Search results for: transition metal nitride coatings
1675 Evaluation of Pollution in Underground Water from ODO-NLA and OGIJO Metropolis Industrial Areas in Ikorodu
Authors: Zaccheaus Olasupo Apotiola
Abstract:
This study evaluates the level of pollution in underground water from Ogijo and Odo-nla areas in lkorodu, Lagos State. Water sample were collected around various industries and transported in ice packs to the laboratory. Temperature and pH was determined on site, physicochemical parameters and total plate were determined using standard methods, while heavy metal concentration was determined using Atomic Absorption spectrophotometry method. The temperature was observed at a range of 20-28 oC, the pH was observed at a range of 5.64 to 6.91 mol/l and were significantly different (P < 0.05) from one another. The chloride content was observed at a range 70.92 to 163.10 mg/l there was no significant difference (P > 0.05) between sample 40 GAJ and ISUP, but there was significant difference (P < 0.05) between other samples. The acidity value varied from 11.0 – 34.5 (mg/l), the samples had no alkalinity. The Total plate count was found at 20-125 cfu/ml. Asernic, Lead, Cadmium, and Mercury concentration ranged between 0.03 - 0.09, 0.04 - 0.11, 0.00 -0.00, and 0.00 – 0.00(mg/l) respectively. However there was significant difference (p < 0.05) between all samples except for sample 4OGA, 5OGAJ, and 3SUTN that were not significantly different (P > 0.05). The results revealed all samples are not safe for human consumption as the levels of Asernic and Lead are above the maximum value of (0.01 mg/l) recommended by NIS 554 and WHO.Keywords: arsenic, cadmium, lead mercury, WHO
Procedia PDF Downloads 5191674 Electronic Properties Study of Ni/MgO Nanoparticles by X-Ray Photoemission Spectroscopy (XPS)
Authors: Ouafek Nora, Keghouche Nassira, Dehdouh Heider, Untidt Carlos
Abstract:
A lot of knowledge has been accumulated on the metal clusters supported on oxide surfaces because of their multiple applications in microelectronics, heterogeneous catalysis, and magnetic devices. In this work, the surface state of Ni / MgO has been studied by XPS (X-ray Photoemission Spectroscopy). The samples were prepared by impregnation with ion exchange Ni²⁺ / MgO, followed by either a thermal treatment in air (T = 100 -350 ° C) or a gamma irradiation (dose 100 kGy, 25 kGy dose rate h -1). The obtained samples are named after impregnation NMI, NMR after irradiation, and finally NMC(T) after calcination at the temperature T (T = 100-600 °C). A structural study by XRD and HRTEM reveals the presence of nanoscaled Ni-Mg intermetallic phases (Mg₂Ni, MgNi₂, and Mg₆Ni) and magnesium hydroxide. Mg(OH)₂ in nanometric range (2- 4 nm). Mg-Ni compounds are of great interest in energy fields (hydrogen storage…). XPS spectra show two Ni2p peaks at energies of about 856.1 and 861.9 eV, indicating that the nickel is primarily in an oxidized state on the surface. The shift of the main peak relative to the pure NiO (856.1 instead of 854.0 eV) suggests that in addition to oxygen, nickel is engaged in another link with magnesium. This is in agreement with the O1s spectra which present an overlap of peaks corresponds to NiO and MgO, at a calcination temperature T ≤ 300 °C.Keywords: XPS, XRD, nanoparticules, Ni-MgO
Procedia PDF Downloads 2101673 Self-Determination Theory at the Workplace: Associations between Need Satisfaction and Employment Outcomes
Authors: Wendy I. E. Wesseling
Abstract:
The unemployment rate has been on the rise since the outbreak of the global financial crisis in 2008. Especially labor market entrants suffer from economic downfall. Despite the abundance of programs and agencies that help to reintegrate unemployed youth, considerable less research attention has been paid to 'fit' between these programs and its participants that ensure a durable labor market transition. According to Self-Determination Theory, need satisfaction is associated with better (mental) adjustment. As such, three hypothesis were formulated: when workers’ needs for competence (H1), relatedness (H2), and autonomy (H3) are satisfied in the workplace, they are more likely to remain employed at the same employer. To test these assumptions, a sample of approximately 800 young people enrolled in a youth unemployment policy participated in a longitudinal study. The unemployment policy was aimed at the development of generic and vocational competences, and had a maximum duration of six months. Need satisfaction during the program was measured, as well as their employment outcomes up to 12 months after completion of the policy. All hypotheses were (partly) supported. Some limitations should be noted. First, since our sample consisted primarily of highly educated white graduates, it remains to be tested whether our results generalize to other groups of unemployed youth. Moreover, we are unable to conclude whether the results are due to the intervention, participants (selection effect), or both, because of the lack of a control group.Keywords: need satisfaction, person-job fit, self-determination theory, youth unemployment policy
Procedia PDF Downloads 2551672 The Imperative of Adult Education in the Knowledge Society
Authors: Najim Akorede Babalola
Abstract:
Adult Education is a multi and interdisciplinary in nature that cut across different fields of study which includes education, social sciences, engineering even information technologies that dominate the contemporary world among others. In the past, Adult Education has been used as an instrument of civilization by teaching people how to read and write as well as earning a better living. The present world has witnessed a transition from industrial age to information age which is also known as knowledge society needs Adult Education for knowledge acquisition and update of existing knowledge. An individual needs Adult Education in either of its various forms (on-the-job-training, in-service training, extramural classes, vocational education, continuing education among others) in order to develop towards the information society trends; this is because Adult Education is a process of transforming an individual through acquisition of relevant skills and knowledge for personal as well as societal development. Evidence abounds in the literature that Adult Education has not only assisted people in the medieval period but still assisting people in this modern society in changing and transforming their lives for a better living. This study, therefore, raised a salient question that with different ideas and innovations brought by the contemporary world, is Adult Education relevant? It is on this basis that this study intends to examine the relevance of Adult Education in the past and present in order to determine its future relevance.Keywords: adult education, multi and inter-disciplinary, knowledge society, skill acquisition
Procedia PDF Downloads 3491671 Influence of Alccofine on Semi-Light Weight Concrete under Accelerated Curing and Conventional Curing Regimes
Authors: P. Parthiban, J. Karthikeyan
Abstract:
This paper deals with the performance of semi-light weight concrete, prepared by using wood ash pellets as coarse aggregates which were improved by partial replacement of cement with alccofine. Alccofine is a mineral admixture which contains high glass content obtained through the process of controlled granulation. This is finer than cement which carries its own pozzolanic property. Therefore, cement could be replaced by alccofine as 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, and 70% to enhance the strength and durability properties of concrete. High range water reducing admixtures (HRWA) were used in these mixes which were dosed up to 1.5% weight of the total cementitious content (alccofine & cement). It also develops the weaker transition zone into more impermeable layer. Specimens were subjected in both the accelerated curing method as well as conventional curing method. Experimental results were compared and reported, in that the maximum compressive strength of 32.6 MPa was achieved on 28th day with 30% replacement level in a density of 2200 kg/m3 to a conventional curing, while in the accelerated curing, maximum compressive strength was achieved at 40% replacement level. Rapid chloride penetration test (RCPT) output results for the conventional curing method at 0% and 70% give 3296.7 and 545.6 coulombs.Keywords: Alccofine, compressive strength, RCPT, wood ash pellets
Procedia PDF Downloads 1821670 Low-carbon Footprint Diluents in Solvent Extraction for Lithium-ion Battery Recycling
Authors: Abdoulaye Maihatchi Ahamed, Zubin Arora, Benjamin Swobada, Jean-yves Lansot, Alexandre Chagnes
Abstract:
Lithium-ion battery (LiB) is the technology of choice in the development of electric vehicles. But there are still many challenges, including the development of positive electrode materials exhibiting high cycle ability, high energy density, and low environmental impact. For this latter, LiBs must be manufactured in a circular approach by developing the appropriate strategies to reuse and recycle them. Presently, the recycling of LiBs is carried out by the pyrometallurgical route, but more and more processes implement or will implement the hydrometallurgical route or a combination of pyrometallurgical and hydrometallurgical operations. After producing the black mass by mineral processing, the hydrometallurgical process consists in leaching the black mass in order to uptake the metals contained in the cathodic material. Then, these metals are extracted selectively by liquid-liquid extraction, solid-liquid extraction, and/or precipitation stages. However, liquid-liquid extraction combined with precipitation/crystallization steps is the most implemented operation in the LiB recycling process to selectively extract copper, aluminum, cobalt, nickel, manganese, and lithium from the leaching solution and precipitate these metals as high-grade sulfate or carbonate salts. Liquid-liquid extraction consists in contacting an organic solvent and an aqueous feed solution containing several metals, including the targeted metal(s) to extract. The organic phase is non-miscible with the aqueous phase. It is composed of an extractant to extract the target metals and a diluent, which is usually aliphatic kerosene produced from the petroleum industry. Sometimes, a phase modifier is added in the formulation of the extraction solvent to avoid the third phase formation. The extraction properties of the diluent do not depend only on the chemical structure of the extractant, but it may also depend on the nature of the diluent. Indeed, the interactions between the diluent can influence more or less the interactions between extractant molecules besides the extractant-diluent interactions. Only a few studies in the literature addressed the influence of the diluent on the extraction properties, while many studies focused on the effect of the extractants. Recently, new low-carbon footprint aliphatic diluents were produced by catalytic dearomatisation and distillation of bio-based oil. This study aims at investigating the influence of the nature of the diluent on the extraction properties of three extractants towards cobalt, nickel, manganese, copper, aluminum, and lithium: Cyanex®272 for nickel-cobalt separation, DEHPA for manganese extraction, and Acorga M5640 for copper extraction. The diluents used in the formulation of the extraction solvents are (i) low-odor aliphatic kerosene produced from the petroleum industry (ELIXORE 180, ELIXORE 230, ELIXORE 205, and ISANE IP 175) and (ii) bio-sourced aliphatic diluents (DEV 2138, DEV 2139, DEV 1763, DEV 2160, DEV 2161 and DEV 2063). After discussing the effect of the diluents on the extraction properties, this conference will address the development of a low carbon footprint process based on the use of the best bio-sourced diluent for the production of high-grade cobalt sulfate, nickel sulfate, manganese sulfate, and lithium carbonate, as well as metal copper.Keywords: diluent, hydrometallurgy, lithium-ion battery, recycling
Procedia PDF Downloads 881669 Public and Private Spaces Producing Social Connectedness in Traditional Environment: A Study on Old Medina District of Casablanca
Authors: Asmaa Sokrat, Aykut Karaman
Abstract:
Public and private spaces are major components of the morphology of the city. This research aims to study the interactions between public and private domains in terms of urban space in Casablanca. The research focuses on a general vision of a socio-spatial issue. It plans to identify the public, private, and transition (semi-public, semi-private) spaces as the constituent of the urban space. Moreover, the study investigates the link between public and private spaces with the social dimensions. Additionally, the research argues that the public space is a place of social interaction; as a reflection, this interaction is the intersection between urban space and social connectedness. Besides, social interaction can be the key to distinguishing between the public and private spheres. The methodological approach of the research is based on the literature review and field study. The article is targeting a case study on the old Medina of Casablanca, from daily use of the public and private spaces, the urban tissue, and the urban space types. In conclusion, the research exhibits that a public space could influence the privacy of the residents of a local urban area; thus, this privacy is inverted on the social interaction. This social interaction is the link between the urban space and social connectedness. Hence, this equation affects the typology of the private space.Keywords: public sphere, private sphere, social connectedness, old Medina of Casablanca
Procedia PDF Downloads 1381668 Reinventing Urban Governance: Sustainable Transport Solutions for Mitigating Climate Risks in Smart Cities
Authors: Jaqueline Nichi, Leila Da Costa Ferreira, Fabiana Barbi Seleguim, Gabriela Marques Di Giulio, Mariana Barbieri
Abstract:
The transport sector is responsible for approximately 55% of global greenhouse gas (GHG) emissions, in addition to pollution and other negative externalities, such as road accidents and congestion, that impact the routine of those who live in large cities. The objective of this article is to discuss the application and use of distinct mobility technologies such as climate adaptation and mitigation measures in the context of smart cities in the Global South. The documentary analysis is associated with 22 semi structured interviews with managers who work with mobility technologies in the public and private sectors and in civil society organizations to explore solutions in multilevel governance for smart and low-carbon mobility based on the case study from the city of São Paulo, Brazil. The hypothesis that innovation and technology to mitigate and adapt to climate impacts are not yet sufficient to make mobility more sustainable has been confirmed. The results indicate four relevant aspects for advancing a climate agenda in smart cities: integrated planning, coproduction of knowledge, experiments in governance, and new means of financing to guarantee the sustainable sociotechnical transition of the sector.Keywords: urban mobility, climate change, smart cities, multilevel governance
Procedia PDF Downloads 551667 Reuse of Spent Lithium Battery for the Production of Environmental Catalysts
Authors: Jyh-Cherng Chen, Chih-Shiang You, Jie-Shian Cheng
Abstract:
This study aims to recycle and reuse of spent lithium-cobalt battery and lithium-iron battery in the production of environmental catalysts. The characteristics and catalytic activities of synthesized catalysts for different air pollutants are analyzed and tested. The results show that the major metals in spent lithium-cobalt batteries are lithium 5%, cobalt 50%, nickel 3%, manganese 3% and the major metals in spent lithium-iron batteries are lithium 4%, iron 27%, and copper 4%. The catalytic activities of metal powders in the anode of spent lithium batteries are bad. With using the precipitation-oxidation method to prepare the lithium-cobalt catalysts from spent lithium-cobalt batteries, their catalytic activities for propane decomposition, CO oxidation, and NO reduction are well improved and excellent. The conversion efficiencies of the regenerated lithium-cobalt catalysts for those three gas pollutants are all above 99% even at low temperatures 200-300 °C. However, the catalytic activities of regenerated lithium-iron catalysts from spent lithium-iron batteries are unsatisfied.Keywords: catalyst, lithium-cobalt battery, lithium-iron battery, recycle and reuse
Procedia PDF Downloads 2581666 Right Livelihood (Samma Arjiva) for Lay Disciple
Authors: Kyaw Myint
Abstract:
Each and everyone seeking happiness. People are trying various kinds of ways to earn happiness. Noble eight fold path is the way to attain the highest peace and happiness which includes three parts Morality ( Sila ) Concentration ( smadi ), and Wisdom ( Pyanna ). According to the Buddha’s teaching to attain higher level of peace and happiness, one must walk on this path . In the Buddha’s teaching morality is basic for all of these three parts. The right Livelihood consider as morality to reach peace or earn happiness in this life and here after next life. It is a way of earn a living without breaking the precepts. The essence of the teaching is to practice metal purity through the material gaining. In this article attempts to study right way of livelihood laid down by the Buddha for lay disciple special reference to Vinijja suttha, Ardiya Sutta, Dighajanu Sutta and singalovoda sutta. This paper approach qualitative research based mainly on documentary analysis. The result of the study shows that right livelihood in Buddha's teaching involves both abstaining from wrong livelihood and taking right livelihood with right view and right effort. Buddha guidance on right livelihood can consist both materially and spiritually for lay disciple.Keywords: right livelihood, eight fold path, lay disciple, wrong livelihood
Procedia PDF Downloads 771665 Thermal Stability and Crystallization Behaviour of Modified ABS/PP Nanocomposites
Authors: Marianna I. Triantou, Petroula A. Tarantili
Abstract:
In this research work, poly (acrylonitrile-butadiene-styrene)/polypropylene (ABS/PP) blends were processed by melt compounding in a twin-screw extruder. Upgrading of the thermal characteristics of the obtained materials was attempted by the incorporation of organically modified montmorillonite (OMMT), as well as, by the addition of two types of compatibilizers; polypropylene grafted with maleic anhydride (PP-g-MAH) and ABS grafted with maleic anhydride (ABS-g-MAH). The effect of the above treatments was investigated separately and in combination. Increasing the PP content in ABS matrix seems to increase the thermal stability of their blend and the glass transition temperature (Tg) of SAN phase of ABS. From the other part, the addition of ABS to PP promotes the formation of its β-phase, which is maximum at 30 wt% ABS concentration, and increases the crystallization temperature (Tc) of PP. In addition, it increases the crystallization rate of PP.The β-phase of PP in ABS/PP blends is reduced by the addition of compatibilizers or/and organoclay reinforcement. The incorporation of compatibilizers increases the thermal stability of PP and reduces its melting (ΔΗm) and crystallization (ΔΗc) enthalpies. Furthermore it decreases slightly the Tgs of PP and SAN phases of ABS/PP blends. Regarding the storage modulus of the ABS/PP blends, it presents a change in their behavior at about 10°C and return to their initial behavior at ~110°C. The incorporation of OMMT to no compatibilized and compatibilized ABS/PP blends enhances their storage modulus.Keywords: acrylonitrile, butadiene, styrene terpolymer, compatibilizer, organoclay, polypropylene
Procedia PDF Downloads 3211664 A Comparative Study of Microstructure, Thermal and Mechanical Properties of A359 Composites Reinforced with SiC, Si3N4 and AlN Particles
Authors: Essam Shalaby, Alexander Churyumov, Malak Abou El-Khair, Atef Daoud
Abstract:
A comparative study of the thermal and mechanical behavior of squeezed A359 composites containing 5, 10 and 15 wt.% SiC, (SiC+ Si3N4) and AlN particulates was investigated. Stir followed by squeeze casting techniques are used to produce A359 composites. It was noticed that, A359/AlN composites have high thermal conductivity as compared to A359 alloy and even to A359/SiC or A359/(SiC+Si3N4) composites. Microstructures of the composites have shown homogeneous and even distribution of reinforcements within the matrix. Interfacial reactions between particles and matrix were investigated using X-ray diffraction and energy dispersive X-ray analysis. The presence of particles led not only to increase peak hardness of the composites but also to accelerate the aging kinetics. As compared with A359 matrix alloy, compression test of the composites has exhibited a significant increase in the yield and the ultimate compressive strengths with a relative reduction in the failure strain. Those light weight composites have a high potential to be used for automotive and aerospace applications.Keywords: metal-matrix composite, squeeze, microstructure, thermal conductivity, compressive properties
Procedia PDF Downloads 3811663 White Light Emission through Downconversion of Terbium and Europium Doped CEF3 Nanophosphors
Authors: Mohit Kalra, Varun S., Mayuri Gandhi
Abstract:
CeF3 nanophosphors has been extensively investigated in the recent years for lighting and numerous bio-applications. Down conversion emissions in CeF3:Eu3+/Tb3+ phosphors were studied with the aim of obtaining a white light emitting composition, by a simple co-precipitation method. The material was characterized by X-ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HR-TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Photoluminescence (PL). Uniformly distributed nanoparticles were obtained with an average particle size 8-10 nm. Different doping concentrations were performed and fluorescence study was carried out to optimize the dopants concentration for maximum luminescence intensity. The steady state and time resolved luminescence studies confirmed efficient energy transfer from the host to activator ions. Different concentrations of Tb 3+, Eu 3+ were doped to achieve a white light emitting phosphor for UV-based Light Emitting Diodes (LEDs). The nanoparticles showed characteristic emission of respective dopants (Eu 3+, Tb3+) when excited at the 4f→5d transition of Ce3+. The chromaticity coordinates for these samples were calculated and the CeF3 doped with Eu 3+ and Tb3+ gave an emission very close to white light. These materials may find its applications in optoelectronics and various bio applications.Keywords: white light down-conversion, nanophosphors, LEDs, rare earth, cerium fluoride, lanthanides
Procedia PDF Downloads 4041662 Polymer Spiral Film Gas-Liquid Heat Exchanger for Waste Heat Recovery in Exhaust Gases
Authors: S. R. Parthiban, C. Elajchet Senni
Abstract:
Spiral heat exchangers are known as excellent heat exchanger because of far compact and high heat transfer efficiency. An innovative spiral heat exchanger based on polymer materials is designed for waste heat recovery process. Such a design based on polymer film technology provides better corrosion and chemical resistance compared to conventional metal heat exchangers. Due to the smooth surface of polymer film fouling is reduced. A new arrangement for flow of hot flue gas and cold fluid is employed for design, flue gas flows in axial path while the cold fluid flows in a spiral path. Heat load recovery achieved with the presented heat exchanger is in the range of 1.5 kW thermic but potential heat recovery about 3.5kW might be achievable. To measure the performance of the spiral tube heat exchanger, its model is suitably designed and fabricated so as to perform experimental tests. The paper gives analysis of spiral tube heat exchanger.Keywords: spiral heat exchanger, polymer based materials, fouling factor, heat load
Procedia PDF Downloads 3681661 Magnetic Susceptibility Measurements of Urban Areas in Denizli City and Showing the Distributions of Heavy Metal Pollution
Authors: Ali Aydin
Abstract:
Three hundred and fifty soil samples were collected around the urban and residential area, for the purpose of a magnetic susceptibility study on pollution in Denizli City, Turkiye. Measurements of volume-specific magnetic susceptibility (к) and mass-specific magnetic susceptibility (χ) show a significant variation range from place to place collected soil samples. In this study, we did a primary magnetic study near the high heavy traffic pollution in a part of Denizli city, Turkiye which was said the most polluted city in Aegean Region of Turkey. The magnetic susceptibility measurements increased from the garden area to residential area and reached the high levels near the industrial areas of the city. Magnetic particle concentration and grain size sourced exhaust gasses, and other pollution sources increase with the increasing distance from a residential area, indicating the high traffic road area.Keywords: magnetic susceptibility, pollution, magnetic particle, Denizli
Procedia PDF Downloads 2941660 Key Issues in Transfer Stage of BOT Project: Experience from China
Authors: Wang Liguang, Zhang Xueqing
Abstract:
The build-operate-transfer (BOT) project delivery system has provided effective routes to mobilize private sector funds, innovative technologies, management skills and operational efficiencies for public infrastructure development and have been widely used in China during the last 20 years. Many BOT projects in China will be smoothly transferred to the government soon and the transfer stage, which is considered as the last stage, must be studied carefully and handled well to achieve the overall success of BOT projects. There will be many issues faced by both the public sector and private sector in the transfer stage of BOT projects, including project post-assessment, technology and documents transfer, personal training and staff transition, etc. and sometimes additional legislation is needed for future operation and management of facilities. However, most previous studies focused on the bidding, financing, and building and operation stages instead of transfer stage. This research identifies nine key issues in the transfer stage of BOT projects through a comprehensive study on three cases in China, and the expert interview and expert discussion meetings are held to validate the key issues and give detail analysis. A proposed framework of transfer management is prepared based on the experiences derived and lessons drawn from the case studies and expert interview and discussions, which is expected to improve the transfer management of BOT projects in practice.Keywords: BOT project, key issues, transfer management, transfer stage
Procedia PDF Downloads 2561659 The Study of Chitosan beads Adsorption Properties for the Removal of Heavy Metals
Authors: Peter O. Osifo, Hein W. J. P. Neomagus
Abstract:
In this study, a predicted pH model was used to determine adsorption equilibrium properties of copper, lead, zinc and cadmium. Chitosan was prepared from the exoskeleton of Cape rock-lobsters, collected from the surroundings of Cape Town, South Africa. The beads were cross-linked with gluteraldehyde to restore its chemical stability in acid media. The chitosan beads were characterized; the beads water contents and pKa varied in the range of 90-96% and 4.3-6.0 respectively and the degree of crosslinking for the beads was 18%. A pH-model, which described the reversibility of the metal adsorbed onto the beads, was used to predict the equilibrium properties of copper, lead, zinc and cadmium adsorption onto the cross-linked beads. The model accounts for the effect of pH and the important model parameters; the equilibrium adsorption constant (Kads) and to a lesser extent the adsorbent adsorption capacity (qmax). The adsorption equilibrium constant for copper, lead, zinc and cadmium were found to be 2.58×10-3, 2.22×0-3, 9.55×0-3, and 4.79×0-3, respectively. The adsorbent maximum capacity was determined to be 4.2 mmol/g.Keywords: chitosan beads, adsorption, heavy metals, waste water
Procedia PDF Downloads 3801658 TiO2 Formation after Nanotubes Growth on Ti-15Mo Alloy Surface for Different Annealing Temperatures
Authors: A. L. R. Rangel, J. A. M. Chaves, A. P. R. Alves Claro
Abstract:
Surface modification of titanium and its alloys using TiO2 nanotube growth has been widely studied for biomedical field due to excellent interaction between implant and biological environment. The success of this treatment is directly related to anatase phase formation (TiO2 phase) which affects the cells growth. The aim of this study was to evaluate the phases formed in the nanotubes growth on the Ti-15Mo surface. Nanotubes were grown by electrochemical anodization of the alloy in ammonium fluoride based glycerol electrolyte for 24 hours at 20V. Then, the samples were annealed at 200°,400°, 450°, 500°, 600°, and 800° C for 1 hour. Contact angles measurements, scanning electron microscopy images and X rays diffraction analysis (XRD) were carried out for all samples. Raman Spectroscopy was used to evaluate TiO2 phases transformation in nanotubes samples as well. The results of XRD showed anatase formation for lower temperatures, while at 800 ° C the rutile phase was observed all over the surface. Raman spectra indicate that this phase transition occurs between 500 and 600 °C. The different phases formed have influenced the nanotubes morphologies, since higher annealing temperatures induced agglutination of the TiO2 layer, disrupting the tubular structure. On the other hand, the nanotubes drastically reduced the contact angle, regardless the annealing temperature.Keywords: nanotubes, TiO2, titanium alloys, Ti-15Mo
Procedia PDF Downloads 3841657 The Results of the Archaeological Excavations at the Site of Qurh in Al Ula Region
Authors: Ahmad Al Aboudi
Abstract:
The Department of Archaeology at King Saud University conduct a long Term excavations since 2004 at the archaeological site of (Qurh) in Al-Ula area. The history of the site goes back to the eighth century AD. The main aim of the excavations is the training of the students on the archaeological field work associated with the scientific skills of exploring, surveying, classifying, documentations and other necessary in the field archaeology. During the 12th Season of Excavations, an area of 20 × 40 m2 of the site was excavated. The depth of the excavating the site was reached to 2-3 m. Many of the architectural features of a residential area in the northern part of the site were excavated this season. Circular walls made of mud-brick and a brick column drums and tiles made of clay were revealed this season. Additionally, lots of findings such as Gemstones, jars, ceramic plates, metal, glass, and fabric, as well as some jewelers and coins were discovered. This paper will deal with the main results of this field project including the architectural features and phenomena and their interpretations, the classification of excavated material culture remains and stratigraphy.Keywords: Islamic architecture, Islamic art, excavations, early Islamic city
Procedia PDF Downloads 2741656 Effect of Substrate Concentration and Pulp Density on Bioleaching of Metals from as Received Spent Refinery Catalyst
Authors: Haragobinda Srichandan, Ashish Pathak, Dong Jin Kim, Seoung-Won Lee
Abstract:
The present investigation deals with bioleaching of spent refinery catalyst (as received) using At. thiooxidans. The effect of substrate concentration and pulp density was studied. XPS analysis concluded that the metals in spent catalyst were present as both sulfide and oxides. The dissolution behavior of metals during bioleaching was different. During bioleaching, higher dissolution of Ni and lower dissolution of Mo, V and Al was observed. An increase in pulp density from 1% to 10% led to a decrease in leaching yields of all the metals. This was due to the substantial increase in medium pH at higher pulp densities. The maximum negative impact of pulp density was observed on the leaching yield of V. An increase in sulfur concentration from 0.5% to 2.5% didn’t bring positive impact on metal leaching yield. 0.5% sulfur was found to be the optimum above which no significant increase in leaching yields of metals was observed.Keywords: At. thiooxidans, pulp density, spent catalyst, bioleaching
Procedia PDF Downloads 3661655 Operational Characteristics of the Road Surface Improvement
Authors: Iuri Salukvadze
Abstract:
Construction takes importance role in the history of mankind, there is not a single thing-product in our lives in which the builder’s work was not to be materialized, because to create all of it requires setting up factories, roads, and bridges, etc. The function of the Republic of Georgia, as part of the connecting Europe-Asia transport corridor, is significantly increased. In the context of transit function a large part of the cargo traffic belongs to motor transport, hence the improvement of motor roads transport infrastructure is rather important and rise the new, increased operational demands for existing as well as new motor roads. Construction of the durable road surface is related to rather large values, but because of high transport-operational properties, such as high-speed, less fuel consumption, less depreciation of tires, etc. If the traffic intensity is high, therefore the reimbursement of expenses occurs rapidly and accordingly is increasing income. If the traffic intensity is relatively small, it is recommended to use lightened structures of road carpet in order to pay for capital investments amounted to no more than normative one. The road carpet is divided into the following basic types: asphaltic concrete and cement concrete. Asphaltic concrete is the most perfect type of road carpet. It is arranged in two or three layers on rigid foundation and will be compacted. Asphaltic concrete is artificial building material, which due stratum will be selected and measured from stone skeleton and sand, interconnected by bitumen and a mixture of mineral powder. Less strictly selected similar material is called as bitumen-mineral mixture. Asphaltic concrete is non-rigid building material and well durable on vertical loadings; it is less resistant to the impact of horizontal forces. The cement concrete is monolithic and durable material, it is well durable the horizontal loads and is less resistant related to vertical loads. The cement concrete consists from strictly selected, measured stone material and sand, the binder is cement. The cement concrete road carpet represents separate slabs of sizes from 3 ÷ 5 op to 6 ÷ 8 meters. The slabs are reinforced by a rather complex system. Between the slabs are arranged seams that are designed for avoiding of additional stresses due temperature fluctuations on the length of slabs. For the joint behavior of separate slabs, they are connected by metal rods. Rods provide the changes in the length of slabs and distribute to the slab vertical forces and bending moments. The foundation layers will be extremely durable, for that is required high-quality stone material, cement, and metal. The qualification work aims to: in order for improvement of traffic conditions on motor roads to prolong operational conditions and improving their characteristics. The work consists from three chapters, 80 pages, 5 tables and 5 figures. In the work are stated general concepts as well as carried out by various companies using modern methods tests and their results. In the chapter III are stated carried by us tests related to this issue and specific examples to improving the operational characteristics.Keywords: asphalt, cement, cylindrikal sample of asphalt, building
Procedia PDF Downloads 2231654 Contextual Paper on Green Finance: Analysis of the Green Bonds Market
Authors: Dina H. Gabr, Mona A. El Bannan
Abstract:
With growing worldwide concern for global warming, green finance has become the fuel that pushes the world to act in combating and mitigating climate change. Coupled with adopting the Paris Agreement and the United Nations Sustainable Development Goals, Green finance became a vital tool in creating a pathway to sustainable development, as it connects the financial world with environmental and societal benefits. This paper provides a comprehensive review of the concepts and definitions of green finance and the importance of 'green' impact investments today. The core challenge in combating climate change is reducing and controlling Greenhouse gas emissions; therefore, this study explores the solutions green finance provides putting emphasis on the use of renewable energy, which is necessary for enhancing the transition to the green economy. With increasing attention to the concept of green finance, multiple forms of green investments and financial tools have come to fruition; the most prominent are green bonds. The rise of green bonds, a debt market to finance climate solutions, provide a promising mechanism for sustainable finance. Following the review, this paper compiles a comprehensive green bond dataset, presenting a statistical study of the evolution of the green bonds market from its first appearance in 2006 until 2021.Keywords: climate change, GHG emissions, green bonds, green finance, sustainable finance
Procedia PDF Downloads 1201653 Optimal Configuration for Polarimetric Surface Plasmon Resonance Sensors
Authors: Ibrahim Watad, Ibrahim Abdulhalim
Abstract:
Conventional spectroscopic surface plasmon resonance (SPR) sensors are widely used, both in fundamental research and environmental monitoring as well as healthcare diagnostics. However, they still lack the low limit of detection (LOD) and there still a place for improvement. SPR conventional sensors are based on the detection of a dip in the reflectivity spectrum which is relatively wide. To improve the performance of these sensors, many techniques and methods proposed either to reduce the width of the dip or to increase the sensitivity. Together with that, profiting from the sharp jump in the phase spectrum under SPR, several works suggested the extraction of the phase of the reflected wave. However, existing phase measurement setups are in general more complicated compared to the conventional setups, require more stability and are very sensitive to external vibrations and noises. In this study, a simple polarimetric technique for phase extraction under SPR is presented, followed by a theoretical error analysis and an experimental verification. The advantages of the proposed technique upon existing techniques will be elaborated, together with conclusions regarding the best polarimetric function, and its corresponding optimal metal layer range of thicknesses to use under the conventional Kretschmann-Raether configuration.Keywords: plasmonics, polarimetry, thin films, optical sensors
Procedia PDF Downloads 4041652 X-Ray Diffraction Technique as a Means for Degradation Assessment of Welded Joints
Authors: Jaroslav Fiala, Jaroslav Kaiser, Pavel Zlabek, Vaclav Mentl
Abstract:
The X-ray diffraction technique was recognized as a useful tool for the assessment of material degradation degree after a long-time service. In many industrial applications materials are subjected to degradation of mechanical properties as a result of real service conditions. The assessment of the remnant lifetime of components and structures is commonly based on correlated procedures including numerous destructive, non-destructive and mathematical techniques that should guarantee reasonable precise assessment of the current damage extent of materials in question and the remnant lifetime assessment. This paper summarizes results of an experimental programme concentrated on mechanical properties degradation of welded components. Steel an Al-alloy test specimens of base metal, containing welds and simple weldments were fatigue loaded at room temperature to obtain Woehler S-N curve. X-ray diffraction technique was applied to assess the degradation degree of material as a result of cyclic loading.Keywords: fatigue loading, material degradation, steels, AL-alloys, X-ray diffraction
Procedia PDF Downloads 4391651 Precious and Rare Metals in Overburden Carbonaceous Rocks: Methods of Extraction
Authors: Tatyana Alexandrova, Alexandr Alexandrov, Nadezhda Nikolaeva
Abstract:
A problem of complex mineral resources development is urgent and priority, it is aimed at realization of the processes of their ecologically safe development, one of its components is revealing the influence of the forms of element compounds in raw materials and in the processing products. In view of depletion of the precious metal reserves at the traditional deposits in the XXI century the large-size open cast deposits, localized in black shale strata begin to play the leading role. Carbonaceous (black) shales carry a heightened metallogenic potential. Black shales with high content of carbon are widely distributed within the scope of Bureinsky massif. According to academician Hanchuk`s data black shales of Sutirskaya series contain generally PGEs native form. The presence of high absorptive towards carbonaceous matter gold and PGEs compounds in crude ore results in decrease of valuable components extraction because of their sorption into dissipated carbonaceous matter.Keywords: сarbonaceous rocks, bitumens, precious metals, concentration, extraction
Procedia PDF Downloads 2461650 Photocatalytic Disintegration of Naphthalene and Naphthalene Similar Compounds in Indoors Air
Authors: Tobias Schnabel
Abstract:
Naphthalene and naphthalene similar compounds are a common problem in the indoor air of buildings from the 1960s and 1970s in Germany. Often tar containing roof felt was used under the concrete floor to prevent humidity to come through the floor. This tar containing roof felt has high concentrations of PAH (Polycyclic aromatic hydrocarbon) and naphthalene. Naphthalene easily evaporates and contaminates the indoor air. Especially after renovations and energetically modernization of the buildings, the naphthalene concentration rises because no forced air exchange can happen. Because of this problem, it is often necessary to change the floors after renovation of the buildings. The MFPA Weimar (Material research and testing facility) developed in cooperation a project with LEJ GmbH and Reichmann Gebäudetechnik GmbH. It is a technical solution for the disintegration of naphthalene in naphthalene, similar compounds in indoor air with photocatalytic reforming. Photocatalytic systems produce active oxygen species (hydroxyl radicals) through trading semiconductors on a wavelength of their bandgap. The light energy separates the charges in the semiconductor and produces free electrons in the line tape and defect electrons. The defect electrons can react with hydroxide ions to hydroxyl radicals. The produced hydroxyl radicals are a strong oxidation agent, and can oxidate organic matter to carbon dioxide and water. During the research, new titanium oxide catalysator surface coatings were developed. This coating technology allows the production of very porous titan oxide layer on temperature stable carrier materials. The porosity allows the naphthalene to get easily absorbed by the surface coating, what accelerates the reaction of the heterogeneous photocatalysis. The photocatalytic reaction is induced by high power and high efficient UV-A (ultra violet light) Leds with a wavelength of 365nm. Various tests in emission chambers and on the reformer itself show that a reduction of naphthalene in important concentrations between 2 and 250 µg/m³ is possible. The disintegration rate was at least 80%. To reduce the concentration of naphthalene from 30 µg/m³ to a level below 5 µg/m³ in a usual 50 ² classroom, an energy of 6 kWh is needed. The benefits of the photocatalytic indoor air treatment are that every organic compound in the air can be disintegrated and reduced. The use of new photocatalytic materials in combination with highly efficient UV leds make a safe and energy efficient reduction of organic compounds in indoor air possible. At the moment the air cleaning systems take the step from prototype stage into the usage in real buildings.Keywords: naphthalene, titandioxide, indoor air, photocatalysis
Procedia PDF Downloads 1431649 Laser-Ultrasonic Method for Measuring the Local Elastic Moduli of Porosity Isotropic Composite Materials
Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya, Vladimir A. Makarov, Yulia G. Sokolovskaya
Abstract:
The laser-ultrasonic method is realized for quantifying the influence of porosity on the local Young’s modulus of isotropic composite materials. The method is based on a laser generation of ultrasound pulses combined with measurement of the phase velocity of longitudinal and shear acoustic waves in samples. The main advantage of this method compared with traditional ultrasonic research methods is the efficient generation of short and powerful probing acoustic pulses required for reliable testing of ultrasound absorbing and scattering heterogeneous materials. Using as an example samples of a metal matrix composite with reinforcing microparticles of silicon carbide in various concentrations, it is shown that to provide an effective increase in Young’s modulus with increasing concentration of microparticles, the porosity of the final sample should not exceed 2%.Keywords: laser ultrasonic, longitudinal and shear ultrasonic waves, porosity, composite, local elastic moduli
Procedia PDF Downloads 3461648 Viscoelastic Behaviour of Hyaluronic Acid Copolymers
Authors: Loredana Elena Nita, Maria Bercea, Aurica P. Chiriac, Iordana Neamtu
Abstract:
The paper is devoted to the behavior of gels based on poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane) copolymers, with different ratio between the comonomers, and hyaluronic acid (HA). The gel formation was investigated by small-amplitude oscillatory shear measurements following the viscoelastic behavior as a function of gel composition, temperature and shear conditions. Hyaluronic acid was investigated in the same conditions and its rheological behavior is typical to viscous fluids. In the case of the copolymers, the ratio between the two comonomers influences the viscoelastic behavior, a higher content of itaconic anhydride favoring the gel formation. Also, the sol-gel transition was evaluated according to Winter-Chambon criterion that identifies the gelation point when the viscoelastic moduli (G’ and G”) behave similarly as a function of oscillation frequency. From rheological measurements, an optimum composition was evidenced for which the system presents a typical gel-like behavior at 37 °C: the elastic modulus is higher than the viscous modulus and they are not dependent on the oscillation frequency. The formation of the 3D macroporous network was also evidenced by FTIR spectra, SEM microscopy and chemical imaging. These hydrogels present a high potential as drug delivery systems.Keywords: copolymer, viscoelasticity, gelation, 3D network
Procedia PDF Downloads 2871647 Chemical Synthesis and Microwave Sintering of SnO2-Based Nanoparticles for Varistor Films
Authors: Glauco M. M. M. Lustosa, João Paulo C. Costa, Leinig Antônio Perazolli, Maria Aparecida Zaghete
Abstract:
SnO2 has electrical conductivity due to the excess of electrons and structural defects, being its electrical behavior highly dependent on sintering temperature and chemical composition. The addition of metals modifiers into the crystalline structure can improve and controlling the behavior of some semiconductor oxides that can therefore develop different applications such as varistors (ceramic with non-ohmic behavior between current and voltage, i.e. conductive during normal operation and resistive during overvoltage). The polymeric precursor method, based on the complexation reaction between metal ion and policarboxylic acid and then polymerized with ethylene glycol, was used to obtain nanopowders ceramic. The metal immobilization reduces its segregation during the decomposition of the polyester resulting in a crystalline oxide with high chemical homogeneity. The preparation of films from ceramics nanoparticles using electrophoretic deposition method (EPD) brings prospects for a new generation of smaller size devices with easy integration technology. EPD allows to control time and current and therefore it can have control of the thickness, surface roughness and the film density, quickly and with low production costs. The sintering process is key to control size and grain boundary density of the film. In this step, there is the diffusion of metals that promote densification and control of intrinsic defects or change these defects which will form and modify the potential barrier in the grain boundary. The use of microwave oven for sintering is an advantageous process due to the fast and homogeneous heating rate, promoting the diffusion and densification without irregular grain growth. This research was done a comparative study of sintering temperature by use of zinc as modifier agent to verify the influence on sintering step aiming to promote densification and grain growth, which influences the potential barrier formation and then changed the electrical behavior. SnO2-nanoparticles were obtained with 1 %mol of ZnO + 0.05 %mol of Nb2O5 (SZN), deposited as film through EPD (voltage 2 kV, time of 10 min) on Si/Pt substrate. Sintering was made in a microwave oven at 800, 900 and 1000 °C. For complete coverage of the substrate by nanoparticles with low surface roughness and uniform thickness was added 0.02 g of solid iodine in alcoholic suspension SnO2 to increase particle surface charge. They were also used magneto in EPD system that improved the deposition rate forming a compact film. Using a scanning electron microscope of high resolution (SEM_FEG) it was observed nanoparticles with average size between 10-20 nm, after sintering the average size was 150 to 200 nm and thickness of 5 µm. Also, it was verified that the temperature at 1000 °C was the most efficient in sintering. The best sintering time was also recorded and determined as 40 minutes. After sintering, the films were recovered with Cr3+ ions layer by EPD, then the films were again thermally treated. The electrical characterizations (nonlinear coefficient of 11.4, voltage rupture of ~60 V and leakage current = 4.8x10−6 A), allow considering the new methodology suitable for prepare SnO2-based varistor applied for development of electrical protection devices for low voltage.Keywords: chemical synthesis, electrophoretic deposition, microwave sintering, tin dioxide
Procedia PDF Downloads 2721646 An Easy-Applicable Method for In situ Silver Nanoparticles Preparation into Wool Fibers
Authors: Salwa Mowafi, Mohamed Rehan, Hany Kafafy
Abstract:
In this study, three different systems including room temperature, conventional water bath heating and microwave irradiation technique will be employed in the fabrication of silver nanoparticle-wool fibers. The silver nanoparticles will be synthesized in-situ incorporated into wool fibers under redox active bio-template of wool protein which facilitates the reduction of Ag+ to nanoparticulate Ag0. Silver NPs incorporated wool fiber will be characterized by scanning electron microscopy, energy dispersive X-ray, FTIR, TGA, silver content and X-ray photoelectron spectroscopy. The mechanism of binding Ag NPs in-situ incorporated wool fibers matrix will be discussed. The effect of silver nanoparticles on the coloration, antimicrobial, UV-protection and catalytic properties of the wool fibers will be evaluated. The overall results of this study indicate that the Ag NPs in-situ incorporated wool fibers will be applied as colorants for wool fibers with improving in its multi-functionality properties. So, this study provides a simple approach for innovative protein fibers design by applying the optical properties of Plasmonic noble metal nanoparticles.Keywords: microwave irradiation technique, multi-functionality properties, silver nanoparticles, wool fibers
Procedia PDF Downloads 207