Search results for: inductively coupled mass spectrometry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4932

Search results for: inductively coupled mass spectrometry

2112 On Crack Tip Stress Field in Pseudo-Elastic Shape Memory Alloys

Authors: Gulcan Ozerim, Gunay Anlas

Abstract:

In shape memory alloys, upon loading, stress increases around crack tip and a martensitic phase transformation occurs in early stages. In many studies the stress distribution in the vicinity of the crack tip is represented by using linear elastic fracture mechanics (LEFM) although the pseudo-elastic behavior results in a nonlinear stress-strain relation. In this study, the HRR singularity (Hutchinson, Rice and Rosengren), that uses Rice’s path independent J-integral, is tried to formulate the stress distribution around the crack tip. In HRR approach, the Ramberg-Osgood model for the stress-strain relation of power-law hardening materials is used to represent the elastic-plastic behavior. Although it is recoverable, the inelastic portion of the deformation in martensitic transformation (up to the end of transformation) resembles to that of plastic deformation. To determine the constants of the Ramberg-Osgood equation, the material’s response is simulated in ABAQUS using a UMAT based on ZM (Zaki-Moumni) thermo-mechanically coupled model, and the stress-strain curve of the material is plotted. An edge cracked shape memory alloy (Nitinol) plate is loaded quasi-statically under mode I and modeled using ABAQUS; the opening stress values ahead of the cracked tip are calculated. The stresses are also evaluated using the asymptotic equations of both LEFM and HRR. The results show that in the transformation zone around the crack tip, the stress values are much better represented when the HRR singularity is used although the J-integral does not show path independent behavior. For the nodes very close to the crack tip, the HRR singularity is not valid due to the non-proportional loading effect and high-stress values that go beyond the transformation finish stress.

Keywords: crack, HRR singularity, shape memory alloys, stress distribution

Procedia PDF Downloads 325
2111 Double-Diffusive Natural Convection with Various Partially Heated and Salted Sources Arrangements in an Open Cavity

Authors: Norazam Arbin, Habibis Saleh, Ammar Alsabery, Ishak Hashim

Abstract:

Double-diffusive natural convection in an open top cavity with partial vertical heating and salting sources is investigated numerically. Different temperatures and concentrations are applied at the source location on the right and left walls while the other remains adiabatic except at the open top surface. Various combinations of sources arrangements are imposed at the vertical walls in order to observe the significant impact to the convection. An iterative finite different method is used to solve the dimensionless governing equations. The effects of Marangoni number and sources arrangements on the contours of streamlines, isotherms, and concentrations are visualized as the outcome of the numerical solutions. The average Nusselt and Sherwood number are presented for various sources arrangements. It is clearly observed that the sources arrangements gave major impact on the heat and mass transfer rates. A horizontal-like pattern is found for sources arrangements that near the top-free surface.

Keywords: double-diffusive, Marangoni effect, partial heating, salting

Procedia PDF Downloads 404
2110 Unveiling the Potential of Hydroponics as a Climate-Smart Technology for Small-Scale Farming and Food Security in Africa

Authors: Margaret S. Gumisiriza, Ernest. R. Mbega, Patrick Ndakidemi, Businge K. Edward

Abstract:

The purpose of the paper was to assess existing literature regarding hydroponics in both the developing and developed countries. Furthermore, relate it to the context of African countries, how they can implement it and benefit from it in the face of climate change, high population growth rates, and reduced food production. Agriculture remains the major economic activity for a number of African countries. It is the source of income for most peasants, and still contributes to the Gross Domestic Product in most of these African countries. Unfortunately, climate change coupled with the increasing rates of population growth; rural-urban migration; and urbanization have led to food insecurity due to a reduction of available land for agriculture. This has further intensified the food security dilemma in Africa, especially in urban areas, where land is already limited. Considering the aforementioned state of affairs, there is an increasing demand for interventions that can help farmers in Africa to cope with climate change and increase food production. This review explores hydroponic farming and how it can be used as a climate-smart farming system in Africa’s rural and urban areas. Specifically, the review focuses on hydroponics, requirements for hydroponic farming and the state of hydroponic farming in LDCs and Developed countries (DCs). From the review, it was observed that African countries especially those that receive a lot of sunlight would highly benefit from the solar-powered hydroponic farming systems. Further, still, this farming system will help African countries cope with the challenges of high population pressure in urban areas and climate change as it qualifies to be an urban farming system.

Keywords: Africa, climate-smart agriculture, solar-powered-hydroponics, urban-farming

Procedia PDF Downloads 276
2109 Energy Analysis of an Ejector Based Solar Assisted Trigeneration System for Dairy Application

Authors: V. Ravindra, P. A. Saikiran, M. Ramgopal

Abstract:

This paper presents an energy analysis of a solar assisted trigeneration system using an Ejector for dairy applications. The working fluid in the trigeneration loop is Supercritical CO₂. The trigeneration system is a combination of Brayton cycle and ejector based vapor compression refrigeration cycle. The heating and cooling outputs are used for simultaneous pasteurization and chilling of the milk. The electrical power is used to drive the auxiliary equipment in the dairy plant. A numerical simulation is done with Engineering Equation Solver (EES), and a parametric analysis is performed by varying the operating variables over a meaningful range. The results show that the overall performance index decreases with increase in ambient temperature. For an ejector based system, the compressor work and cooling output are significant output quantities. An increase in total mass flow rate of the refrigerant (primary + secondary) results in an increase in the compressor work and cooling output.

Keywords: trigeneration, solar thermal, supercritical CO₂, ejector

Procedia PDF Downloads 124
2108 Comparative Analysis on the Evolution of Chlorinated Solvents Pollution in Granular Aquifers and Transition Zones to Aquitards

Authors: José M. Carmona, Diana Puigserver, Jofre Herrero

Abstract:

Chlorinated solvents belong to the group of nonaqueous phase liquids (DNAPL) and have been involved in many contamination episodes. They are carcinogenic and recalcitrant pollutants that may be found in granular aquifers as: i) pools accumulated on low hydraulic conductivity layers; ii) immobile residual phase retained at the pore-scale by capillary forces; iii) dissolved phase in groundwater; iv) sorbed by particulate organic matter; and v) stored into the matrix of low hydraulic conductivity layers where they penetrated by molecular diffusion. The transition zone between granular aquifers and basal aquitards constitute the lowermost part of the aquifer and presents numerous fine-grained interbedded layers that give rise to significant textural contrasts. These layers condition the transport and fate of contaminants and lead to differences from the rest of the aquifer, given that: i) hydraulic conductivity of these layers is lower; ii) DNAPL tends to accumulate on them; iii) groundwater flow is slower in the transition zone and consequently pool dissolution is much slower; iv) sorbed concentrations are higher in the fine-grained layers because of their higher content in organic matter; v) a significant mass of pollutant penetrates into the matrix of these layers; and vi) this contaminant mass back-diffuses after remediation and the aquifer becomes contaminated again. Thus, contamination sources of chlorinated solvents are extremely more recalcitrant in transition zones, which has far-reaching implications for the environment. The aim of this study is to analyze the spatial and temporal differences in the evolution of biogeochemical processes in the transition zone and in the rest of the aquifer. For this, an unconfined aquifer with a transition zone in the lower part was selected at Vilafant (NE Spain). This aquifer was contaminated by perchloroethylene (PCE) in the 80’s. Distribution of PCE and other chloroethenes in groundwater and porewater was analyzed in: a) conventional piezometers along the plume and in two multilevel wells at the source of contamination; and b) porewater of fine grained materials from cores recovered when drilled the two multilevel wells. Currently, the highest concentrations continue to be recorded in the source area in the transition zone. By contrast, the lowest concentrations in this area correspond to the central part of the aquifer, where flow velocities are higher and a greater washing of the residual phase initially retained has occurred. The major findings of the study were: i) PCE metabolites were detected in the transition zone, where conditions were more reducing than in the rest of the aquifer; ii) however, reductive dechlorination was partial since only the formation of cis-dicholoroethylene (DCE) was reached; iii) In the central part of the aquifer, where conditions were predominantly oxidizing, the presence of nitrate significantly hindered the reductive declination of PCE. The remediation strategies to be implemented should be directed to enhance dissolution of the source, especially in the transition zone, where it is more recalcitrant. For example, by combining chemical and bioremediation methods, already tested at the laboratory scale with groundwater and sediments of this site.

Keywords: chlorinated solvents, chloroethenes, DNAPL, partial reductive dechlorination, PCE, transition zone to basal aquitard

Procedia PDF Downloads 147
2107 Optimizing PelletPAVE Rubberized Asphalt MIX Design Using Gyratory Compaction and Volumetrics

Authors: Hussain Al-Baghli

Abstract:

In comparison to hot mix asphalt (HMAs) composed of non-modified bitumens, the superior performance of rubberized HMAs is very well documented, and numerous trials in the USA and elsewhere have demonstrated excellent performance in terms of creep, fatigue, and durability. In this investigation, rubberized HMA technology was examined to address the most critical forms of pavement distresses in the State of Kuwait, namely, high-temperature rutting and moisture-induced raveling. Pelletpave additive was selected as the preferred technology since it offered a convenient method of directly modifying the exiting local HMA recipe without having to polymer modify the bitumen. Experimental work using various Pelletpave contents was carried out at Kuwait Institute for Scientific Research (KISR) to design an optimum rubberized HMA formulation prior to conducting a pilot-scale road trial. With the aid of a gyratory compactor, the compaction and volumetric properties of HMAs containing 2.5% and 3.0% Pelletpave additive were investigated at a range of bitumen contents, all by mass of total mix.

Keywords: modified bitumen, rubberized hot mix asphalt, gyratory compaction, volumetric properties

Procedia PDF Downloads 182
2106 Preparation and Properties of PP/EPDM Reinforced with Graphene

Authors: M. Haghnegahdar, G. Naderi, M. H. R. Ghoreishy

Abstract:

Polypropylene(PP)/Ethylene Propylene Diene Monomer (EPDM) samples (80/20) containing 0, 0.5, 1, 1.5, 2, 2.5, and 3 (expressed in mass fraction) graphene were prepared using melt compounding method to investigate microstructure, mechanical properties, and thermal stability as well as electrical resistance of samples. X-Ray diffraction data confirmed that graphene platelets are well dispersed in PP/EPDM. Mechanical properties such as tensile strength, impact strength and hardness demonstrated increasing trend by graphene loading which exemplifies substantial reinforcing nature of this kind of nano filler and it's good interaction with polymer chains. At the same time it is found that thermo-oxidative degradation of PP/EPDM nanocomposites is noticeably retarded with the increasing of graphene content. Electrical surface resistivity of the nanocomposite was dramatically changed by forming electrical percolation threshold and leads to change electrical behavior from insulator to semiconductor. Furthermore, these results were confirmed by scanning electron microscopy(SEM), dynamic mechanical thermal analysis (DMTA), and transmission electron microscopy (TEM).

Keywords: nanocomposite, graphene, microstructure, mechanical properties

Procedia PDF Downloads 330
2105 A Rapid Prototyping Tool for Suspended Biofilm Growth Media

Authors: Erifyli Tsagkari, Stephanie Connelly, Zhaowei Liu, Andrew McBride, William Sloan

Abstract:

Biofilms play an essential role in treating water in biofiltration systems. The biofilm morphology and function are inextricably linked to the hydrodynamics of flow through a filter, and yet engineers rarely explicitly engineer this interaction. We develop a system that links computer simulation and 3-D printing to optimize and rapidly prototype filter media to optimize biofilm function with the hypothesis that biofilm function is intimately linked to the flow passing through the filter. A computational model that numerically solves the incompressible time-dependent Navier Stokes equations coupled to a model for biofilm growth and function is developed. The model is imbedded in an optimization algorithm that allows the model domain to adapt until criteria on biofilm functioning are met. This is applied to optimize the shape of filter media in a simple flow channel to promote biofilm formation. The computer code links directly to a 3-D printer, and this allows us to prototype the design rapidly. Its validity is tested in flow visualization experiments and by microscopy. As proof of concept, the code was constrained to explore a small range of potential filter media, where the medium acts as an obstacle in the flow that sheds a von Karman vortex street that was found to enhance the deposition of bacteria on surfaces downstream. The flow visualization and microscopy in the 3-D printed realization of the flow channel validated the predictions of the model and hence its potential as a design tool. Overall, it is shown that the combination of our computational model and the 3-D printing can be effectively used as a design tool to prototype filter media to optimize biofilm formation.

Keywords: biofilm, biofilter, computational model, von karman vortices, 3-D printing.

Procedia PDF Downloads 142
2104 Establishment of the Regression Uncertainty of the Critical Heat Flux Power Correlation for an Advanced Fuel Bundle

Authors: L. Q. Yuan, J. Yang, A. Siddiqui

Abstract:

A new regression uncertainty analysis methodology was applied to determine the uncertainties of the critical heat flux (CHF) power correlation for an advanced 43-element bundle design, which was developed by Canadian Nuclear Laboratories (CNL) to achieve improved economics, resource utilization and energy sustainability. The new methodology is considered more appropriate than the traditional methodology in the assessment of the experimental uncertainty associated with regressions. The methodology was first assessed using both the Monte Carlo Method (MCM) and the Taylor Series Method (TSM) for a simple linear regression model, and then extended successfully to a non-linear CHF power regression model (CHF power as a function of inlet temperature, outlet pressure and mass flow rate). The regression uncertainty assessed by MCM agrees well with that by TSM. An equation to evaluate the CHF power regression uncertainty was developed and expressed as a function of independent variables that determine the CHF power.

Keywords: CHF experiment, CHF correlation, regression uncertainty, Monte Carlo Method, Taylor Series Method

Procedia PDF Downloads 416
2103 Reaction Rate of Olive Stone during Combustion in a Bubbling Fluidized Bed

Authors: A. Soria-Verdugo, M. Rubio-Rubio, J. Arrieta, N. García-Hernando

Abstract:

Combustion of biomass is a promising alternative to reduce the high pollutant emission levels associated to the combustion of fossil flues due to the net null emission of CO2 attributed to biomass. However, the biomass selected should also have low contents of nitrogen and sulfur to limit the NOx and SOx emissions derived from its combustion. In this sense, olive stone is an excellent fuel to power combustion reactors with reduced levels of pollutant emissions. In this work, the combustion of olive stone particles is analyzed experimentally in a thermogravimetric analyzer (TGA) and in a bubbling fluidized bed reactor (BFB). The bubbling fluidized bed reactor was installed over a scale, conforming a macro-TGA. In both equipment, the evolution of the mass of the samples was registered as the combustion process progressed. The results show a much faster combustion process in the bubbling fluidized bed reactor compared to the thermogravimetric analyzer measurements, due to the higher heat transfer coefficient and the abrasion of the fuel particles by the bed material in the BFB reactor.

Keywords: olive stone, combustion, reaction rate, fluidized bed

Procedia PDF Downloads 201
2102 An Ensemble System of Classifiers for Computer-Aided Volcano Monitoring

Authors: Flavio Cannavo

Abstract:

Continuous evaluation of the status of potentially hazardous volcanos plays a key role for civil protection purposes. The importance of monitoring volcanic activity, especially for energetic paroxysms that usually come with tephra emissions, is crucial not only for exposures to the local population but also for airline traffic. Presently, real-time surveillance of most volcanoes worldwide is essentially delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks. Unfavorably, the high nonlinearity of the complex and coupled volcanic dynamics leads to a large variety of different volcanic behaviors. Moreover, continuously measured parameters (e.g. seismic, deformation, infrasonic and geochemical signals) are often not able to fully explain the ongoing phenomenon, thus making the fast volcano state assessment a very puzzling task for the personnel on duty at the control rooms. With the aim of aiding the personnel on duty in volcano surveillance, here we introduce a system based on an ensemble of data-driven classifiers to infer automatically the ongoing volcano status from all the available different kind of measurements. The system consists of a heterogeneous set of independent classifiers, each one built with its own data and algorithm. Each classifier gives an output about the volcanic status. The ensemble technique allows weighting the single classifier output to combine all the classifications into a single status that maximizes the performance. We tested the model on the Mt. Etna (Italy) case study by considering a long record of multivariate data from 2011 to 2015 and cross-validated it. Results indicate that the proposed model is effective and of great power for decision-making purposes.

Keywords: Bayesian networks, expert system, mount Etna, volcano monitoring

Procedia PDF Downloads 246
2101 Influence of Water Hardness on Column Adsorption of Paracetamol by Biomass of Babassu Coconut Shell

Authors: O. M. Couto Junior, I. Matos, I. M. Fonseca, P. A. Arroyo, E. A. Silva, M. A. S. D. Barros

Abstract:

This study was the adsorption of paracetamol from aqueous solutions on fixed beds of activated carbon from babassy coconut shell. Several operation conditions on the shape of breakthrough curves were investigated and proposed model is successfully validated with the literature data and obtained experimental data. The initial paracetamol concentration increases from 20 to 50 mg.L-1, and the break point time decreases, tb, from 18.00 to 10.50 hours. The fraction of unused bed length, HUNB, at break-through point is obtained in the range of 1.62 to 2.81 for 20 to 50 mg.L-1 of initial paracetamol concentration. The presence of Ca+2 and Mg+2 are responsible for increasing the hardness of the water, affects significantly the adsorption kinetics, and lower removal efficiency by adsorption of paracetamol on activated carbons. The axial dispersion coefficients, DL, was constants for concentrated feed solution, but this parameter has different values for deionized and hardness water. The mass transfer coefficient, Ks, was increasing with concentrated feed solution.

Keywords: paracetamol, adsorption, water hardness, activated carbon.

Procedia PDF Downloads 321
2100 Advertising Campaigns for a Sustainable Future: The Fight against Plastic Pollution in the Ocean

Authors: Mokhlisur Rahman

Abstract:

Ocean inhibits one of the most complex ecosystems on the planet that regulates the earth's climate and weather by providing us with compatible weather to live. Ocean provides food by extending various ways of lifestyles that are dependent on it, transportation by accommodating the world's biggest carriers, recreation by offering its beauty in many moods, and home to countless species. At the essence of receiving various forms of entertainment, consumers choose to be close to the ocean while performing many fun activities. Which, at some point, upsets the stomach of the ocean by threatening marine life and the environment. Consumers throw the waste into the ocean after using it. Most of them are plastics that float over the ocean and turn into thousands of micro pieces that are hard to observe with the naked eye but easily eaten by the sea species. Eventually, that conflicts with the natural consumption process of any living species, making them sick. This information is not known by most consumers who go to the sea or seashores occasionally to spend time, nor is it widely discussed, which creates an information gap among consumers. However, advertising is a powerful tool to educate people about ocean pollution. This abstract analyzes three major ocean-saving advertisement campaigns that use innovative and advanced technology to get maximum exposure. The study collects data from the selected campaigns' websites and retrieves all available content related to messages, videos, and images. First, the SeaLegacy campaign uses stunning images to create awareness among the people; they use social media content, videos, and other educational content. They create content and strategies to build an emotional connection among the consumers that encourage them to move on an action. All the messages in their campaign empower consumers by using powerful words. Second, Ocean Conservancy Campaign uses social media marketing, events, and educational content to protect the ocean from various pollutants, including plastics, climate change, and overfishing. They use powerful images and videos of marine life. Their mission is to create evidence-based solutions toward a healthy ocean. Their message includes the message regarding the local communities along with the sea species. Third, ocean clean-up is a campaign that applies strategies using innovative technologies to remove plastic waste from the ocean. They use social media, digital, and email marketing to reach people and raise awareness. They also use images and videos to evoke an emotional response to take action. These tree advertisements use realistic images, powerful words, and the presence of living species in the imagery presentation, which are eye-catching and can grow emotional connection among the consumers. Identifying the effectiveness of the messages these advertisements carry and their strategies highlights the knowledge gap of mass people between real pollution and its consequences, making the message more accessible to the mass of people. This study aims to provide insights into the effectiveness of ocean-saving advertisement campaigns and their impact on the public's awareness of ocean conservation. The findings from this study help shape future campaigns.

Keywords: advertising-campaign, content-creation, images ocean-saving technology, videos

Procedia PDF Downloads 78
2099 Fully Instrumented Small-Scale Fire Resistance Benches for Aeronautical Composites Assessment

Authors: Fabienne Samyn, Pauline Tranchard, Sophie Duquesne, Emilie Goncalves, Bruno Estebe, Serge Boubigot

Abstract:

Stringent fire safety regulations are enforced in the aeronautical industry due to the consequences that potential fire event on an aircraft might imply. This is so much true that the fire issue is considered right from the design of the aircraft structure. Due to the incorporation of an increasing amount of polymer matrix composites in replacement of more conventional materials like metals, the nature of the fire risks is changing. The choice of materials used is consequently of prime importance as well as the evaluation of its resistance to fire. The fire testing is mostly done using the so-called certification tests according to standards such as the ISO2685:1998(E). The latter describes a protocol to evaluate the fire resistance of structures located in fire zone (ability to withstand fire for 5min). The test consists in exposing an at least 300x300mm² sample to an 1100°C propane flame with a calibrated heat flux of 116kW/m². This type of test is time-consuming, expensive and gives access to limited information in terms of fire behavior of the materials (pass or fail test). Consequently, it can barely be used for material development purposes. In this context, the laboratory UMET in collaboration with industrial partners has developed a horizontal and a vertical small-scale instrumented fire benches for the characterization of the fire behavior of composites. The benches using smaller samples (no more than 150x150mm²) enables to cut downs costs and hence to increase sampling throughput. However, the main added value of our benches is the instrumentation used to collect useful information to understand the behavior of the materials. Indeed, measurements of the sample backside temperature are performed using IR camera in both configurations. In addition, for the vertical set up, a complete characterization of the degradation process, can be achieved via mass loss measurements and quantification of the gasses released during the tests. These benches have been used to characterize and study the fire behavior of aeronautical carbon/epoxy composites. The horizontal set up has been used in particular to study the performances and durability of protective intumescent coating on 2mm thick 2D laminates. The efficiency of this approach has been validated, and the optimized coating thickness has been determined as well as the performances after aging. Reductions of the performances after aging were attributed to the migration of some of the coating additives. The vertical set up has enabled to investigate the degradation process of composites under fire. An isotropic and a unidirectional 4mm thick laminates have been characterized using the bench and post-fire analyses. The mass loss measurements and the gas phase analyses of both composites do not present significant differences unlike the temperature profiles in the thickness of the samples. The differences have been attributed to differences of thermal conductivity as well as delamination that is much more pronounced for the isotropic composite (observed on the IR-images). This has been confirmed by X-ray microtomography. The developed benches have proven to be valuable tools to develop fire safe composites.

Keywords: aeronautical carbon/epoxy composite, durability, intumescent coating, small-scale ‘ISO 2685 like’ fire resistance test, X-ray microtomography

Procedia PDF Downloads 271
2098 Full-Scale 3D Simulation of the Electroslag Rapid Remelting Process

Authors: E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig

Abstract:

The standard electroslag remelting (ESR) process can ideally control the solidification of an ingot and produce homogeneous structure with minimum defects. However, the melt rate of electrode is rather low that makes the whole process uneconomical especially to produce small ingot sizes. In contrast, continuous casting is an economical process to produce small ingots such as billets at high casting speed. Unfortunately, deep liquid melt pool forms in the billet ingot of continuous casting that leads to center porosity and segregation. As such, continuous casting is not suitable to produce segregation prone alloys like tool steel or several super alloys. On the other hand, the electro slag rapid remelting (ESRR) process has advantages of both traditional ESR and continuous casting processes to produce billets. In the ESRR process, a T-shaped mold is used including a graphite ring that takes major amount of current through the mold. There are only a few reports available in the literature discussing about this topic. The research on the ESRR process is currently ongoing aiming to improve the design of the T-shaped mold, to decrease overall heat loss in the process, and to obtain a higher temperature at metal meniscus. In the present study, a 3D model is proposed to investigate the electromagnetic, thermal, and flow fields in the whole process as well as solidification of the billet ingot. We performed a fully coupled numerical simulation to explore the influence of the electromagnetically driven flow (MHD) on the thermal field in the slag and ingot. The main goal is to obtain some fundamental understanding of the formation of melt pool of the solidifying billet ingot in the ESRR process.

Keywords: billet ingot, magnetohydrodynamics (mhd), numerical simulation, remelting, solidification, t-shaped mold.

Procedia PDF Downloads 295
2097 Evaluation of Arsenic Removal in Synthetic Solutions and Natural Waters by Rhizofiltration

Authors: P. Barreto, A. Guevara, V. Ibujes

Abstract:

In this study, the removal of arsenic from synthetic solutions and natural water from Papallacta Lagoon was evaluated, by using the rhizofiltration method with terrestrial and aquatic plant species. Ecuador is a country of high volcanic activity, that is why most of water sources come from volcanic glaciers. Therefore, it is necessary to find new, affordable and effective methods for treating water. The water from Papallacta Lagoon shows levels from 327 µg/L to 803 µg/L of arsenic. The evaluation for the removal of arsenic began with the selection of 16 different species of terrestrial and aquatic plants. These plants were immersed to solutions of 4500 µg/L arsenic concentration, for 48 hours. Subsequently, 3 terrestrial species and 2 aquatic species were selected based on the highest amount of absorbed arsenic they showed, analyzed by plasma optical emission spectrometry (ICP-OES), and their best capacity for adaptation into the arsenic solution. The chosen terrestrial species were cultivated from their seed with hydroponics methods, using coconut fiber and polyurethane foam as substrates. Afterwards, the species that best adapted to hydroponic environment were selected. Additionally, a control of the development for the selected aquatic species was carried out using a basic nutrient solution to provide the nutrients that the plants required. Following this procedure, 30 plants from the 3 types of species selected were exposed to a synthetic solution with levels of arsenic concentration of 154, 375 and 874 µg/L, for 15 days. Finally, the plant that showed the highest level of arsenic absorption was placed in 3 L of natural water, with arsenic levels of 803 µg/L. The plant laid in the water until it reached the desired level of arsenic of 10 µg/L. This experiment was carried out in a total of 30 days, in which the capacity of arsenic absorption of the plant was measured. As a result, the five species initially selected to be used in the last part of the evaluation were: sunflower (Helianthus annuus), clover (Trifolium), blue grass (Poa pratensis), water hyacinth (Eichhornia crassipes) and miniature aquatic fern (Azolla). The best result of arsenic removal was showed by the water hyacinth with a 53,7% of absorption, followed by the blue grass with 31,3% of absorption. On the other hand, the blue grass was the plant that best responded to the hydroponic cultivation, by obtaining a germination percentage of 97% and achieving its full growth in two months. Thus, it was the only terrestrial species selected. In summary, the final selected species were blue grass, water hyacinth and miniature aquatic fern. These three species were evaluated by immersing them in synthetic solutions with three different arsenic concentrations (154, 375 and 874 µg/L). Out of the three plants, the water hyacinth was the one that showed the highest percentages of arsenic removal with 98, 58 and 64%, for each one of the arsenic solutions. Finally, 12 plants of water hyacinth were chosen to reach an arsenic level up to 10 µg/L in natural water. This significant arsenic concentration reduction was obtained in 5 days. In conclusion, it was found that water hyacinth is the best plant to reduce arsenic levels in natural water.

Keywords: arsenic, natural water, plant species, rhizofiltration, synthetic solutions

Procedia PDF Downloads 123
2096 Board Gender Diversity and Firm Sustainable Investment: An Empirical Evidence

Authors: Muhammad Atif, M. Samsul Alam

Abstract:

The purpose of this study is to investigate the effects of board room gender diversity on firm sustainable investment. We test the extent to which sustainable investment is affected by the presence of female directors on U.S. corporate boards. Using data of S&P 1500 indexed firms collected from Bloomberg covering the period 2004-2016, we estimate the baseline model to investigate the effects of board room gender diversity on firm sustainable investment. We find a positive relationship between board gender diversity and sustainable investment. We also find that boards with two or more women have a pronounced impact on sustainable investment, consistent with the critical mass theory. Female independent directors have a stronger impact on sustainable investment than female executive directors. Our findings are robust to different identification and estimation techniques. The study offers another perspective of the ongoing debate in the social responsibility literature about the accountability relationships between business and society.

Keywords: sustainable investment, gender diversity, environmental proctection, social responsibility

Procedia PDF Downloads 162
2095 Modeling of Drug Distribution in the Human Vitreous

Authors: Judith Stein, Elfriede Friedmann

Abstract:

The injection of a drug into the vitreous body for the treatment of retinal diseases like wet aged-related macular degeneration (AMD) is the most common medical intervention worldwide. We develop mathematical models for drug transport in the vitreous body of a human eye to analyse the impact of different rheological models of the vitreous on drug distribution. In addition to the convection diffusion equation characterizing the drug spreading, we use porous media modeling for the healthy vitreous with a dense collagen network and include the steady permeating flow of the aqueous humor described by Darcy's law driven by a pressure drop. Additionally, the vitreous body in a healthy human eye behaves like a viscoelastic gel through the collagen fibers suspended in the network of hyaluronic acid and acts as a drug depot for the treatment of retinal diseases. In a completely liquefied vitreous, we couple the drug diffusion with the classical Navier-Stokes flow equations. We prove the global existence and uniqueness of the weak solution of the developed initial-boundary value problem describing the drug distribution in the healthy vitreous considering the permeating aqueous humor flow in the realistic three-dimensional setting. In particular, for the drug diffusion equation, results from the literature are extended from homogeneous Dirichlet boundary conditions to our mixed boundary conditions that describe the eye with the Galerkin's method using Cauchy-Schwarz inequality and trace theorem. Because there is only a small effective drug concentration range and higher concentrations may be toxic, the ability to model the drug transport could improve the therapy by considering patient individual differences and give a better understanding of the physiological and pathological processes in the vitreous.

Keywords: coupled PDE systems, drug diffusion, mixed boundary conditions, vitreous body

Procedia PDF Downloads 137
2094 Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor

Authors: Shima Soleimani, Steven Eckels

Abstract:

One area of special importance for surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fin height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fin height has greater impact on performance factor than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer and pressure drop up to 21% and 56% compared to a 2D one, respectfully.

Keywords: three-dimensional micro-finned tube, heat transfer, friction factor, heat exchanger

Procedia PDF Downloads 115
2093 Wearable Monitoring and Treatment System for Parkinson’s Disease

Authors: Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy, Timothy Kwa, Lieva Vanlangenhove

Abstract:

Electromyography measures the electrical activity of muscles using surface electrodes or needle electrodes to monitor various disease conditions. Recent developments in the signal acquisition of electromyograms using textile electrodes facilitate wearable devices, enabling patients to monitor and control their health status outside of healthcare facilities. Here, we have developed and tested wearable textile electrodes to acquire electromyography signals from patients suffering from Parkinson’s disease and incorporated a feedback-control system to relieve muscle cramping through thermal stimulus. In brief, the textile electrodes made of stainless steel was knitted into a textile fabric as a sleeve, and their electrical characteristic, such as signal-to-noise ratio, was compared with traditional electrodes. To relieve muscle cramping, a heating element made of stainless-steel conductive yarn sewn onto a cotton fabric, coupled with a vibration system, was developed. The system integrated a microcontroller and a Myoware muscle sensor to activate the heating element as well as the vibration motor when cramping occurred. At the same time, the element gets deactivated when the muscle cramping subsides. An optimum therapeutic temperature of 35.5°C is regulated and maintained continuously by a heating device. The textile electrode exhibited a signal-to-noise ratio of 6.38dB, comparable to that of the traditional electrode’s value of 7.05 dB. For a given 9 V power supply, the rise time for the developed heating element was about 6 minutes to reach an optimum temperature.

Keywords: smart textile system, wearable electronic textile, electromyography, heating textile, vibration therapy, Parkinson’s disease

Procedia PDF Downloads 77
2092 Post-Earthquake Damage Detection Using System Identification with a Pair of Seismic Recordings

Authors: Lotfi O. Gargab, Ruichong R. Zhang

Abstract:

A wave-based framework is presented for modeling seismic motion in multistory buildings and using measured response for system identification which can be utilized to extract important information regarding structure integrity. With one pair of building response at two locations, a generalized model response is formulated based on wave propagation features and expressed as frequency and time response functions denoted, respectively, as GFRF and GIRF. In particular, GIRF is fundamental in tracking arrival times of impulsive wave motion initiated at response level which is dependent on local model properties. Matching model and measured-structure responses can help in identifying model parameters and infer building properties. To show the effectiveness of this approach, the Millikan Library in Pasadena, California is identified with recordings of the Yorba Linda earthquake of September 3, 2002.

Keywords: system identification, continuous-discrete mass modeling, damage detection, post-earthquake

Procedia PDF Downloads 369
2091 Residual Modulus of Elasticity of Self-Compacting Concrete Incorporated Unprocessed Waste Fly Ash after Expose to the Elevated Temperature

Authors: Mohammed Abed, Rita Nemes, Salem Nehme

Abstract:

The present study experimentally investigated the impact of incorporating unprocessed waste fly ash (UWFA) on the residual mechanical properties of self-compacting concrete (SCC) after exposure to elevated temperature. Three mixtures of SCC have been produced by replacing the cement mass by 0%, 15% and 30% of UWFA. Generally, the fire resistance of SCC has been enhanced by replacing the cement up to 15% of UWFA, especially in case of residual modulus of elasticity which considers more sensitive than other mechanical properties at elevated temperature. However, a strong linear relationship has been observed between the residual flexural strength and modulus of elasticity, where both of them affected significantly by the cracks appearance and propagation as a result of elevated temperature. Sustainable products could be produced by incorporating unprocessed waste powder materials in the production of concrete, where the waste materials, CO2 emissions, and the energy needed for processing are reduced.

Keywords: self-compacting high-performance concrete, unprocessed waste fly ash, fire resistance, residual modulus of elasticity

Procedia PDF Downloads 135
2090 Sustainable Strategies for Managing Rural Tourism in Abyaneh Village, Isfahan

Authors: Hoda Manafian, Stephen Holland

Abstract:

Problem statement: Rural areas in Iran are one of the most popular tourism destinations. Abyaneh Village is one of them with a long history behind it (more than 1500 years) which is a national heritage site and also is nominated as a world heritage site in UNESCO tentative list from 2007. There is a considerable foundation of religious-cultural heritage and also agricultural history and activities. However, this heritage site suffers from mass tourism which is beyond its social and physical carrying capacity, since the annual number of tourists exceed 500,000. While there are four adjacent villages around Abyaneh which can benefit from advantages of tourism. Local managers also can at the same time prorate the tourists’ flux of Abyaneh on those other villages especially in high-season. The other villages have some cultural and natural tourism attractions as well. Goal: The main goal of this study is to identify a feasible development strategy according to the current strengths, weaknesses, opportunities and threats of rural tourism in this area (Abyaneh Village and four adjacent villages). This development strategy can lead to sustainable management of these destinations. Method: To this end, we used SWOT analysis as a well-established tool for conducting a situational analysis to define a sustainable development strategy. The procedures included following steps: 1) Extracting variables of SWOT chart based on interviewing tourism experts (n=13), local elites (n=17) and personal observations of researcher. 2) Ranking the extracted variables from 1-5 by 13 tourism experts in Isfahan Cultural Heritage, Handcrafts and Tourism Organization (ICHTO). 3) Assigning weights to the ranked variables using Expert Choice Software and the method of Analytical Hierarchical Process (AHP). 4) Defining the Total Weighted Score (TWS) for each part of SWOT chart. 5) Identifying the strategic position according to the TWS 6) Selecting the best development strategy based on the defined position using the Strategic Position and Action Evaluation (SPACE) matrix. 7) Assessing the Probability of Strategic Success (PSS) for the preferred strategy using relevant formulas. 8) Defining two feasible alternatives for sustainable development. Results and recommendations: Cultural heritage attractions were first-ranked variable in strength chart and also lack of sufficient amenities for one-day tourists (catering, restrooms, parking, and accommodation) was firs-ranked weakness. The strategic position was in ST (Strength-Threat) quadrant which is a maxi-mini position. According this position we would suggest ‘Competitive Strategy’ as a development strategy which means relying on strengths in order to neutralization threats. The result of Probability of Strategic Success assessment which was 0.6 shows that this strategy could be successful. The preferred approach for competitive strategy could be rebranding the market of tourism in this area. Rebranding the market can be achieved by two main alternatives which are based on the current strengths and threats: 1) Defining a ‘Heritage Corridor’ from first adjacent village to Abyaneh as a final destination. 2) Focus on ‘educational tourism’ versus mass tourism and also green tourism by developing agritourism in that corridor.

Keywords: Abyaneh village, rural tourism, SWOT analysis, sustainable strategies

Procedia PDF Downloads 384
2089 A Correlative Study of Heating Values of Saw Dust and Rice Husks in the Thermal Generation of Electricity

Authors: Muhammad Danladi, Muhammad Bura Garba, Muhammad Yahaya, Dahiru Muhammad

Abstract:

Biomass is one of the primary sources of energy supply, which contributes to about 78% of Nigeria. In this work, a comparative analysis of the heating values of sawdust and rice husks in the thermal generation of electricity was carried out. In the study, different masses of biomass were used and the corresponding electromotive force in millivolts was obtained. A graph of e.m.f was plotted against the mass of each biomass and a gradient was obtained. Bar graphs were plotted to represent the values of e.m.f and masses of the biomass. Also, a graph of e.m.f against eating values of sawdust and rice husks was plotted, and in each case, as the e.m.f increases also, the heating values increases. The result shows that saw dust with 0.033Mv/g gradient and 3.5 points of intercept had the highest gradient, followed by rice husks with 0.026Mv/g gradient and 2.6 points of intercept. It is, therefore, concluded that sawdust is the most efficient of the two types of biomass in the thermal generation of electricity.

Keywords: biomass, electricity, thermal, generation

Procedia PDF Downloads 98
2088 Inverse Prediction of Thermal Parameters of an Annular Hyperbolic Fin Subjected to Thermal Stresses

Authors: Ashis Mallick, Rajeev Ranjan

Abstract:

The closed form solution for thermal stresses in an annular fin with hyperbolic profile is derived using Adomian decomposition method (ADM). The conductive-convective fin with variable thermal conductivity is considered in the analysis. The nonlinear heat transfer equation is efficiently solved by ADM considering insulated convective boundary conditions at the tip of fin. The constant of integration in the solution is to be estimated using minimum decomposition error method. The solution of temperature field is represented in a polynomial form for convenience to use in thermo-elasticity equation. The non-dimensional thermal stress fields are obtained using the ADM solution of temperature field coupled with the thermo-elasticity solution. The influence of the various thermal parameters in temperature field and stress fields are presented. In order to show the accuracy of the ADM solution, the present results are compared with the results available in literature. The stress fields in fin with hyperbolic profile are compared with those of uniform thickness profile. Result shows that hyperbolic fin profile is better choice for enhancing heat transfer. Moreover, less thermal stresses are developed in hyperbolic profile as compared to rectangular profile. Next, Nelder-Mead based simplex search method is employed for the inverse estimation of unknown non-dimensional thermal parameters in a given stress fields. Owing to the correlated nature of the unknowns, the best combinations of the model parameters which are satisfying the predefined stress field are to be estimated. The stress fields calculated using the inverse parameters give a very good agreement with the stress fields obtained from the forward solution. The estimated parameters are suitable to use for efficient and cost effective fin designing.

Keywords: Adomian decomposition, inverse analysis, hyperbolic fin, variable thermal conductivity

Procedia PDF Downloads 327
2087 Biomolecular Interaction of Ruthenium(II) Polypyridyl Complexes

Authors: S. N. Harun, H. Ahmad

Abstract:

A series of ruthenium(II) complexes, including two novel compounds [Ru(dppz)2(L)]2+ where dppz = dipyrido-[3,2-a:2’,3’-c]phenazine, and L = 2-phenylimidazo[4,5-f][1,10]phenanthroline (PIP) or 2-(4-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline (p-HPIP) have been synthesized and characterized. The previously reported complexes [Ru(bpy)2L]2+ and [Ru(phen)2L]2+ were also prepared. All complexes were characterized by elemental analysis, 1H-NMR spectroscopy, ESI-Mass spectroscopy and FT-IR spectroscopy. The photophysical properties were analyzed by UV-Visible spectroscopy and fluorescence spectroscopy. [Ru(dppz)2(PIP)]2+ and [Ru(dppz)2(p-HPIP)]2+ displayed ‘molecular light-switch’ effect as they have high emission in acetonitrile but no emission in water. The cytotoxicity of all complexes against cancer cell lines Hela and MCF-7 were investigated through standard MTT assay. [Ru(dppz)2(PIP)]2+ showed moderate toxicity on both MCF-7 and Hela with IC50 of 37.64 µM and 28.02 µM, respectively. Interestingly, [Ru(dppz)2(p-HPIP)]2+ exhibited remarkable cytotoxicity results with IC50 of 13.52 µM on Hela and 11.63 µM on MCF-7 cell lines which are comparable to the infamous anti-cancer drug, cisplatin. The cytotoxicity of this complex series increased as the ligands size extended in order of [Ru(bpy)2(L)]2+ < [Ru(phen)2(L)]2+ < [Ru(dppz)2(L)]2+.

Keywords: ruthenium, cytotoxicity, molecular light-switch, anticancer

Procedia PDF Downloads 307
2086 Effects of Thermal Radiation on Mixed Convection in a MHD Nanofluid Flow over a Stretching Sheet Using a Spectral Relaxation Method

Authors: Nageeb A. H. Haroun, Sabyasachi Mondal, Precious Sibanda

Abstract:

The effects of thermal radiation, Soret and Dufour parameters on mixed convection and nanofluid flow over a stretching sheet in the presence of a magnetic field are investigated. The flow is subject to temperature dependent viscosity and a chemical reaction parameter. It is assumed that the nanoparticle volume fraction at the wall may be actively controlled. The physical problem is modelled using systems of nonlinear differential equations which have been solved numerically using a spectral relaxation method. In addition to the discussion on heat and mass transfer processes, the velocity, nanoparticles volume fraction profiles as well as the skin friction coefficient are determined for different important physical parameters. A comparison of current findings with previously published results for some special cases of the problem shows an excellent agreement.

Keywords: non-isothermal wedge, thermal radiation, nanofluid, magnetic field, soret and dufour effects

Procedia PDF Downloads 235
2085 Speciation Analysis by Solid-Phase Microextraction and Application to Atrazine

Authors: K. Benhabib, X. Pierens, V-D Nguyen, G. Mimanne

Abstract:

The main hypothesis of the dynamics of solid phase microextraction (SPME) is that steady-state mass transfer is respected throughout the SPME extraction process. It considers steady-state diffusion is established in the two phases and fast exchange of the analyte at the solid phase film/water interface. An improved model is proposed in this paper to handle with the situation when the analyte (atrazine) is in contact with colloid suspensions (carboxylate latex in aqueous solution). A mathematical solution is obtained by substituting the diffusion coefficient by the mean of diffusion coefficient between analyte and carboxylate latex, and also thickness layer by the mean thickness in aqueous solution. This solution provides an equation relating the extracted amount of the analyte to the extraction a little more complicated than previous models. It also gives a better description of experimental observations. Moreover, the rate constant of analyte obtained is in satisfactory agreement with that obtained from the initial curve fitting.

Keywords: pesticide, solid-phase microextraction (SPME) methods, steady state, analytical model

Procedia PDF Downloads 489
2084 Optimal Design of Concrete Shells by Modified Particle Community Algorithm Using Spinless Curves

Authors: Reza Abbasi, Ahmad Hamidi Benam

Abstract:

Shell structures have many geometrical variables that modify some of these parameters to improve the mechanical behavior of the shell. On the other hand, the behavior of such structures depends on their geometry rather than on mass. Optimization techniques are useful in finding the geometrical shape of shell structures to improve mechanical behavior, especially to prevent or reduce bending anchors. The overall objective of this research is to optimize the shape of concrete shells using the thickness and height parameters along the reference curve and the overall shape of this curve. To implement the proposed scheme, the geometry of the structure was formulated using nonlinear curves. Shell optimization was performed under equivalent static loading conditions using the modified bird community algorithm. The results of this optimization show that without disrupting the initial design and with slight changes in the shell geometry, the structural behavior is significantly improved.

Keywords: concrete shells, shape optimization, spinless curves, modified particle community algorithm

Procedia PDF Downloads 231
2083 A Framework for Auditing Multilevel Models Using Explainability Methods

Authors: Debarati Bhaumik, Diptish Dey

Abstract:

Multilevel models, increasingly deployed in industries such as insurance, food production, and entertainment within functions such as marketing and supply chain management, need to be transparent and ethical. Applications usually result in binary classification within groups or hierarchies based on a set of input features. Using open-source datasets, we demonstrate that popular explainability methods, such as SHAP and LIME, consistently underperform inaccuracy when interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the nature of the feature contribution (negative versus positive contribution to the outcome). Besides accuracy, the computational intractability of SHAP for binomial classification is a cause of concern. For transparent and ethical applications of these hierarchical statistical models, sound audit frameworks need to be developed. In this paper, we propose an audit framework for technical assessment of multilevel regression models focusing on three aspects: (i) model assumptions & statistical properties, (ii) model transparency using different explainability methods, and (iii) discrimination assessment. To this end, we undertake a quantitative approach and compare intrinsic model methods with SHAP and LIME. The framework comprises a shortlist of KPIs, such as PoCE (Percentage of Correct Explanations) and MDG (Mean Discriminatory Gap) per feature, for each of these three aspects. A traffic light risk assessment method is furthermore coupled to these KPIs. The audit framework will assist regulatory bodies in performing conformity assessments of AI systems using multilevel binomial classification models at businesses. It will also benefit businesses deploying multilevel models to be future-proof and aligned with the European Commission’s proposed Regulation on Artificial Intelligence.

Keywords: audit, multilevel model, model transparency, model explainability, discrimination, ethics

Procedia PDF Downloads 95