogeneously reinforced and layered fiber concrete prisms (with dimensions 10x10x40 cm) subjected to 4-point bending. After testing was analyzed main crack. On the main crack’s both surfaces were recognized all pulled out fibers their locations, angles to crack surface and lengths of pull-out fibers parts. At the third stage elaborated prediction model for the fiber-concrete beam, failure under bending, using the following data: a) diagrams for fibers pulling out at different angles; b) experimental data about steel-straight fibers locations in the main crack.Keywords: fiberconcrete, pull-out, fiber channel, layered fiberconcrete
Procedia PDF Downloads 4391077 Tunneling Current Switching in the Coupled Quantum Dots by Means of External Field
Authors: Vladimir Mantsevich, Natalya Maslova, Petr Arseyev
Abstract:
We investigated the tunneling current peculiarities in the system of two coupled by means of the external field quantum dots (QDs) weakly connected to the electrodes in the presence of Coulomb correlations between localized electrons by means of Heisenberg equations for pseudo operators with constraint. Special role of multi-electronic states was demonstrated. Various single-electron levels location relative to the sample Fermi level and to the applied bias value in symmetric tunneling contact were investigated. Rabi frequency tuning results in the single-electron energy levels spacing. We revealed the appearance of negative tunneling conductivity and demonstrated multiple switching "on" and "off" of the tunneling current depending on the Coulomb correlations value, Rabi frequency amplitude and energy levels spacing. We proved that Coulomb correlations strongly influence the system behavior. We demonstrated the presence of multi-stability in the coupled QDs with Coulomb correlations when single value of the tunneling current amplitude corresponds to the two values of Rabi frequency in the case when both single-electron energy levels are located slightly above eV and are close to each other. This effect disappears when the single-electron energy levels spacing increases.Keywords: Coulomb correlations, negative tunneling conductivity, quantum dots, rabi frequency
Procedia PDF Downloads 4511076 Perfectly Matched Layer Boundary Stabilized Using Multiaxial Stretching Functions
Authors: Adriano Trono, Federico Pinto, Diego Turello, Marcelo A. Ceballos
Abstract:
Numerical modeling of dynamic soil-structure interaction problems requires an adequate representation of the unbounded characteristics of the ground, material non-linearity of soils, and geometrical non-linearities such as large displacements due to rocking of the structure. In order to account for these effects simultaneously, it is often required that the equations of motion are solved in the time domain. However, boundary conditions in conventional finite element codes generally present shortcomings in fully absorbing the energy of outgoing waves. In this sense, the Perfectly Matched Layers (PML) technique allows a satisfactory absorption of inclined body waves, as well as surface waves. However, the PML domain is inherently unstable, meaning that it its instability does not depend upon the discretization considered. One way to stabilize the PML domain is to use multiaxial stretching functions. This development is questionable because some Jacobian terms of the coordinate transformation are not accounted for. For this reason, the resulting absorbing layer element is often referred to as "uncorrected M-PML” in the literature. In this work, the strong formulation of the "corrected M-PML” absorbing layer is proposed using multiaxial stretching functions that incorporate all terms of the coordinate transformation. The results of the stable model are compared with reference solutions obtained from extended domain models.Keywords: mixed finite elements, multiaxial stretching functions, perfectly matched layer, soil-structure interaction
Procedia PDF Downloads 691075 Sustainability in Hospitality: An Inevitable Necessity in New Age with Big Environmental Challenges
Authors: Majid Alizadeh, Sina Nematizadeh, Hassan Esmailpour
Abstract:
The mutual effects of hospitality and the environment are undeniable, so that the tourism industry has major harmful effects on the environment. Hotels, as one of the most important pillars of the hospitality industry, have significant effects on the environment. Green marketing is a promising strategy in response to the growing concerns about the environment. A green hotel marketing model was proposed using a grounded theory approach in the hotel industry. The study was carried out as a mixed method study. Data gathering in the qualitative phase was done through literature review and In-depth, semi-structured interviews with 10 experts in green marketing using snowball technique. Following primary analysis, open, axial, and selective coding was done on the data, which yielded 69 concepts, 18 categories and six dimensions. Green hotel (green product) was adopted as the core phenomenon. In the quantitative phase, data were gleaned using 384 questionnaires filled-out by hotel guests and descriptive statistics and Structural equation modeling (SEM) were used for data analysis. The results indicated that the mediating role of behavioral response between the ecological literacy, trust, marketing mix and performance was significant. The green marketing mix, as a strategy, had a significant and positive effect on guests’ behavioral response, corporate green image, and financial and environmental performance of hotels.Keywords: green marketing, sustainable development, hospitality, grounded theory, structural equations model
Procedia PDF Downloads 811074 Application of Genetic Algorithm with Multiobjective Function to Improve the Efficiency of Photovoltaic Thermal System
Authors: Sonveer Singh, Sanjay Agrawal, D. V. Avasthi, Jayant Shekhar
Abstract:
The aim of this paper is to improve the efficiency of photovoltaic thermal (PVT) system with the help of Genetic Algorithms with multi-objective function. There are some parameters that affect the efficiency of PVT system like depth and length of the channel, velocity of flowing fluid through the channel, thickness of the tedlar and glass, temperature of inlet fluid i.e. all above parameters are considered for optimization. An attempt has been made to the model and optimizes the parameters of glazed hybrid single channel PVT module when two objective functions have been considered separately. The two objective function for optimization of PVT module is overall electrical and thermal efficiency. All equations for PVT module have been derived. Using genetic algorithms (GAs), above two objective functions of the system has been optimized separately and analysis has been carried out for two cases. Two cases are: Case-I; Improvement in electrical and thermal efficiency when overall electrical efficiency is optimized, Case-II; Improvement in electrical and thermal efficiency when overall thermal efficiency is optimized. All the parameters that are used in genetic algorithms are the parameters that could be changed, and the non-changeable parameters, like solar radiation, ambient temperature cannot be used in the algorithm. It has been observed that electrical efficiency (14.08%) and thermal efficiency (19.48%) are obtained when overall thermal efficiency was an objective function for optimization. It is observed that GA is a very efficient technique to estimate the design parameters of hybrid single channel PVT module.Keywords: genetic algorithm, energy, exergy, PVT module, optimization
Procedia PDF Downloads 6051073 Investigating Jacket-Type Offshore Structures Failure Probability by Applying the Reliability Analyses Methods
Authors: Majid Samiee Zonoozian
Abstract:
For such important constructions as jacket type platforms, scrupulous attention in analysis, design and calculation processes is needed. The reliability assessment method has been established into an extensively used method to behavior safety calculation of jacket platforms. In the present study, a methodology for the reliability calculation of an offshore jacket platform in contradiction of the extreme wave loading state is available. Therefore, sensitivity analyses are applied to acquire the nonlinear response of jacket-type platforms against extreme waves. The jacket structure is modeled by applying a nonlinear finite-element model with regards to the tubular members' behave. The probability of a member’s failure under extreme wave loading is figured by a finite-element reliability code. The FORM and SORM approaches are applied for the calculation of safety directories and reliability indexes have been detected. A case study for a fixed jacket-type structure positioned in the Persian Gulf is studied by means of the planned method. Furthermore, to define the failure standards, equations suggested by the 21st version of the API RP 2A-WSD for The jacket-type structures’ tubular members designing by applying the mixed axial bending and axial pressure. Consequently, the effect of wave Loades in the reliability index was considered.Keywords: Jacket-Type structure, reliability, failure probability, tubular members
Procedia PDF Downloads 1721072 A Prediction of Electrical Cost for High-Rise Building Construction
Authors: Picha Sriprachan
Abstract:
The increase in electricity prices affects the cost of high-rise building construction. The objectives of this research are to study the electrical cost, trend of electrical cost and to forecast electrical cost of high-rise building construction. The methods of this research are: 1) to study electrical payment formats, cost data collection methods, and the factors affecting electrical cost of high-rise building construction, 2) to study the quantity and trend of cumulative percentage of the electrical cost, and 3) to forecast the electrical cost for different types of high-rise buildings. The results of this research show that the average proportion between electrical cost and the value of the construction project is 0.87 percent. The proportion of electrical cost for residential, office and commercial, and hotel buildings are closely proportional. If construction project value increases, the proportion of electrical cost and the value of the construction project will decrease. However, there is a relationship between the amount of electrical cost and the value of the construction project. During the structural construction phase, the amount of electrical cost will increase and during structural and architectural construction phase, electrical cost will be maximum. The cumulative percentage of the electrical cost is related to the cumulative percentage of the high-rise building construction cost in the same direction. The amount of service space of the building, number of floors and the duration of the construction affect the electrical cost of construction. The electrical cost of construction forecasted by using linear regression equation is close to the electrical cost forecasted by using the proportion of electrical cost and value of the project.Keywords: high-rise building construction, electrical cost, construction phase, architectural phase
Procedia PDF Downloads 3901071 Absorbed Dose Measurements for Teletherapy Prediction of Superficial Dose Using Halcyon Linear Accelerator
Authors: Raymond Limen Njinga, Adeneye Samuel Olaolu, Akinyode Ojumoola Ajimo
Abstract:
Introduction: Measurement of entrance dose and dose at different depths is essential to avoid overdose and underdose of patients. The aim of this study is to verify the variation in the absorbed dose using a water-equivalent material. Materials and Methods: The plastic phantom was arranged on the couch of the halcyon linear accelerator by Varian, with the farmer ionization chamber inserted and connected to the electrometer. The image of the setup was taken using the High-Quality Single 1280x1280x16 higher on the service mode to check the alignment with the isocenter. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was done to check the beam quality of the machine at a field size of 10 cm x 10 cm. The calibration was done using SAD type set-up at a depth of 5 cm. This process was repeated for ten consecutive weeks, and the values were recorded. Results: The results of the beam output for the teletherapy machine were satisfactory and accepted in comparison with the commissioned measurement of 0.62. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was reasonable with respect to the beam quality of the machine at a field size of 10 cm x 10 cm. Conclusion: The results of the beam quality and the absorbed dose rate showed a good consistency over the period of ten weeks with the commissioned measurement value.Keywords: linear accelerator, absorbed dose rate, isocenter, phantom, ionization chamber
Procedia PDF Downloads 611070 Finite Element Analysis of Piezolaminated Structures with Both Geometric and Electroelastic Material Nonlinearities
Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen, , Jing Bai
Abstract:
Piezoelectric laminated smart structures can be subjected to the strong driving electric field, which may result in large displacements and rotations. In one hand, piezoelectric materials usually behave very significant material nonlinear effects under strong electric fields. On the other hand, thin-walled structures undergoing large displacements and rotations exist nonnegligible geometric nonlinearity. In order to give a precise prediction of piezo laminated smart structures under the large electric field, this paper develops a finite element (FE) model accounting for material nonlinearity (piezoelectric part) and geometric nonlinearity based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is first validated by both experimental and numerical examples from the literature. Afterwards, it is applied to simulate for plate and shell structures with multiple piezoelectric patches under the strong applied electric field. From the simulation results, it shows that large discrepancies occur between linear and nonlinear predictions for piezoelectric laminated structures driving at the strong electric field. Therefore, both material and geometric nonlinearities should be taken into account for piezoelectric structures under strong electric.Keywords: piezoelectric smart structures, finite element analysis, geometric nonlinearity, electroelastic material nonlinearities
Procedia PDF Downloads 3171069 The Effect of AMBs Number of a Dynamics Behavior of a Spur Gear Reducer in Non-Stationary Regime
Authors: Najib Belhadj Messaoud, Slim Souissi
Abstract:
The non-linear dynamic behavior of a single stage spur gear reducer is studied in this paper in transient regime. Driving and driver rotors are, respectively, powered by a motor torque Cm and loaded by a resistive torque Cr. They are supported by two identical Active Magnetic Bearings (AMBs). Gear excitation is induced by the motor torque and load variation in addition to the fluctuation of meshing stiff-ness due to the variation of input rotational speed. Three models of AMBs were used with four, six and eight magnets. They are operated by P.D controller and powered by control and bias currents. The dynamic parameters of the AMBs are modeled by stiffness and damping matrices computed by the derivation of the electromagnetic forces. The equations of motion are solved iteratively using Newmark time integration method. In the first part of the study, the model is powered by an electric motor and by a four strokes four cylinders diesel engine in the second part. The numerical results of the dynamic responses of the system come to confirm the significant effect of the transient regime on the dynamic behavior of a gear set, particularly in the case of engine acyclism condition. Results also confirm the influence of the magnet number by AMBs on the dynamic behavior of the system. Indeed, vibrations were more important in the case of gear reducer supported by AMBs with four magnets.Keywords: motor, stiffness, gear, acyclism, fluctuation, torque
Procedia PDF Downloads 4591068 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks
Authors: Khalid Ali, Manar Jammal
Abstract:
In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity
Procedia PDF Downloads 2241067 Exergy Based Analysis of Parabolic Trough Collector Using Twisted-Tape Inserts
Authors: Atwari Rawani, Suresh Prasad Sharma, K. D. P. Singh
Abstract:
In this paper, an analytical investigation based on energy and exergy analysis of the parabolic trough collector (PTC) with alternate clockwise and counter-clockwise twisted tape inserts in the absorber tube has been presented. For fully developed flow under quasi-steady state conditions, energy equations have been developed in order to analyze the rise in fluid temperature, thermal efficiency, entropy generation and exergy efficiency. Also the effect of system and operating parameters on performance have been studied. A computer program, based on mathematical models is developed in C++ language to estimate the temperature rise of fluid for evaluation of performances under specified conditions. For numerical simulations four different twist ratio, x = 2,3,4,5 and mass flow rate 0.06 kg/s to 0.16 kg/s which cover the Reynolds number range of 3000 - 9000 is considered. This study shows that twisted tape inserts when used shows great promise for enhancing the performance of PTC. Results show that for x=1, Nusselt number/heat transfer coefficient is found to be 3.528 and 3.008 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 12.57% and 5.065% respectively. Also the exergy efficiency has been found to be 10.61% and 10.97% and enhancement factor is 1.135 and 1.048 for same set of conditions.Keywords: exergy efficiency, twisted tape ratio, turbulent flow, useful heat gain
Procedia PDF Downloads 1731066 Expectation-Confirmation Model of Information System Continuance: A Meta-Analysis
Authors: Hui-Min Lai, Chin-Pin Chen, Yung-Fu Chang
Abstract:
The expectation-confirmation model (ECM) is one of the most widely used models for evaluating information system continuance, and this model has been extended to other study backgrounds, or expanded with other theoretical perspectives. However, combining ECM with other theories or investigating the background problem may produce some disparities, thus generating inaccurate conclusions. Habit is considered to be an important factor that influences the user’s continuance behavior. This paper thus critically examines seven pairs of relationships from the original ECM and the habit variable. A meta-analysis was used to tackle the development of ECM research over the last 10 years from a range of journals and conference papers published in 2005–2014. Forty-six journal articles and 19 conference papers were selected for analysis. The results confirm our prediction that a high effect size for the seven pairs of relationships was obtained (ranging from r=0.386 to r=0.588). Furthermore, a meta-analytic structural equation modeling was performed to simultaneously test all relationships. The results show that habit had a significant positive effect on continuance intention at p<=0.05 and that the six other pairs of relationships were significant at p<0.10. Based on the findings, we refined our original research model and an alternative model was proposed for understanding and predicting information system continuance. Some theoretical implications are also discussed.Keywords: Expectation-confirmation theory, Expectation-confirmation model, Meta-analysis, meta-analytic structural equation modeling.
Procedia PDF Downloads 3061065 Random Forest Classification for Population Segmentation
Authors: Regina Chua
Abstract:
To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling
Procedia PDF Downloads 941064 Numerical Investigation of Nanofluid Based Thermosyphon System
Authors: Kiran Kumar K., Ramesh Babu Bejjam, Atul Najan
Abstract:
A thermosyphon system is a heat transfer loop which operates on the basis of gravity and buoyancy forces. It guarantees a good reliability and low maintenance cost as it does not involve any mechanical pump. Therefore it can be used in many industrial applications such as refrigeration and air conditioning, electronic cooling, nuclear reactors, geothermal heat extraction, etc. But flow instabilities and loop configuration are the major problems in this system. Several previous researchers studied that stabilities can be suppressed by using nanofluids as loop fluid. In the present study a rectangular thermosyphon loop with end heat exchangers are considered for the study. This configuration is more appropriate for many practical applications such as solar water heater, geothermal heat extraction, etc. In the present work, steady-state analysis is carried out on thermosyphon loop with parallel flow coaxial heat exchangers at heat source and heat sink. In this loop nano fluid is considered as the loop fluid and water is considered as the external fluid in both hot and cold heat exchangers. For this analysis one-dimensional homogeneous model is developed. In this model, conservation equations like conservation of mass, momentum, energy are discretized using finite difference method. A computer code is written in MATLAB to simulate the flow in thermosyphon loop. A comparison in terms of heat transfer is made between water and nano fluid as working fluids in the loop.Keywords: heat exchanger, heat transfer, nanofluid, thermosyphon loop
Procedia PDF Downloads 4771063 Experiments on Weakly-Supervised Learning on Imperfect Data
Authors: Yan Cheng, Yijun Shao, James Rudolph, Charlene R. Weir, Beth Sahlmann, Qing Zeng-Treitler
Abstract:
Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning.Keywords: weakly-supervised learning, support vector machine, prediction, delirium, simulation
Procedia PDF Downloads 1981062 Numerical Investigation of the Bio-fouling Roughness Effect on Tidal Turbine
Authors: O. Afshar
Abstract:
Unlike other renewable energy sources, tidal current energy is an extremely reliable, predictable and continuous energy source as the current pattern and speed can be predicted throughout the year. A key concern associated with tidal turbines is their long-term reliability when operating in the hostile marine environment. Bio-fouling changes the physical shape and roughness of turbine components, hence altering the overall turbine performance. This paper seeks to employ Computational Fluid Dynamics (CFD) method to quantify the effects of this problem based on the obtained flow field information. The simulation is carried out on a NACA 63-618 aerofoil. The Reynolds Averaged Navier-Stokes (RANS) equations with Shear Stress Transport (SST) turbulent model are used to simulate the flow around the model. Different levels of fouling are studied on 2D aerofoil surface with quantified fouling height and density. In terms of lift and drag coefficient results, numerical results show good agreement with the experiment which was carried out in wind tunnel. Numerical results of research indicate that an increase in fouling thickness causes an increase in drag coefficient and a reduction in lift coefficient. Moreover, pressure gradient gradually becomes adverse as height of fouling increases. In addition, result by turbulent kinetic energy contour reveals it increases with fouling height and it extends into wake due to flow separation.Keywords: tidal energy, lift coefficient, drag coefficient, roughness
Procedia PDF Downloads 3821061 Computational Prediction of the Effect of S477N Mutation on the RBD Binding Affinity and Structural Characteristic, A Molecular Dynamics Study
Authors: Mohammad Hossein Modarressi, Mozhgan Mondeali, Khabat Barkhordari, Ali Etemadi
Abstract:
The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant concerns worldwide due to its catastrophic effects on public health. The SARS-CoV-2 infection is initiated with the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Due to the error-prone entity of the viral RNA-dependent polymerase complex, the virus genome, including the coding region for the RBD, acquires new mutations, leading to the appearance of multiple variants. These variants can potentially impact transmission, virulence, antigenicity and evasive immune properties. S477N mutation located in the RBD has been observed in the SARS-CoV-2 omicron (B.1.1. 529) variant. In this study, we investigated the consequences of S477N mutation at the molecular level using computational approaches such as molecular dynamics simulation, protein-protein interaction analysis, immunoinformatics and free energy computation. We showed that displacement of Ser with Asn increases the stability of the spike protein and its affinity to ACE2 and thus increases the transmission potential of the virus. This mutation changes the folding and secondary structure of the spike protein. Also, it reduces antibody neutralization, raising concern about re-infection, vaccine breakthrough and therapeutic values.Keywords: S477N, COVID-19, molecular dynamic, SARS-COV2 mutations
Procedia PDF Downloads 1751060 Organizational Decision to Adopt Digital Forensics: An Empirical Investigation in the Case of Malaysian Law Enforcement Agencies
Authors: Siti N. I. Mat Kamal, Othman Ibrahim, Mehrbakhsh Nilashi, Jafalizan M. Jali
Abstract:
The use of digital forensics (DF) is nowadays essential for law enforcement agencies to identify analysis and interpret the digital information derived from digital sources. In Malaysia, the engagement of Malaysian Law Enforcement Agencies (MLEA) with this new technology is not evenly distributed. To investigate the factors influencing the adoption of DF in Malaysia law enforcement agencies’ operational environment, this study proposed the initial theoretical framework based on the integration of technology organization environment (TOE), institutional theory, and human organization technology (HOT) fit model. A questionnaire survey was conducted on selected law enforcement agencies in Malaysia to verify the validity of the initial integrated framework. Relative advantage, compatibility, coercive pressure, normative pressure, vendor support and perceived technical competence of technical staff were found as the influential factors on digital forensics adoption. In addition to the only moderator of this study (agency size), any significant moderating effect on the perceived technical competence and the decision to adopt digital forensics by Malaysian law enforcement agencies was found insignificant. Thus, these results indicated that the developed integrated framework provides an effective prediction of the digital forensics adoption by Malaysian law enforcement agencies.Keywords: digital forensics, digital forensics adoption, digital information, law enforcement agency
Procedia PDF Downloads 1511059 Modeling The Deterioration Of Road Bridges At The Provincial Level In Laos
Authors: Hatthaphone Silimanotham, Michael Henry
Abstract:
The effective maintenance of road bridge infrastructure is becoming a widely researched topic in the civil engineering field. Deterioration is one of the main issues in bridge performance, and it is necessary to understand how bridges deteriorate to optimally plan budget allocation for bridge maintenance. In Laos, many bridges are in a deteriorated state, which may affect the performance of the bridge. Due to bridge deterioration, the Ministry of Public Works and Transport is interested in the deterioration model to allocate the budget efficiently and support the bridge maintenance planning. A deterioration model can be used to predict the bridge condition in the future based on the observed behavior in the past. This paper analyzes the available inspection data of road bridges on the road classifications network to build deterioration prediction models for the main bridge type found at the provincial level (concrete slab, concrete girder, and steel truss) using probabilistic deterioration modeling by linear regression method. The analysis targets there has three bridge types in the 18 provinces of Laos and estimates the bridge deterioration rating for evaluating the bridge's remaining life. This research thus considers the relationship between the service period and the bridge condition to represent the probability of bridge condition in the future. The results of the study can be used for a variety of bridge management tasks, including maintenance planning, budgeting, and evaluating bridge assets.Keywords: deterioration model, bridge condition, bridge management, probabilistic modeling
Procedia PDF Downloads 1581058 Effect of Radiation on Magnetohydrodynamic Two Phase Stenosed Arterial Blood Flow with Heat and Mass Transfer
Authors: Bhavya Tripathi, Bhupendra Kumar Sharma
Abstract:
In blood, the concentration of red blood cell varies with the arterial diameter. In the case of narrow arteries, red blood cells concentrate around the center of the artery and there exists a cell-free plasma layer near the arterial wall due to Fahraeus-Lindqvist effect. Due to non- uniformity of the fluid in the narrow arteries, it is preferable to consider the two-phase model of the blood flow. In the present article, coupled nonlinear differential equations have been developed for momentum, energy and concentration of two phase model of the blood flow assuming the Newtonian fluid in both central core and cell free plasma layer and the exact solutions have been found for the problem. For having an adequate insight into the stenosed arterial two-phase blood flow, major components of the flow as flow resistance, total flow rate, and wall shear stress have been estimated for different values of magnetic and radiation parameter. Results show that the increase in the effects of magnetic field decreases the velocity of both cores as well as plasma regions. This result can be helpful to control the blood flow in narrow arteries during surgical process. Temperature of core as well plasma regions decrease as value of radiation parameter increases. The present result is implemented in the form of radiation therapy which is very helpful for cancer patients.Keywords: two phase blood flow, radiation, magnetohydrodynamics (MHD), stenosis
Procedia PDF Downloads 2051057 A Detailed Experimental Study and Evaluation of Springback under Stretch Bending Process
Authors: A. Soualem
Abstract:
The design of multi stage deep drawing processes requires the evaluation of many process parameters such as the intermediate die geometry, the blank shape, the sheet thickness, the blank holder force, friction, lubrication etc..These process parameters have to be determined for the optimum forming conditions before the process design. In general sheet metal forming may involve stretching drawing or various combinations of these basic modes of deformation. It is important to determine the influence of the process variables in the design of sheet metal working process. Especially, the punch and die corner for deep drawing will affect the formability. At the same time the prediction of sheet metals springback after deep drawing is an important issue to solve for the control of manufacturing processes. Nowadays, the importance of this problem increases because of the use of steel sheeting with high stress and also aluminum alloys. The aim of this paper is to give a better understanding of the springback and its effect in various sheet metals forming process such as expansion and restraint deep drawing in the cup drawing process, by varying radius die, lubricant for two commercially available materials e.g. galvanized steel and Aluminum sheet. To achieve these goals experiments were carried out and compared with other results. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback.Keywords: springback, deep drawing, expansion, restricted deep drawing
Procedia PDF Downloads 4541056 Machine Learning for Targeting of Conditional Cash Transfers: Improving the Effectiveness of Proxy Means Tests to Identify Future School Dropouts and the Poor
Authors: Cristian Crespo
Abstract:
Conditional cash transfers (CCTs) have been targeted towards the poor. Thus, their targeting assessments check whether these schemes have been allocated to low-income households or individuals. However, CCTs have more than one goal and target group. An additional goal of CCTs is to increase school enrolment. Hence, students at risk of dropping out of school also are a target group. This paper analyses whether one of the most common targeting mechanisms of CCTs, a proxy means test (PMT), is suitable to identify the poor and future school dropouts. The PMT is compared with alternative approaches that use the outputs of a predictive model of school dropout. This model was built using machine learning algorithms and rich administrative datasets from Chile. The paper shows that using machine learning outputs in conjunction with the PMT increases targeting effectiveness by identifying more students who are either poor or future dropouts. This joint targeting approach increases effectiveness in different scenarios except when the social valuation of the two target groups largely differs. In these cases, the most likely optimal approach is to solely adopt the targeting mechanism designed to find the highly valued group.Keywords: conditional cash transfers, machine learning, poverty, proxy means tests, school dropout prediction, targeting
Procedia PDF Downloads 204