Search results for: stress reduction
5692 Study the Multifaceted Therapeutic Properties of the IQGAP1shRNA Plasmid on Rat Liver Cancer Model
Authors: Khairy M. A. Zoheir, Nehma A. Ali, Ahmed M. Darwish, Mohamed S. Kishta, Ahmed A. Abd-Rabou, Mohamed A. Abdelhafez, Karima F. Mahrous
Abstract:
The study comprehensively investigated the multifaceted therapeutic properties of the IQGAP1shRNA plasmid, encompassing its hepatoprotective, immunomodulatory, and anticancer activities. The study employed a Prednisolone-induced immunosuppressed rat model to assess the hepatoprotective and immunomodulatory effects of IQGAP1shRNA plasmid. Using this model, IQGAP1shRNA plasmid was found to modulate haematopoiesis, improving RBC, platelet, and WBC counts, underscoring its potential in hematopoietic homeostasis. Organ atrophy, a hallmark of immunosuppression in spleen, heart, liver, ovaries, and kidneys, was reversed with IQGAP1shRNA plasmid treatment, reinforcing its hepatotrophic and organotropic capabilities. Elevated hepatic biomarkers (ALT, AST, ALP, LPO) indicative of hepatocellular injury and oxidative stress were reduced with GST, highlighting its hepatoprotective and antioxidative effects. IQGAP1shRNA plasmid also restored depleted antioxidants (GSH and SOD), emphasizing its potent antioxidative and free radical scavenging capabilities. Molecular insights into immune dysregulation revealed downregulation of IQGAP1, IQGAP3 interleukin-2 (IL-2), and interleukin-4 (IL-4) mRNA expression in the liver of immunosuppressed rats. IL-2 and IL-4 play pivotal roles in immune regulation, T-cell activation, and B-cell differentiation. Notably, treatment with IQGAP1shRNA plasmid exhibited a significant upregulation of IL-2 and IL-4 mRNA expression, thereby accentuating its immunomodulatory potential in orchestrating immune homeostasis. Additionally, immune dysregulation was associated with increased levels of TNF-α. However, treatment with IQGAP1shRNA plasmid effectively decreased the levels of TNF-α, further underscoring its role in modulating inflammatory responses and restoring immune balance in immunosuppressed rats. Additionally, pharmacokinetics, bioavailability, drug-likeness, and toxicity risk assessment prediction suggest its potential as a pharmacologically favourable agent with no serious adverse effects. In conclusion, this study confirms the therapeutic potential of the IQGAP1shRNA plasmid, showcasing its effectiveness against hepatotoxicity, oxidative stress, immunosuppression, and its notable anticancer activity.Keywords: IQGAP1, shRNA, cancer, liver, rat
Procedia PDF Downloads 155691 Design Transformation to Reduce Cost in Irrigation Using Value Engineering
Authors: F. S. Al-Anzi, M. Sarfraz, A. Elmi, A. R. Khan
Abstract:
Researchers are responding to the environmental challenges of Kuwait in localized, innovative, effective and economic ways. One of the vital and significant examples of the natural challenges is lack or water and desertification. In this research, the project team focuses on redesigning a prototype, using Value Engineering Methodology, which would provide similar functionalities to the well-known technology of Waterboxx kits while reducing the capital and operational costs and simplifying the process of manufacturing and usability by regular farmers. The design employs used tires and recycled plastic sheets as raw materials. Hence, this approach is going to help not just fighting desertification but also helping in getting rid of ever growing huge tire dumpsters in Kuwait, as well as helping in avoiding hazards of tire fires yielding in a safer and friendlier environment. Several alternatives for implementing the prototype have been considered. The best alternative in terms of value has been selected after thorough Function Analysis System Technique (FAST) exercise has been developed. A prototype has been fabricated and tested in a controlled simulated lab environment that is being followed by real environment field testing. Water and soil analysis conducted on the site of the experiment to cross compare between the composition of the soil before and after the experiment to insure that the prototype being tested is actually going to be environment safe. Experimentation shows that the design was equally as effective as, and may exceed, the original design with significant savings in cost. An estimated total cost reduction using the VE approach of 43.84% over the original design. This cost reduction does not consider the intangible costs of environmental issue of waste recycling which many further intensify the total savings of using the alternative VE design. This case study shows that Value Engineering Methodology can be an important tool in innovating new designs for reducing costs.Keywords: desertification, functional analysis, scrap tires, value engineering, waste recycling, water irrigation rationing
Procedia PDF Downloads 2025690 Dorsal Root Ganglion Neuromodulation as an Alternative to Opioids in the Evolving Healthcare Crisis
Authors: Adam J. Carinci
Abstract:
Background: The opioid epidemic is the most pressing healthcare crisis of our time. There is increasing recognition that opioids have limited long-term efficacy and are associated with hyperalgesia, addiction, and increased morbidity and mortality. Therefore, alternative strategies to combat chronic pain are paramount. We initiated a multicenter retrospective case series to review the efficacy of DRG stimulation in facilitating opioid tapering, opioid discontinuation and as a viable alternative to chronic opioid therapy. Purpose: The dorsal root ganglion (DRG) plays a key role in the development and maintenance of pain. Recent innovations in neuromodulation, specifically, dorsal root ganglion stimulation, offers an effective alternative to opioids in the treatment of chronic pain. This retrospective case series demonstrates preliminary evidence that DRG stimulation facilitates opioid tapering, opioid discontinuation and presents a viable alternative to chronic opioid therapy. Procedure: This small multicenter retrospective case series provides preliminary evidence that DRG stimulation facilitates opioid weaning, opioid tapering and is a viable option to opioid therapy in the treatment of chronic pain. A retrospective analysis was completed. Visual analog scale pain scores and pain medication usage were collected at the baseline visit and after four weeks, 3 months and 6 months of treatment. Ten consecutive patients across two study centers were included. The pain was rated 7.38 at baseline and decreased to 1.50 at the 4-week follow-up, a reduction of 79.5%. All patients significantly decreased their opioid pain medication use with an average > 30% reduction in morphine equivalents and four were able to discontinue their medications entirely. Conclusion: This Retrospective case series demonstrates preliminary evidence that DRG stimulation facilitates opioid tapering, opioid discontinuation and presents a viable alternative to chronic opioid therapy.Keywords: dorsal root ganglion, neuromodulation, opioid sparing, stimulation
Procedia PDF Downloads 1165689 Neo-liberalism and Theoretical Explanation of Poverty in Africa: The Nigerian Perspective
Authors: Omotoyosi Bilikies Ilori, Adekunle Saheed Ajisebiyawo
Abstract:
After the Second World War, there was an emergence of a new stage of capitalist globalization with its Neo-liberal ideology. There were global economic and political restructurings that affected third-world countries like Nigeria. Neo-liberalism is the driving force of globalization, which is the latest manifestation of imperialism that engenders endemic poverty in Nigeria. Poverty is severe and widespread in Nigeria. Poverty entails a situation where a person lives on less than one dollar per day and has no access to basic necessities of life. Poverty is inhuman and a breach of human rights. The Nigerian government initiated some strategies in the past to help in poverty reduction. Neo-liberalism manifested in the Third World, such as Nigeria, through the privatization of public enterprises, trade liberalization, and the rollback of the state investments in providing important social services. These main ideas of Neo-liberalism produced poverty in Nigeria and also encouraged the abandonment of the social contract between the government and the people. There is thus a gap in the provision of social services and subsidies for the masses, all of which Neo-liberal ideological positions contradict. This paper is a qualitative study which draws data from secondary sources. The theoretical framework is anchored on the market theory of capitalist globalization and public choice theory. The objectives of this study are to (i) examine the impacts of Neo-liberalism on poverty in Nigeria as a typical example of a Third World country and (ii) find out the effects of Neo-liberalism on the provision of social services and subsidies and employment. The findings from this study revealed that (i) the adoption of the Neo-liberal ideology by the Nigerian government has led to increased poverty and poor provision of social services and employment in Nigeria; and (ii) there is an increase in foreign debts which compounds poverty situation in Nigeria. This study makes the following recommendations: (i) Government should adopt strategies that are pro-poor to eradicate poverty; (ii) The Trade Unions and the masses should develop strategies to challenge Neo-liberalism and reject Neo-liberal ideology.Keywords: neo-liberalism, poverty, employment, poverty reduction, structural adjustment programme
Procedia PDF Downloads 875688 Reduction Behavior of Medium Grade Manganese Ore from Karangnunggal during a Sintering Process in Methane Gas
Authors: H. Aripin, I. Made Joni, Edvin Priatna, Nundang Busaeri, Svilen Sabchevski
Abstract:
In this investigation, manganese has been produced from medium grade manganese ore from Karangnunggal mine (West Java, Indonesia). The ores were grinded using a jar mill to pass through a 150 mesh sieve. The effects of keeping it at a temperature of 1200 °C in methane gas on the structural properties have been studied. The material’s properties have been characterized on the basis of the experimental data obtained using X-ray fluorescence (XRF), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. It has been found that the ore contains MnO₂ as the main constituents at about 46.80 wt.%. It can be also observed that the ore particles are agglomerated forming dense grains with different texture and morphology. The irregular-shaped grains with dark contrast, the large brighter grains, and smaller grains with bright texture and smooth surfaces are associated with the presence of manganese, calcium, and quartz, respectively. From XRD patterns, MnO₂ is reduced to hausmannite (Mn₃O₄), manganosite (MnO) and manganese carbide (Mn₇C₃). At a temperature of 1200°C the keeping time does not have any effect on the formation of crystals and the crystalline phases remain almost unchanged in the time range from 15 to 90 minutes. An increase of the keeping time up to 45 minutes during the sintering process leads to an increase of the MnO concentration, while at 90 minutes, the concentration decreases. At longer keeping times the excess reaction of the methane gas and manganese oxide in the ore causes an increase of carbon deposition. As a result, it blocks the particle surface and then hinders the reduction process of manganese oxide. From FTIR spectrum allows one to explain that the appearance of C=O stretching mode arises from absorption of atmospheric methane and manganese oxide of the ore. The intensity of this band increases with increasing the keeping time, indicating an increase of carbon deposition on the surface of manganese oxide.Keywords: manganese, medium grade manganese ore, structural properties, keeping the temperature, carbon deposition
Procedia PDF Downloads 1575687 Reliability-Simulation of Composite Tubular Structure under Pressure by Finite Elements Methods
Authors: Abdelkader Hocine, Abdelhakim Maizia
Abstract:
The exponential growth of reinforced fibers composite materials use has prompted researchers to step up their work on the prediction of their reliability. Owing to differences between the properties of the materials used for the composite, the manufacturing processes, the load combinations and types of environment, the prediction of the reliability of composite materials has become a primary task. Through failure criteria, TSAI-WU and the maximum stress, the reliability of multilayer tubular structures under pressure is the subject of this paper, where the failure probability of is estimated by the method of Monte Carlo.Keywords: composite, design, monte carlo, tubular structure, reliability
Procedia PDF Downloads 4655686 Experimental Pain Study Investigating the Distinction between Pain and Relief Reports
Authors: Abeer F. Almarzouki, Christopher A. Brown, Richard J. Brown, Anthony K. P. Jones
Abstract:
Although relief is commonly assumed to be a direct reflection of pain reduction, it seems to be driven by complex emotional interactions in which pain reduction is only one component. For example, termination of a painful/aversive event may be relieving and rewarding. Accordingly, in this study, whether terminating an aversive negative prediction of pain would be reflected in a greater relief experience was investigated, with a view to separating apart the effects of the manipulation on pain and relief. We use aversive conditioning paradigm to investigate the perception of relief in an aversive (threat) vs. positive context. Participants received positive predictors of a non-painful outcome which were presented within either a congruent positive (non-painful) context or an incongruent threat (painful) context that had been previously conditioned; trials followed by identical laser stimuli on both conditions. Participants were asked to rate the perceived intensity of pain as well as their perception of relief in response to the cue predicting the outcome. Results demonstrated that participants reported more pain in the aversive context compared to the positive context. Conversely, participants reported more relief in the aversive context compares to the neutral context. The rating of relief in the threat context was not correlated with pain reports. The results suggest that relief is not dependant on pain intensity. Consistent with this, relief in the threat context was greater than that in the positive expectancy condition, while the opposite pattern was obtained for the pain ratings. The value of relief in this study is better appreciated in the context of an impending negative threat, which is apparent in the higher pain ratings in the prior negative expectancy compared to the positive expectancy condition. Moreover, the more threatening the context (as manifested by higher unpleasantness/higher state anxiety scores), the more the relief is appreciated. The importance of the study highlights the importance of exploring relief and pain intensity in monitoring separately or evaluating pain-related suffering. The results also illustrate that the perception of painful input may largely be shaped by the context and not necessarily stimulus-related.Keywords: aversive context, pain, predictions, relief
Procedia PDF Downloads 1405685 Cysticidal Effect of Balanites Aegyptiaca and Moringa Oleifera on Bovine Cysticercosis with Monitoring to Dynamics of TNF-α
Authors: Omnia M.Kandil, Noha M. F. Hassan, Doaa Sedky, Hatem A. Shalaby, Heba M. Ashry, Nadia M. T. Abu El Ezz, Sahar M. Kandeel, Mohamed S. Abdelfattah Ying L, Ebtesam M. Al-Olayan
Abstract:
The cestode, Taenia saginata is a zoonotic tapeworm that it’s larval stage which known as Cysticercus bovis cause cyst formation in cattle’s organs such as heart, lung, liver, tongue, esophagus and diaphragm muscle, despite the infected cattle may show no clinical signs. In view of considerable interest in developing cysticidal drugs including those from medicinal plants, because of their consideration as eco-friendly and biodegradable as well as having multiple bioactive compounds that may translate to multiple mechanisms in killing the parasites. This study was achieved to evaluate, for the first time, the efficacy of methanolic extract of Balanites aegyptiaca fruits and Moringa oleifera seeds against metacestode larval stage of the cestode Taenia saginata in BALB/c mice compared with commonly used anthelmintic albendazole and assigning the level of tumor necrosis factor (TNF-α) to monitor immune and inflammatory response of experimentally infected animals. The results revealed a marked decrease in the numbers of cysticerci found in all treated mice groups and up to 88% reduction was achieved in the B. aegyptiaca treated group; higher than that was recorded in both M. oleifera (72.23%) and albendazole treated ones (80.56%). The cysts of the treated groups were smaller of the control one. Besides, the mean concentration of TNF-α following treatment with Balanites and Moringa extracts, was higher but not significant difference than that in the untreated infected control one (P<0.05), evidence for inflammation and cyst damage. It can be concluded that the in vivo efficacy of M. oleifera extract was comparable to a commercial anthelmintic, and the B. aegyptiaca extract was superior in the reduction of cysticerci numbers.Keywords: Balanites aeggyptica, Moringa oleifera, cysticercosis, BALB/C mice
Procedia PDF Downloads 665684 A Problem in Microstretch Thermoelastic Diffusive Medium
Authors: Devinder Singh, Arvind Kumar, Rajneesh Kumar
Abstract:
The general solution of the equations for a homogeneous isotropic microstretch thermo elastic medium with mass diffusion for two dimensional problems is obtained due to normal and tangential forces. The integral transform technique is used to obtain the components of displacements, microrotation, stress and mass concentration, temperature change and mass concentration. A particular case of interest is deduced from the present investigation.Keywords: normal force, tangential force, microstretch, thermoelastic, the integral transform technique, deforming force, microstress force, boundary value problem
Procedia PDF Downloads 6195683 Sensory Evaluation and Microbiological Properties of Gouda Cheese Affected by Bunium persicum (Boiss.) Essential Oil
Authors: N. Noori, P. Taherkhani, A. Akhondzadeh Basti, H. Gandomi, M. Alimohammadi
Abstract:
Research on natural antimicrobial agents, especially of plant origin, highly noticed in recent years and evaluation of antimicrobial effects of native plants such as Bunium persicum Boiss. is especially important. In the present study, sensory characteristics and microbiological properties of Gouda cheese affected by different concentrations of Bunium persicum Boiss. essential oil were investigated. Extraction of the essential oil was performed by hydro distillation. The oil was analyzed by GC using flame ionization (FID) and GC/ MS for detection. The antimicrobial effects were determined against various microbial groups (aerobic mesophilic bacteria, enterococci, mesophilic lactobacilli, enterobacteriaceae, lactococcus and yeasts). Microbial groups were counted during ripening period using plate count on specific culture media. Organoleptic evaluation including teture, flavor, odor, color and total acceptability were determined at the end of aging. According to results, the essential oil yield was 4/1 % ( W/ W). Twenty- six compounds were identified in the oil that concluded 99.7 % of the total oil. The major components of Bunium persicum Boiss. essential oil were γ- terpinene- 7- al (26.9 %) and cuminaldehyde (23.3 %). Generally, the increase of Black Cumin essential oil concentration led to reduction in microbial counts in different groups. The maximum antimicrobial effect was seen in yeast that reduced by 2 log compared to the control group at EO concentration of 4µl/ ml at day 90.The minimum reduction was observed in enterobacteriaceae that showed only 0.75 log decreese compared to the control at the same concentration of EO. Addition of EO improved organoleptic properties of Gouda cheese especially in the case of flavor and odor characteristic. However, no significant differences were observed in texture and color between treatment and control groups. Bunium persicum Boiss. essential oil could be used as preservative material and flavoring agent in some kinds of food such as cheese and also could be provided consumers health.Keywords: Bunium persicum Boiss. essential oil, Microbiological properties, sensory evaluation, gouda cheese
Procedia PDF Downloads 3255682 La₀.₈Ba₀.₂FeO₃ Perovskite as an Additive in the Three-Way Catalyst (TWCs) for Reduction of PGMs Loading
Authors: Mahshid Davoodpoor, Zahra Shamohammadi Ghahsareh, Saeid Razfar, Alaleh Dabbaghi
Abstract:
Nowadays, air pollution has become a topic of great concern all over the world. One of the main sources of air pollution is automobile exhaust gas, which introduces a large number of toxic gases, including CO, unburned hydrocarbons (HCs), NOx, and non-methane hydrocarbons (NMHCs), into the air. The application of three-way catalysts (TWCs) is still the most effective strategy to mitigate the emission of these pollutants. Due to the stringent environmental regulations which continuously become stricter, studies on the TWCs are ongoing despite several years of research and development. This arises from the washcoat complexity and the several numbers of parameters involved in the redox reactions. The main objectives of these studies are the optimization of washcoat formulation and the investigation of different coating modes. Perovskite (ABO₃), as a promising class of materials, has unique features that make it versatile to use as an alternative to commonly mixed oxides in washcoats. High catalytic activity for oxidation reactions and its relatively high oxygen storage capacity are important properties of perovskites in catalytic applications. Herein, La₀.₈Ba₀.₂FeO₃ perovskite material was synthesized using the co-precipitation method and characterized by XRD, ICP, and BET analysis. The effect of synthesis conditions, including B site metal (Fe and Co), metal precursor concentration, and dopant (Ba), were examined on the phase purity of the products. The selected perovskite sample was used as one of the components in the TWC formulation to evaluate its catalytic performance through Light-off, oxygen storage capacity, and emission analysis. Results showed a remarkable increment in oxygen storage capacity and also revealed that T50 and emission of CO, HC, and NOx reduced in the presence of perovskite structure which approves the enhancement of catalytic performance for the new washcoat formulation. This study shows the brilliant future of advanced oxide structures in the TWCs.Keywords: Perovskite, three-way catalyst, PGMs, PGMs reduction
Procedia PDF Downloads 675681 Structural Development and Multiscale Design Optimization of Additively Manufactured Unmanned Aerial Vehicle with Blended Wing Body Configuration
Authors: Malcolm Dinovitzer, Calvin Miller, Adam Hacker, Gabriel Wong, Zach Annen, Padmassun Rajakareyar, Jordan Mulvihill, Mostafa S.A. ElSayed
Abstract:
The research work presented in this paper is developed by the Blended Wing Body (BWB) Unmanned Aerial Vehicle (UAV) team, a fourth-year capstone project at Carleton University Department of Mechanical and Aerospace Engineering. Here, a clean sheet UAV with BWB configuration is designed and optimized using Multiscale Design Optimization (MSDO) approach employing lattice materials taking into consideration design for additive manufacturing constraints. The BWB-UAV is being developed with a mission profile designed for surveillance purposes with a minimum payload of 1000 grams. To demonstrate the design methodology, a single design loop of a sample rib from the airframe is shown in details. This includes presentation of the conceptual design, materials selection, experimental characterization and residual thermal stress distribution analysis of additively manufactured materials, manufacturing constraint identification, critical loads computations, stress analysis and design optimization. A dynamic turbulent critical load case was identified composed of a 1-g static maneuver with an incremental Power Spectral Density (PSD) gust which was used as a deterministic design load case for the design optimization. 2D flat plate Doublet Lattice Method (DLM) was used to simulate aerodynamics in the aeroelastic analysis. The aerodynamic results were verified versus a 3D CFD analysis applying Spalart-Allmaras and SST k-omega turbulence to the rigid UAV and vortex lattice method applied in the OpenVSP environment. Design optimization of a single rib was conducted using topology optimization as well as MSDO. Compared to a solid rib, weight savings of 36.44% and 59.65% were obtained for the topology optimization and the MSDO, respectively. These results suggest that MSDO is an acceptable alternative to topology optimization in weight critical applications while preserving the functional requirements.Keywords: blended wing body, multiscale design optimization, additive manufacturing, unmanned aerial vehicle
Procedia PDF Downloads 3795680 Statistical Analysis to Compare between Smart City and Traditional Housing
Authors: Taha Anjamrooz, Sareh Rajabi, Ayman Alzaatreh
Abstract:
Smart cities are playing important roles in real life. Integration and automation between different features of modern cities and information technologies improve smart city efficiency, energy management, human and equipment resource management, life quality and better utilization of resources for the customers. One of difficulties in this path, is use, interface and link between software, hardware, and other IT technologies to develop and optimize processes in various business fields such as construction, supply chain management and transportation in parallel to cost-effective and resource reduction impacts. Also, Smart cities are certainly intended to demonstrate a vital role in offering a sustainable and efficient model for smart houses while mitigating environmental and ecological matters. Energy management is one of the most important matters within smart houses in the smart cities and communities, because of the sensitivity of energy systems, reduction in energy wastage and maximization in utilizing the required energy. Specially, the consumption of energy in the smart houses is important and considerable in the economic balance and energy management in smart city as it causes significant increment in energy-saving and energy-wastage reduction. This research paper develops features and concept of smart city in term of overall efficiency through various effective variables. The selected variables and observations are analyzed through data analysis processes to demonstrate the efficiency of smart city and compare the effectiveness of each variable. There are ten chosen variables in this study to improve overall efficiency of smart city through increasing effectiveness of smart houses using an automated solar photovoltaic system, RFID System, smart meter and other major elements by interfacing between software and hardware devices as well as IT technologies. Secondly to enhance aspect of energy management by energy-saving within smart house through efficient variables. The main objective of smart city and smart houses is to reproduce energy and increase its efficiency through selected variables with a comfortable and harmless atmosphere for the customers within a smart city in combination of control over the energy consumption in smart house using developed IT technologies. Initially the comparison between traditional housing and smart city samples is conducted to indicate more efficient system. Moreover, the main variables involved in measuring overall efficiency of system are analyzed through various processes to identify and prioritize the variables in accordance to their influence over the model. The result analysis of this model can be used as comparison and benchmarking with traditional life style to demonstrate the privileges of smart cities. Furthermore, due to expensive and expected shortage of natural resources in near future, insufficient and developed research study in the region, and available potential due to climate and governmental vision, the result and analysis of this study can be used as key indicator to select most effective variables or devices during construction phase and designKeywords: smart city, traditional housing, RFID, photovoltaic system, energy efficiency, energy saving
Procedia PDF Downloads 1145679 Energy Efficient Building Design in Nigeria: An Assessment of the Effect of the Sun on Energy Consumption in Residential Buildings
Authors: Ekele T. Ochedi, Ahmad H. Taki, Birgit Painter
Abstract:
The effect of the sun and its path on thermal comfort and energy consumption in residential buildings in tropical climates constitute a serious concern for designers, building owners, and users. Passive design approaches based on the sun and its path have been identified as a means of reducing energy consumption as well as enhancing thermal comfort in buildings worldwide. Hence, a thorough understanding regarding the sun path is key to achieving this. This is necessary due to energy need, poor energy supply, and distribution, energy poverty, and over-dependence on electric generators for power supply in Nigeria. These challenges call for a change in the approach to energy-related issues, especially in terms of buildings. The aim of this study is to explore the influence of building orientation, glazing and the use of shading devices on residential buildings in Nigeria. This is intended to provide data that will guide designers in the design of energy-efficient residential buildings. The paper used EnergyPlus to analyze a typical semi-detached residential building in Lokoja, Nigeria using hourly weather data for a period of 10 years. Building performance was studied as well as possible improvement regarding different orientations, glazing types and shading devices. The simulation results show some reductions in energy consumption in response to changes in building orientation, types of glazing and the use of shading devices. The results indicate 29.45% reduction in solar gains and 1.90% in annual operative temperature using natural ventilation only. This shows a huge potential to reduce energy consumption and improve people’s well-being through the use of proper building orientation, glazing and appropriate shading devices on building envelope. The study concludes that for a significant reduction in total energy consumption by residential buildings, the design should focus on multiple design options rather than concentrating on one or few building elements. Moreover, the investigation confirms that energy performance modeling can be used by building designers to take advantage of the sun and to evaluate various design options.Keywords: energy consumption, energy-efficient buildings, glazing, thermal comfort, shading devices, solar gains
Procedia PDF Downloads 2135678 Physiological and Biochemical Assisted Screening of Wheat Varieties under Partial Rhizosphere Drying
Authors: Muhammad Aown Sammar Raza
Abstract:
Environmental stresses are one of the major reasons for poor crop yield across the globe. Among the various environmental stresses, drought stress is the most damaging one, especially in arid and semi-arid regions. Wheat is the major staple food of many countries of the world, which is badly affected by drought stress. In order to fulfill the dietary needs of increasing population with depleting water resources there is a need to adopt technologies which result in sufficient crop yield with less water consumption. One of them is partial root zone drying. Keeping in view these conditions, a wire house experiment was conducted at agronomic research area of University College of Agriculture and Environmental Sciences, The Islamia University Bahawalpur during 2015, to screen out the different wheat varieties for partial root zone drying (PRD). Five approved local wheat varieties (V1= Galaxy-2013, V2= Punjab-2011, V3 = Faisalabad-2008, V4 = Lasani-2008 and V5 = V.8200) and two irrigation levels (I1= control irrigation and I2 = PRD irrigation) with completely randomized design having four replications were used in the experiment. Among the varieties, Galaxy-2013 performed the best and attained maximum plant height, leaf area, stomatal conductance, photosynthesis, total sugars, proline contents and antioxidant enzymes activities and minimum values of growth and physiological parameters were recorded in variety V.8200. For irrigation levels, higher values of growth, physiological and water related parameters were recorded in control treatment (I1) except leaf water potential, osmotic potential, total sugars and proline contents. However, enzyme activities were higher under PRD treatment for all varieties. It was concluded that Galaxy-2013 is the most compatible and V.8200 is the most susceptible variety for PRD, respectively and more quality traits and enzymatic activities were recorded under PRD irrigation as compared to control treatment.Keywords: antioxidant enzymes activities, osmolytes concentration, partial root zone drying, photosynthetic rate, water relations, wheat
Procedia PDF Downloads 2455677 Feasibility of Implementing Zero Energy Buildings in Iran and Examining Its Economic and Technical Aspects
Authors: Maryam Siyami
Abstract:
Zero energy buildings refer to buildings that have zero annual energy consumption and do not produce carbon emissions. In today's world, considering the limited resources of fossil fuels, buildings, industries and other organizations have moved towards using other available energies. The idea and principle of net zero energy consumption has attracted a lot of attention because the use of renewable energy is a means and a solution to eliminate pollutants and greenhouse gases. Due to the increase in the cost of fossil fuels and their destructive effects on the environment and disrupting the ecological balance, today the plans related to zero energy principles have become very practical and have gained particular popularity. In this research, building modeling has been done in the Design Builder software environment. Based on the changes in the required energy throughout the year in different roof thickness conditions, it has been observed that with the increase in roof thickness, the amount of heating energy required has a downward trend, from 6730 kilowatt hours in the roof thickness of 10 cm to 6408 kilowatt hours in the roof thickness condition. 20 cm is reached, which represents a reduction of about 4.7% in energy if the roof thickness is doubled. Also, with the increase in the thickness of the roof throughout the year, the amount of cooling energy required has a gentle downward trend and has reached from 4964 kilowatt hours in the case of a roof thickness of 10 cm to 4859 kilowatt hours in the case of a roof thickness of 20 cm, which is a decrease equal to It displays 2%. It can be seen that the trend of changes in the energy required for cooling and heating is not much affected by the thickness of the roof (with an effect of 98%) and therefore there is no technical and economic recommendation to increase the thickness of the roof in this sector. Finally, based on the changes in the carbon dioxide produced in different states of the roof thickness, it has been observed that with the increase in the roof thickness, energy consumption and consequently the production of carbon dioxide has decreased. By increasing the thickness of the roof from 10 cm to 20 cm, the amount of carbon dioxide produced by heating the building has decreased by 27%. Also, this amount of reduction has been obtained based on the cooling system and for different amounts of roof thickness equal to 19%.Keywords: energy consumption, green building, design builder, AHP
Procedia PDF Downloads 285676 Modeling of Crack Growth in Railway Axles under Static Loading
Authors: Zellagui Redouane, Bellaouar Ahmed, Lachi Mohammed
Abstract:
The railway axles are the essential parts in the bogie of train, and its failure creates a big problem in the railway transport; during the work of this parts we noticed a premature deterioration. The aim has been presented a predictive model allowing the identification of the probable causes that are the cause of these premature deterioration. The results are employed for predicting fatigue crack growth in the railway axle, Also we want to present the variation value of stress intensity factor in different positions of elliptical crack tip. The modeling of axle in performed by the SOLID WORKS software and imported into ANSYS.Keywords: crack growth, static load, railway axle, lifetime
Procedia PDF Downloads 3655675 Most Important Educational Planning Issues in the Developing Countries
Authors: Naeem Khan
Abstract:
In 1971 Williams in his essay titled "What Educational Planning is About in Higher Education" defined educational planning as "planning in education, as in anything else consist essentially of deciding, in advance, what you want, to do and how you are going to do in". In the “World Year book of Education”. While Anderson and Bowman in 1976 in their joint article titled "Theoretical Considerations in Educational Planning" defined it as "the process of preparing a set of decisions for future action pertaining in education". There are so many other definitions which are related to educational planning in which every one stress on the importance of educational planning. But developing countries face a lot of problems related to the educational planning and this paper is to discuss few of them.Keywords: educational planning, problems, developing countries, education system,
Procedia PDF Downloads 5545674 Transcriptional Response of Honey Bee to Differential Nutritional Status and Nosema Infection
Authors: Farida Azzouz-Olden, Arthur G. Hunt, Gloria Degrandi-Hoffman
Abstract:
Bees are confronting several environmental challenges, including the intermingled effects of malnutrition and disease. Intuitively, pollen is the healthiest nutritional choice; however, commercial substitutes, such as BeePro and MegaBee, are widely used. Herein we examined how feeding natural and artificial diets shapes transcription in the abdomen of the honey bee, and how transcription shifts in combination with Nosema parasitism. Gene ontology enrichment revealed that, compared with poor diet (carbohydrates (C)), bees fed pollen (P > C), BeePro (B > C), and MegaBee (M > C) showed a broad upregulation of metabolic processes, especially lipids; however, pollen feeding promoted more functions and superior proteolysis. The superiority of the pollen diet was also evident through the remarkable overexpression of vitellogenin in bees fed pollen instead of MegaBee or BeePro. Upregulation of bioprocesses under carbohydrates feeding compared to pollen (C > P) provided a clear poor nutritional status, uncovering stark expression changes that were slight or absent relatively to BeePro (C > B) or MegaBee (C > M). Poor diet feeding (C > P) induced starvation response genes and hippo signaling pathway, while it repressed growth through different mechanisms. Carbohydrate feeding (C > P) also elicited ‘adult behavior’, and developmental processes suggesting transition to foraging. Finally, it altered the ‘circadian rhythm’, reflecting the role of this mechanism in the adaptation to nutritional stress in mammals. Nosema-infected bees fed pollen compared to carbohydrates (PN > CN) upheld certain bioprocesses of uninfected bees (P > C). Poor nutritional status was more apparent against pollen (CN > PN) than BeePro (CN > BN) or MegaBee (CN > MN). Nosema accentuated the effects of malnutrition since more starvation-response genes and stress response mechanisms were upregulated in CN > PN compared to C > P. The bioprocess ‘Macromolecular complex assembly’ was also enriched in CN > PN, and involved genes associated with human HIV and/or influenza, thus providing potential candidates for bee-Nosema interactions. Finally, the enzyme Duox emerged as essential for guts defense in bees, similarly to Drosophila. These results provide evidence of the superior nutritional status of bees fed pollen instead of artificial substitutes in terms of overall health, even in the presence of a pathogen.Keywords: honeybee, immunity, Nosema, nutrition, RNA-seq
Procedia PDF Downloads 1585673 Experimental Evaluation of Contact Interface Stiffness and Damping to Sustain Transients and Resonances
Authors: Krystof Kryniski, Asa Kassman Rudolphi, Su Zhao, Per Lindholm
Abstract:
ABB offers range of turbochargers from 500 kW to 80+ MW diesel and gas engines. Those operate on ships, power stations, generator-sets, diesel locomotives and large, off-highway vehicles. The units need to sustain harsh operating conditions, exposure to high speeds, temperatures and varying loads. They are expected to work at over-critical speeds damping effectively any transients and encountered resonances. Components are often connected via friction joints. Designs of those interfaces need to account for surface roughness, texture, pre-stress, etc. to sustain against fretting fatigue. The experience from field contributed with valuable input on components performance in hash sea environment and their exposure to high temperature, speed and load conditions. Study of tribological interactions of oxide formations provided an insight into dynamic activities occurring between the surfaces. Oxidation was recognized as the dominant factor of a wear. Microscopic inspections of fatigue cracks on turbine indicated insufficient damping and unrestrained structural stress leading to catastrophic failure, if not prevented in time. The contact interface exhibits strongly non-linear mechanism and to describe it the piecewise approach was used. Set of samples representing the combinations of materials, texture, surface and heat treatment were tested on a friction rig under range of loads, frequencies and excitation amplitudes. Developed numerical technique extracted the friction coefficient, tangential contact stiffness and damping. Vast amount of experimental data was processed with the multi-harmonics balance (MHB) method to categorize the components subjected to the periodic excitations. At the pre-defined excitation level both force and displacement formed semi-elliptical hysteresis curves having the same area and secant as the actual ones. By cross-correlating the terms remaining in the phase and out of the phase, respectively it was possible to separate an elastic energy from dissipation and derive the stiffness and damping characteristics.Keywords: contact interface, fatigue, rotor-dynamics, torsional resonances
Procedia PDF Downloads 3765672 Real-Time Hybrid Simulation for a Tuned Liquid Column Damper Implementation
Authors: Carlos Riascos, Peter Thomson
Abstract:
Real-time hybrid simulation (RTHS) is a modern cyber-physical technique used for the experimental evaluation of complex systems, that treats the system components with predictable behavior as a numerical substructure and the components that are difficult to model as an experimental substructure. Therefore it is an attractive method for evaluation of the response of civil structures under earthquake, wind and anthropic loads. Another practical application of RTHS is the evaluation of control systems, as these devices are often nonlinear and their characterization is an important step in the design of controllers with the desired performance. In this paper, the response of three-story shear frame controlled by a tuned liquid column damper (TLCD) and subject to base excitation is considered. Both passive and semi-active control strategies were implemented and are compared. While the passive TLCD achieved a reduction of 50% in the acceleration response of the main structure in comparison with the structure without control, the semi-active TLCD achieved a reduction of 70%, and was robust to variations in the dynamic properties of the main structure. In addition, a RTHS was implemented with the main structure modeled as a linear, time-invariant (LTI) system through a state space representation and the TLCD, with both control strategies, was evaluated on a shake table that reproduced the displacement of the virtual structure. Current assessment measures for RTHS were used to quantify the performance with parameters such as generalized amplitude, equivalent time delay between the target and measured displacement of the shake table, and energy error using the measured force, and prove that the RTHS described in this paper is an accurate method for the experimental evaluation of structural control systems.Keywords: structural control, hybrid simulation, tuned liquid column damper, semi-active sontrol strategy
Procedia PDF Downloads 3005671 Study on Energy Absorption Characteristic of Cab Frame with FEM
Authors: Shigeyuki Haruyama, Oke Oktavianty, Zefry Darmawan, Tadayuki Kyoutani, Ken Kaminishi
Abstract:
Cab’s frame strength is considered as an important factor in excavator’s operator safety, especially during roll-over. In this study, we use a model of cab frame with different thicknesses and perform elastoplastic numerical analysis by using Finite Element Method (FEM). Deformation mode and energy absorption's of cab’s frame part are investigated on two conditions, with wrinkle and without wrinkle. The occurrence of wrinkle when deforming cab frame can reduce energy absorption, and among 4 parts with wrinkle, the energy absorption significantly decreases in part C. Residual stress that generated upon the bending process of part C is analyzed to confirm it possibility in increasing the energy absorption.Keywords: ROPS, FEM, hydraulic excavator, cab frame
Procedia PDF Downloads 4325670 Identification and Understanding of Colloidal Destabilization Mechanisms in Geothermal Processes
Authors: Ines Raies, Eric Kohler, Marc Fleury, Béatrice Ledésert
Abstract:
In this work, the impact of clay minerals on the formation damage of sandstone reservoirs is studied to provide a better understanding of the problem of deep geothermal reservoir permeability reduction due to fine particle dispersion and migration. In some situations, despite the presence of filters in the geothermal loop at the surface, particles smaller than the filter size (<1 µm) may surprisingly generate significant permeability reduction affecting in the long term the overall performance of the geothermal system. Our study is carried out on cores from a Triassic reservoir in the Paris Basin (Feigneux, 60 km Northeast of Paris). Our goal is to first identify the clays responsible for clogging, a mineralogical characterization of these natural samples was carried out by coupling X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The results show that the studied stratigraphic interval contains mostly illite and chlorite particles. Moreover, the spatial arrangement of the clays in the rocks as well as the morphology and size of the particles, suggest that illite is more easily mobilized than chlorite by the flow in the pore network. Thus, based on these results, illite particles were prepared and used in core flooding in order to better understand the factors leading to the aggregation and deposition of this type of clay particles in geothermal reservoirs under various physicochemical and hydrodynamic conditions. First, the stability of illite suspensions under geothermal conditions has been investigated using different characterization techniques, including Dynamic Light Scattering (DLS) and Scanning Transmission Electron Microscopy (STEM). Various parameters such as the hydrodynamic radius (around 100 nm), the morphology and surface area of aggregates were measured. Then, core-flooding experiments were carried out using sand columns to mimic the permeability decline due to the injection of illite-containing fluids in sandstone reservoirs. In particular, the effects of ionic strength, temperature, particle concentration and flow rate of the injected fluid were investigated. When the ionic strength increases, a permeability decline of more than a factor of 2 could be observed for pore velocities representative of in-situ conditions. Further details of the retention of particles in the columns were obtained from Magnetic Resonance Imaging and X-ray Tomography techniques, showing that the particle deposition is nonuniform along the column. It is clearly shown that very fine particles as small as 100 nm can generate significant permeability reduction under specific conditions in high permeability porous media representative of the Triassic reservoirs of the Paris basin. These retention mechanisms are explained in the general framework of the DLVO theoryKeywords: geothermal energy, reinjection, clays, colloids, retention, porosity, permeability decline, clogging, characterization, XRD, SEM-EDS, STEM, DLS, NMR, core flooding experiments
Procedia PDF Downloads 1785669 Effects of Different Thermal Processing Routes and Their Parameters on the Formation of Voids in PA6 Bonded Aluminum Joints
Authors: Muhammad Irfan, Guillermo Requena, Jan Haubrich
Abstract:
Adhesively bonded aluminum joints are common in automotive and aircraft industries and are one of the enablers of lightweight construction to minimize the carbon emissions during transportation for a sustainable life. This study is focused on the effects of two thermal processing routes, i.e., by direct and induction heating, and their parameters on void formation in PA6 bonded aluminum EN-AW6082 joints. The joints were characterized microanalytically as well as by lap shear experiments. The aging resistance of the joints was studied by accelerated aging tests at 80°C hot water. It was found that the processing of single lap joints by direct heating in a convection oven causes the formation of a large number of voids in the bond line. The formation of voids in the convection oven was due to longer processing times and was independent of any surface pretreatments of the metal as well as the processing temperature. However, when processing at low temperatures, a large number of small-sized voids were observed under the optical microscope, and they were larger in size but reduced in numbers at higher temperatures. An induction heating process was developed, which not only successfully reduced or eliminated the voids in PA6 bonded joints but also reduced the processing times for joining significantly. Consistent with the trend in direct heating, longer processing times and higher temperatures in induction heating also led to an increased formation of voids in the bond line. Subsequent single lap shear tests revealed that the increasing void contents led to a 21% reduction in lap shear strengths (i.e., from ~47 MPa for induction heating to ~37 MPa for direct heating). Also, there was a 17% reduction in lap shear strengths when the consolidation temperature was raised from 220˚C to 300˚C during induction heating. However, below a certain threshold of void contents, there was no observable effect on the lap shear strengths as well as on hydrothermal aging resistance of the joints consolidated by the induction heating process.Keywords: adhesive, aluminium, convection oven, induction heating, mechanical properties, nylon6 (PA6), pretreatment, void
Procedia PDF Downloads 1245668 Efficacy and Safety of Inhaled Nebulized Chemotherapy in Treatment of Patients with Newly Diagnosed Pulmonary Tuberculosis in Comparison to Standard Antimycobacterial Therapy
Authors: M. Kuzhko, M. Gumeniuk, D. Butov, T. Tlustova, O. Denysov, T. Sprynsian
Abstract:
Abstract: The objective of this work was to study the efficacy and safety of inhaled nebulized chemotherapy in the treatment of patients with newly diagnosed pulmonary tuberculosis in comparison with standard antimycobacterial therapy. Materials and methods: The study involved 68 patients aged between 20 and 70 years with newly diagnosed pulmonary tuberculosis. Patients were allocated to two groups. The first (main, n=21) group of patients received standard chemotherapy and further 0.15 g of isoniazid and rifampicin 0.15 g inhaled through a nebulizer, also they received salmeterol 50 mcg + fluticasone propionate 250 mcg at 2 breaths twice a day for 2 months. The second (control, n=47) group of patients received standard chemotherapy, consisting of orally administered isoniazid (0.3 g), rifampicin (0.6 g), pyrazinamide (2 g), ethambutol (1.2 g) with a dose reduction after the intensive phase of the therapy. The anti-TB drugs were procured through the Ukraine’s centralized national supply system. Results: Intoxication symptoms in the first group reduced following 1.39±0.18 months, whereas in the second group, intoxication symptoms reduced following 2.7±0.1 months, p<.001. Moreover, respiratory symptoms regression in the first group was observed following 1.6±0.2 months, whereas in the second group – following 2.5±0.2 months, p<0.05. Bacillary excretion period evaluated within 1 month was reduced, as it was shown by 66.6±10.5% in the main group compared to 27.6±6.5%, p<0.05, in the control group. In addition, period of cavities healing was reduced to 2.9±0.2 months in the main group compared to 3.7±0.1 months, p<0.05, in the control group. Residual radiological lung damage findings (large residual changes) were observed in 22 (23.8±9.5 %) patients of the main group versus 24 (51.0±7.2 %) patients in the control group, p<0.05. After completion of treatment scar stenosis of the bronchi II-III art. diagnosed in 3 (14.2±7.8%) patients in main group and 17 (68.0±6.8%) - control group, p<0.05. The duration of hospital treatment was 2.4±0.4 months in main group and 4.1±0.4 months in control group, p<0.05. Conclusion: Administration of of inhaled nebulized chemotherapy in patients with newly diagnosed pulmonary tuberculosis resulted in a comparatively quick reduction of disease manifestation.Keywords: inhaled nebulized chemotherapy, pulmonary tuberculosis, tuberculosis, treatment of tuberculosis
Procedia PDF Downloads 1995667 Estimating the Impact of Appliance Energy Efficiency Improvement on Residential Energy Demand in Tema City, Ghana
Authors: Marriette Sakah, Samuel Gyamfi, Morkporkpor Delight Sedzro, Christoph Kuhn
Abstract:
Ghana is experiencing rapid economic development and its cities command an increasingly dominant role as centers of both production and consumption. Cities run on energy and are extremely vulnerable to energy scarcity, energy price escalations and health impacts of very poor air quality. The overriding concern in Ghana and other West African states is bridging the gap between energy demand and supply. Energy efficiency presents a cost-effective solution for supply challenges by enabling more coverage with current power supply levels and reducing the need for investment in additional generation capacity and grid infrastructure. In Ghana, major issues for energy policy formulation in residential applications include lack of disaggregated electrical energy consumption data and lack of thorough understanding with regards to socio-economic influences on energy efficiency investment. This study uses a bottom up approach to estimate baseline electricity end-use as well as the energy consumption of best available technologies to enable estimation of energy-efficiency resource in terms of relative reduction in total energy use for Tema city, Ghana. A ground survey was conducted to assess the probable consumer behavior in response to energy efficiency initiatives to enable estimation of the amount of savings that would occur in response to specific policy interventions with regards to funding and incentives provision targeted at households. Results show that 16% - 54% reduction in annual electricity consumption is reasonably achievable depending on the level of incentives provision. The saved energy could supply 10000 - 34000 additional households if the added households use only best available technology. Political support and consumer awareness are necessary to translate energy efficiency resources into real energy savings.Keywords: achievable energy savings, energy efficiency, Ghana, household appliances
Procedia PDF Downloads 2165666 Modified Poly (Pyrrole) Film-Based Biosensors for Phenol Detection
Authors: S. Korkut, M. S. Kilic, E. Erhan
Abstract:
In order to detect and quantify the phenolic contents of a wastewater with biosensors, two working electrodes based on modified Poly (Pyrrole) films were fabricated. Enzyme horseradish peroxidase was used as biomolecule of the prepared electrodes. Various phenolics were tested at the biosensor. Phenol detection was realized by electrochemical reduction of quinones produced by enzymatic activity. Analytical parameters were calculated and the results were compared with each other.Keywords: carbon nanotube, phenol biosensor, polypyrrole, poly (glutaraldehyde)
Procedia PDF Downloads 4215665 Waste Management in Africa
Authors: Peter Ekene Egwu
Abstract:
Waste management is of critical importance in Africa for reasons related to public health, human dignity, climate resilience and environmental preservation. However, delivering waste management services requires adequate funding, which has generally been lacking in a context where the generation of waste is outpacing the development of waste management infrastructure in most cities. The sector represents a growing percentage of cities’ greenhouse gas (GHG) emissions, and some of the African cities profiled in this study are now designing waste management strategies with emission reduction in mind.Keywords: management waste material, Africa, uses of new technology to manage waste, waste management
Procedia PDF Downloads 785664 The Effects of the Parent Training Program for Obesity Reduction on Child Waist Circumference and Health Behaviors of Pre-School Children at the Samut-Songkhram Kindergarten School, Samut-Songkhram Province, Thailand
Authors: Muntanavadee Maytapattana
Abstract:
This research aims to study the effects of the Parent Training Program for Obesity Reduction (PTPOR) on child waist circumference and health behaviors of pre-school children at the Samut-Songkhram kindergarten school, Samut-Songkhram province, Thailand. The objective of this research is to evaluate the effectiveness of the PTPOR on child waist circumference and health behaviors of the pre-school children. The conceptual framework of this study is developed on the basis of the Ecological Systems Theory (EST), not only do the individual factors such as child characteristics and child risk factors contribute to the child’s weight status, but also other factors such as parenting style and family characteristics, as well as community and demographic factors. This research is a quasi-experimental study. Participants were pre-school overweight and obese children and their parents. Forty-one parent-child dyads were recruited into the program. Parents participated in two sessions including an educational session and a group discussion session. Research methodology uses Paired-Samples t-test to determine the difference between groups in the mean scores of the outcome variables of the children and parents. The research results show that there was significant difference between child waist circumferences mean score at the baseline and finishing the program at the 0.01 level (p = 0.001), mean score of the child waist circumference was decrease after finishing the program. And there was no significant difference between child exercise health behaviors mean score at the baseline and finishing the program at the 0.05 level; however, mean score of the child exercise behavior was increase after finishing the program. Meanwhile, there was significant difference between child dietary health behavior mean score at the baseline and finishing the program at the 0.01 level (p = 0.001), mean score of the child dietary was increase after finishing the program.Keywords: PTPOR, child waist circumference, child health behaviors, pre-school children
Procedia PDF Downloads 5735663 Research on Audiovisual Perception in Stairway Spaces of Mountain City Parks Based on Real-Scene EEG Monitoring
Authors: Yang Xinyu, Gong Cong, Hu Changjuan
Abstract:
Stairway spaces are a crucial component of the pathway systems and vertical transportation networks in mountain city parks. These spaces are closely integrated with the undulating terrain of mountain environments, resulting in continuously changing spatial conditions that can significantly influence participants' behavioral characteristics, thereby affecting their perception. EEG signals, which have been proven to reflect various non-attentive physiological activities in the brain, are widely used in studies related to stress recovery effects and emotional perception. Existing research predominantly examines the impact of spatial characteristics and landscape elements of trails and greenways in plain cities on participants' perception, utilizing EEG signals in laboratory-simulated environments. These studies have preliminarily revealed the relationship between spatial environments and perception preferences. However, on-site ergonomics research in mountain environments remains relatively underdeveloped. To address this gap, the Stairway spaces in Pipashan Park, Chongqing, were selected as the research object. Wearable hydrogel EEG devices were employed to monitor participants' EEG data in real environments, and a Generalized Linear Mixed Model (GLMM) was constructed to explore differences in participants' perception under different paths and modes of movement, as well as the impact of visual and auditory environmental elements within each path on their perception. The model analysis results indicate significant differences in EEG data across different paths and movement modes. Additionally, typical mountainous spatial characteristics, such as openness, green view index, and elevation difference, are identified as key factors influencing participants' EEG data. Higher levels of natural sound and green view index were shown to effectively alleviate participants' stress perception in mountain stairway spaces. The findings reveal the intrinsic connections between environment, behavior, and perception in stairway spaces of mountain city parks, providing a theoretical basis for optimizing the design of stairway spaces in mountain cities.Keywords: audio-visual perception, EEG monitoring, mountain city park, real environment, stairway space
Procedia PDF Downloads 20