Search results for: small angle x-ray diffraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7196

Search results for: small angle x-ray diffraction

4466 Structural and Functional Comparison of Untagged and Tagged EmrE Protein

Authors: S. Junaid S. Qazi, Denice C. Bay, Raymond Chew, Raymond J. Turner

Abstract:

EmrE, a member of the small multidrug resistance protein family in bacteria is considered to be the archetypical member of its family. It confers host resistance to a wide variety of quaternary cation compounds (QCCs) driven by proton motive force. Generally, purification yield is a challenge in all membrane proteins because of the difficulties in their expression, isolation and solubilization. EmrE is extremely hydrophobic which make the purification yield challenging. We have purified EmrE protein using two different approaches: organic solvent membrane extraction and hexahistidine (his6) tagged Ni-affinity chromatographic methods. We have characterized changes present between ligand affinity of untagged and his6-tagged EmrE proteins in similar membrane mimetic environments using biophysical experimental techniques. Purified proteins were solubilized in a buffer containing n-dodecyl-β-D-maltopyranoside (DDM) and the conformations in the proteins were explored in the presence of four QCCs, methyl viologen (MV), ethidium bromide (EB), cetylpyridinium chloride (CTP) and tetraphenyl phosphonium (TPP). SDS-Tricine PAGE and dynamic light scattering (DLS) analysis revealed that the addition of QCCs did not induce higher multimeric forms of either proteins at all QCC:EmrE molar ratios examined under the solubilization conditions applied. QCC binding curves obtained from the Trp fluorescence quenching spectra, gave the values of dissociation constant (Kd) and maximum specific one-site binding (Bmax). Lower Bmax values to QCCs for his6-tagged EmrE shows that the binding sites remained unoccupied. This lower saturation suggests that the his6-tagged versions provide a conformation that prevents saturated binding. Our data demonstrate that tagging an integral membrane protein can significantly influence the protein.

Keywords: small multidrug resistance (SMR) protein, EmrE, integral membrane protein folding, quaternary ammonium compounds (QAC), quaternary cation compounds (QCC), nickel affinity chromatography, hexahistidine (His6) tag

Procedia PDF Downloads 372
4465 Design and Experimental Studies of a Centrifugal SWIRL Atomizer

Authors: Hemabushan K., Manikandan

Abstract:

In a swirl atomizer, fluid undergoes a swirling motion as a result of centrifugal force created by opposed tangential inlets in the swirl chamber. The angular momentum of fluid continually increases as it reaches the exit orifice and forms a hollow sheet. Which disintegrates to form ligaments and droplets respectively as it flows downstream. This type of atomizers used in rocket injectors and oil burner furnaces. In this present investigation a swirl atomizer with two opposed tangential inlets has been designed. Water as working fluid, experiments had been conducted for the fluid injection pressures in regime of 0.033 bar to 0.519 bar. The fluid has been pressured by a 0.5hp pump and regulated by a pressure regulator valve. Injection pressure of fluid has been measured by a U-tube mercury manometer. The spray pattern and the droplets has been captured with a high resolution camera in black background with a high intensity flash highlighting the fluid. The unprocessed images were processed in ImageJ processing software for measuring the droplet diameters and its shape characteristics along the downstream. The parameters such as mean droplet diameter and distribution, wave pattern, rupture distance and spray angle were studied for this atomizer. The above results were compared with theoretical results and also analysed for deviation with design parameters.

Keywords: swirl atomizer, injector, spray, SWIRL

Procedia PDF Downloads 483
4464 Small Town Big Urban Issues the Case of Kiryat Ono, Israel

Authors: Ruth Shapira

Abstract:

Introduction: The rapid urbanization of the last century confronts planners, regulatory bodies, developers and most of all – the public with seemingly unsolved conflicts regarding values, capital, and wellbeing of the built and un-built urban space. This is reflected in the quality of the urban form and life which has known no significant progress in the last 2-3 decades despite the on-growing urban population. It is the objective of this paper to analyze some of these fundamental issues through the case study of a relatively small town in the center of Israel (Kiryat-Ono, 100,000 inhabitants), unfold the deep structure of qualities versus disruptors, present some cure that we have developed to bridge over and humbly suggest a practice that may be generic for similar cases. Basic Methodologies: The OBJECT, the town of Kiryat Ono, shall be experimented upon in a series of four action processes: De-composition, Re-composition, the Centering process and, finally, Controlled Structural Disintegration. Each stage will be based on facts, analysis of previous multidisciplinary interventions on various layers – and the inevitable reaction of the OBJECT, leading to the conclusion based on innovative theoretical and practical methods that we have developed and that we believe are proper for the open ended network, setting the rules for the contemporary urban society to cluster by. The Study: Kiryat Ono, was founded 70 years ago as an agricultural settlement and rapidly turned into an urban entity. In spite the massive intensification, the original DNA of the old small town was still deeply embedded, mostly in the quality of the public space and in the sense of clustered communities. In the past 20 years, the recent demand for housing has been addressed to on the national level with recent master plans and urban regeneration policies mostly encouraging individual economic initiatives. Unfortunately, due to the obsolete existing planning platform the present urban renewal is characterized by pressure of developers, a dramatic change in building scale and widespread disintegration of the existing urban and social tissue. Our office was commissioned to conceptualize two master plans for the two contradictory processes of Kiryat Ono’s future: intensification and conservation. Following a comprehensive investigation into the deep structures and qualities of the existing town, we developed a new vocabulary of conservation terms thus redefying the sense of PLACE. The main challenge was to create master plans that should offer a regulatory basis to the accelerated and sporadic development providing for the public good and preserving the characteristics of the PLACE consisting of a tool box of design guidelines that will have the ability to reorganize space along the time axis in a coherent way. In Conclusion: The system of rules that we have developed can generate endless possible patterns making sure that at each implementation fragment an event is created, and a better place is revealed. It takes time and perseverance but it seems to be the way to provide a healthy framework for the accelerated urbanization of our chaotic present.

Keywords: housing, architecture, urban qualities, urban regeneration, conservation, intensification

Procedia PDF Downloads 358
4463 Green Synthesis of Magnetic, Silica Nanocomposite and Its Adsorptive Performance against Organochlorine Pesticides

Authors: Waleed A. El-Said, Dina M. Fouad, Mohamed H. Aly, Mohamed A. El-Gahami

Abstract:

Green synthesis of nanomaterials has received increasing attention as an eco-friendly technology in materials science. Here, we have used two types of extractions from green tea leaf (i.e. total extraction and tannin extraction) as reducing agents for a rapid, simple and one step synthesis method of mesoporous silica nanoparticles (MSNPs)/iron oxide (Fe3O4) nanocomposite based on deposition of Fe3O4 onto MSNPs. MSNPs/Fe3O4 nanocomposite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, vibrating sample magnetometer, N2 adsorption, and high-resolution transmission electron microscopy. The average mesoporous silica particle diameter was found to be around 30 nm with high surface area (818 m2/gm). MSNPs/Fe3O4 nanocomposite was used for removing lindane pesticide (an environmental hazard material) from aqueous solutions. Fourier transform infrared, UV-vis, High-performance liquid chromatography and gas chromatography techniques were used to confirm the high ability of MSNPs/Fe3O4 nanocomposite for sensing and capture of lindane molecules with high sorption capacity (more than 89%) that could develop a new eco-friendly strategy for detection and removing of pesticide and as a promising material for water treatment application.

Keywords: green synthesis, mesoporous silica, magnetic iron oxide NPs, adsorption Lindane

Procedia PDF Downloads 432
4462 Comparative Study of Ni Catalysts Supported by Silica and Modified by Metal Additions Co and Ce for The Steam Reforming of Methane

Authors: Ali Zazi, Ouiza Cherifi

Abstract:

The Catalysts materials Ni-SiO₂, Ni-Co-SiO₂ and Ni-Ce-SiO₂ were synthetized by classical method impregnation and supported by silica. This involves combing the silica with an adequate rate of the solution of nickel nitrates, or nickel nitrate and cobalt nitrate, or nickel nitrate and cerium nitrate, mixed, dried and calcined at 700 ° c. These catalysts have been characterized by different physicochemical analysis techniques. The atomic absorption spectrometry indicates that the real contents of nickel, cerium and cobalt are close to the theoretical contents previously assumed, which let's say that the nitrate solutions have impregnated well the silica support. The BET results show that the surface area of the specific surfaces decreases slightly after impregnation with nickel nitrates or Co and Ce metals and a further slight decrease after the reaction. This is likely due to coke deposition. X-ray diffraction shows the presence of the different SiO₂ and NiO phases for all catalysts—theCoO phase for that promoted by Co and the Ce₂O₂ phase for that promoted by Ce. The methane steam reforming reaction was carried out on a quartz reactor in a fixed bed. Reactants and products of the reaction were analyzed by a gas chromatograph. This study shows that the metal addition of Cerium or Cobalt improves the majority of the catalytic performance of Ni for the steam reforming reaction of methane. And we conclude the classification of our Catalysts in order of decreasing activity and catalytic performances as follows: Ni-Ce / SiO₂ >Ni-Co / SiO₂> Ni / SiO₂ .

Keywords: cerium, cobalt, heterogeneous catalysis, hydrogen, methane, steam reforming, synthesis gas

Procedia PDF Downloads 188
4461 A Nanoelectromechanical Tunable Oscillator Base on a High-Q Optical Cavity

Authors: Jianguo Huang, Hong Cai, Bin Dong, Jifang Tao, Aiqun Liu, Dim-Lee Kwong, Yuandong Gu

Abstract:

We developed a miniaturized tunable optomechanical oscillator based on the nanoelectromechanical systems (NEMS) technology, and its frequencies can be electrostatically tuned by as much as 10%. By taking both advantages of optical and electrical spring, the oscillator achieves a high tuning sensitivity without resorting to mechanical tension. In particular, the proposed high-Q optical cavity design greatly enhances the system sensitivity, making it extremely sensitive to the small motional signal.

Keywords: nanoelectromechanical systems (NEMS), nanotechnology, optical force, oscillator

Procedia PDF Downloads 491
4460 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions

Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani

Abstract:

Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.

Keywords: masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity

Procedia PDF Downloads 277
4459 Microstructural and Optical Characterization of Heterostructures of ZnS/CdS and CdS/ZnS Synthesized by Chemical Bath Deposition Method

Authors: Temesgen Geremew

Abstract:

ZnS/glass and CdS/glass single layers and ZnS/CdS and CdS/ZnS heterojunction thin films were deposited by the chemical bath deposition method using zinc acetate and cadmium acetate as the metal ion sources and thioacetamide as a nonmetallic ion source in acidic medium. Na2EDTA was used as a complexing agent to control the free cation concentration. +e single layer and heterojunction thin films were characterized with X-ray diffraction (XRD), a scanning electron microscope (SEM), energy dispersive X-ray (EDX), and a UV-VIS spectrometer. +e XRD patterns of the CdS/glass thin film deposited on the soda lime glass substrate crystalized in the cubic structure with a single peak along the (111) plane. +e ZnS/CdS heterojunction and ZnS/glass single layer thin films were crystalized in the hexagonal ZnS structure. +e CdS/ZnS heterojunction thin film is nearly amorphous.The optical analysis results confirmed single band gap values of 2.75 eV and 2.5 eV for ZnS/CdS and CdS/ZnS heterojunction thin films, respectively. +e CdS/glass and CdS/ZnS thin films have more imaginary dielectric components than the real part. The optical conductivity of the single layer and heterojunction films is in the order of 1015 1/s. +e optical study also confirmed refractive index values between 2 and 2.7 for ZnS/glass, ZnS/CdS, and CdS/ZnS thin films for incident photon energies between 1.2 eV and 3.8 eV. +e surface morphology studies revealed compacted spherical grains covering the substrate surfaces with few cracks on ZnS/glass, ZnS/CdS, and CdS/glass and voids on CdS/ZnS thin films. +e EDX result confirmed nearly 1 :1 metallic to nonmetallic ion ratio in the single-layered thin films and the dominance of Zn ion over Cd ion in both ZnS/CdS and CdS/ZnS heterojunction thin films.

Keywords: SERS, sensor, Hg2+, water detection, polythiophene

Procedia PDF Downloads 56
4458 Hot Corrosion and Oxidation Degradation Mechanism of Turbine Materials in a Water Vapor Environment at a Higher Temperature

Authors: Mairaj Ahmad, L. Paglia, F. Marra, V. Genova, G. Pulci

Abstract:

This study employed Rene N4 and FSX 414 superalloys, which are used in numerous turbine engine components due of their high strength, outstanding fatigue, creep, thermal, and corrosion-resistant properties. An in-depth examination of corrosion mechanisms with vapor present at high temperature is necessary given the industrial trend toward introducing increasing amounts of hydrogen into combustion chambers in order to boost power generation and minimize pollution in contrast to conventional fuels. These superalloys were oxidized in recent tests for 500, 1000, 2000, 3000 and 4000 hours at 982±5°C temperatures with a steady airflow at a flow rate of 10L/min and 1.5 bar pressure. These superalloys were also examined for wet corrosion for 500, 1000, 2000, 3000, and 4000 hours in a combination of air and water vapor flowing at a 10L/min rate. Weight gain, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were used to assess the oxidation and heat corrosion resistance capabilities of these alloys before and after 500, 1000, and 2000 hours. The oxidation/corrosion processes that accompany the formation of these oxide scales are shown in the graph of mass gain vs time. In both dry and wet oxidation, oxides like Al2O3, TiO2, NiCo2O4, Ni3Al, Ni3Ti, Cr2O3, MnCr2O4, CoCr2O4, and certain volatile compounds notably CrO2(OH)2, Cr(OH)3, Fe(OH)2, and Si(OH)4 are formed.

Keywords: hot corrosion, oxidation, turbine materials, high temperature corrosion, super alloys

Procedia PDF Downloads 80
4457 BLDC Motor Design Considering Core Loss Caused by Welding

Authors: Hyun-Seok Hong, In-Gun Kim, Ye-Jun Oh, Ju Lee

Abstract:

This paper deals with the effects of welding performed for the manufacture of laminations in a stator in the case of prototype motors that are manufactured in small quantity. As a result of performing the no-load test for an IPM (interior permanent magnet)-type BLDC (blushless direct current) motor manufactured by welding both inside and outside of the stator, it was found that more DC input than expected was provided. To verify the effects of welding, a stator was re-manufactured by bonding, and DC inputs provided during the no-load test were compared.

Keywords: welding, stator, Eddy current, BLDC

Procedia PDF Downloads 554
4456 Automatic Vowel and Consonant's Target Formant Frequency Detection

Authors: Othmane Bouferroum, Malika Boudraa

Abstract:

In this study, a dual exponential model for CV formant transition is derived from locus theory of speech perception. Then, an algorithm for automatic vowel and consonant’s target formant frequency detection is developed and tested on real speech. The results show that vowels and consonants are detected through transitions rather than their small stable portions. Also, vowel reduction is clearly observed in our data. These results are confirmed by the observations made in perceptual experiments in the literature.

Keywords: acoustic invariance, coarticulation, formant transition, locus equation

Procedia PDF Downloads 264
4455 Integration of Load Introduction Elements into Fabrics

Authors: Jan Schwennen, Harlad Schmid, Juergen Fleischer

Abstract:

Lightweight design plays an important role in the automotive industry. Especially the combination of metal and CFRP shows great potential for future vehicle concepts. This requires joining technologies that are cost-efficient and appropriate for the materials involved. Previous investigations show that integrating load introduction elements during CFRP part manufacturing offers great advantages in mechanical performance. However, it is not yet clear how to integrate the elements in an automated process without harming the fiber structure. In this paper, a test rig is build up to investigate the effect of different parameters during insert integration experimentally. After a short description of the experimental equipment, preliminary tests are performed to determine a set of important process parameters. Based on that, the planning of design of experiments is given. The interpretation and evaluation of the test results show that with a minimization of the insert diameter and the peak angle less harm on the fiber structure can be achieved. Furthermore, a maximization of the die diameter above the insert shows a positive effect on the fiber structure. At the end of this paper, a theoretical description of alternative peak shaping is given and then the results get validated on the basis of an industrial reference part.

Keywords: CFRP, fabrics, insert, load introduction element, integration

Procedia PDF Downloads 234
4454 Development and Characterization of Synthetic Non-Woven for Sound Absorption

Authors: P. Sam Vimal Rajkumar, K. Priyanga

Abstract:

Acoustics is the scientific study of sound which includes the effect of reflection, refraction, absorption, diffraction and interference. Sound can be considered as a wave phenomenon. A sound wave is a longitudinal wave where particles of the medium are temporarily displaced in a direction parallel to energy transport and then return to their original position. The vibration in a medium produces alternating waves of relatively dense and sparse particles –compression and rarefaction respectively. The resultant variation to normal ambient pressure is translated by the ear and perceived as sound. Today much importance is given to the acoustical environment. The noise sources are increased day by day and annoying level is strongly violated in different locations by traffic, sound systems, and industries. There is simple evidence showing that the high noise levels cause sleep disturbance, hearing loss, decrease in productivity, learning disability, lower scholastic performance and increase in stress related hormones and blood pressure. Therefore, achieving a pleasing and noise free environment is one of the endeavours of many a research groups. This can be obtained by using various techniques. One such technique is by using suitable materials with good sound absorbing properties. The conventionally used materials that possess sound absorbing properties are rock wool or glass wool. In this work, an attempt is made to use synthetic material in both fibrous and sheet form and use it for manufacturing of non-woven for sound absorption.

Keywords: acoustics, fibre, non-woven, noise, sound absorption properties, sound absorption coefficient

Procedia PDF Downloads 292
4453 Effect of UV/Ozone Treatment on the Adhesion Strength of Polymeric Systems

Authors: Marouen Hamdi, Johannes A. Poulis

Abstract:

This study investigates the impact of UV/ozone treatment on the adhesion of ethylene propylene diene methylene (EPDM) rubber, polyvinyl chloride (PVC), and acrylonitrile butadiene styrene (ABS) materials. The experimental tests consist of contact angle measurements, standardized adhesion tests, and spectroscopic and microscopic observations. Also, commonly-used surface free energy models were applied to characterize the wettability of the materials. Preliminary results show that the treatment enhances the wettability of the examined polymers. Also, it considerably improved the adhesion strength of PVC and ABS and shifted their failure modes from adhesive to cohesive, without a significant effect on EPDM. Spectroscopic characterization showed significant oxidation-induced changes in the chemical structures of treated PVC and ABS surfaces. Also, new morphological changes (microcracks, micro-holes, and wrinkles) were observed on these two materials using the SEM. These chemical and morphological changes on treated PVC and ABS promote more reactivity and mechanical interlocking with the adhesive, which explains the improvement in their adhesion strength. After characterizing the adhesion strength of the systems, accelerated ageing tests in controlled environment chambers will be conducted to determine the effect of temperature, moisture, and UV radiation on the performance of the polymeric bonded joints.

Keywords: accelerated tests, adhesion strength, ageing of polymers, UV/ozone treatment

Procedia PDF Downloads 145
4452 Removal Efficiency of Some Heavy Metals from Aqueous Solution on Magnetic Nanoparticles

Authors: Gehan El-Sayed Sharaf El-Deen

Abstract:

In this study, super paramagnetic iron-oxide nano- materials (SPMIN) were investigated for removal of toxic heavy metals from aqueous solution. The magnetic nanoparticles of 12 nm were synthesized using a co-precipitation method and characterized by transmission electron microscopy (TEM), transform infrared spectroscopy (FTIR), x-ray diffraction (XRD) and vibrating sample magnetometer (VSM). Batch experiments carried out to investigate the influence of different parameters such as contact time, initial concentration of metal ions, the dosage of SPMIN, desorption,pH value of solutions. The adsorption process was found to be highly pH dependent, which made the nanoparticles selectively adsorb these three metals from wastewater. Maximum sorption for all the studies cations obtained at the first half hour and reached equilibrium at one hour. The adsorption data of heavy metals studied were well fitted with the Langmuir isotherm and the equilibrium data show the percent removal of Ni2+, Zn2+ and Cd2+ were 96.5%, 80% and 75%, respectively. Desorption studies in acidic medium indicate that Zn2+, Ni2+ and Cd2+ were removed by 89%, 2% and 18% from the first cycle. Regeneration studies indicated that SPMIN nanoparticles undergoing successive adsorption–desorption processes for Zn2+ ions retained original metal removal capacity. The results revealed that the most prominent advantage of the prepared SPMIN adsorbent consisted in their separation convenience compared to the other adsorbents and SPMIN has high efficiency for removal the investigated metals from aqueous solution.

Keywords: heavy metals, magnetic nanoparticles, removal efficiency, Batch technique

Procedia PDF Downloads 242
4451 Bring Your Own Devices (BOYD): Risks and Mitigation Strategies

Authors: Mohammed Ketel

Abstract:

This paper discusses the security issues related to Bring Your Own Devices (BYOD) programs, an increasingly popular choice for small and big businesses alike, and explores the benefits, risks, the available controls and solutions to mitigate the inherent security concerns with mobile devices, in general, and BYOD programs specifically. The paper also discusses the approaches that organizations can apply to mitigate the risks, which may include policies, diverse technologies, education, and training.

Keywords: BYOD, security, policies, standards, controls, education

Procedia PDF Downloads 283
4450 An Insight into the Conformational Dynamics of Glycan through Molecular Dynamics Simulation

Authors: K. Veluraja

Abstract:

Glycan of glycolipids and glycoproteins is playing a significant role in living systems particularly in molecular recognition processes. Molecular recognition processes are attributed to their occurrence on the surface of the cell, sequential arrangement and type of sugar molecules present in the oligosaccharide structure and glyosidic linkage diversity (glycoinformatics) and conformational diversity (glycoconformatics). Molecular Dynamics Simulation study is a theoretical-cum-computational tool successfully utilized to establish glycoconformatics of glycan. The study on various oligosaccharides of glycan clearly indicates that oligosaccharides do exist in multiple conformational states and these conformational states arise due to the flexibility associated with a glycosidic torsional angle (φ,ψ) . As an example: a single disaccharide structure NeuNacα(2-3) Gal exists in three different conformational states due to the differences in the preferential value of glycosidic torsional angles (φ,ψ). Hence establishing three dimensional structural and conformational models for glycan (cartesian coordinates of every individual atoms of an oligosaccharide structure in a preferred conformation) is quite crucial to understand various molecular recognition processes such as glycan-toxin interaction and glycan-virus interaction. The gycoconformatics models obtained for various glycan through Molecular Dynamics Simulation stored in our 3DSDSCAR (3DSDSCAR.ORG) a public domain database and its utility value in understanding the molecular recognition processes and in drug design venture will be discussed.

Keywords: glycan, glycoconformatics, molecular dynamics simulation, oligosaccharide

Procedia PDF Downloads 130
4449 The Role of Family Support and Work Life Balance of Women Entrepreneurs in Jaffna District

Authors: Thevaranchany Sivaskaran

Abstract:

Women entrepreneurs are the key players in the society and their contributions is highly highlighted to enhance economic stability in the country. In Sri Lanka, especially in North and East provinces people badly affected by war. Most of them are widows and women headed families. Due to this changing environment, Educational opportunities, and the support of NGO’s Most of the women have started their business and become entrepreneurs. Even though existing family setup and social setup entrepreneurial women are overburdened and difficult to balance their business and family roles. The research has been conducted on the experiences of women entrepreneurs with the family role support and work-life balance within the small and micro- enterprise sector in Jaffna, Srilanka. This study aims to identify that what extent the role of family support will be the tool to balancing work and life effectively and, secondly, the main challenges they face in achieving work-life balance. This is done by drawing on literatures including those on work-life balance, small-and micro enterprises, and entrepreneurship theories. To find out this objective, the data were collected from 50 entrepreneurs among the members of Jaffna women chamber in each GS division basis (cluster random sampling). A qualitative methodological technique and semi-structured interviews were used to collect the data for the case study on these entrepreneurs. The results indicate that the majority of entrepreneurs do not enjoy a sense of work-life balance because most of them are women headed family and they need to work hard to generate financial profit for the benefit of family. The motivation for them to work in this way is to provide basic needs. Results confirmed for others that support of husbands is very important. Mostly, emotional support (belief and empowerment) is exposed; however, getting financial contribution seems to be highly appreciated. More responsibilities which spouses were ready to take over regarding the home responsibilities (that is, childcare) should also not be neglected in the system of support to their entrepreneurial wives. Although, more important for all, women with children appreciated other members and spouses help and assistance to a higher extent. Results showed that majority of women who started their own business feel that in the first year of ope-ration the emotional support of family members was more important.

Keywords: family support, work life balance, women entrepreneurs, Jaffna District, Sri Lanka

Procedia PDF Downloads 456
4448 Fully Instrumented Small-Scale Fire Resistance Benches for Aeronautical Composites Assessment

Authors: Fabienne Samyn, Pauline Tranchard, Sophie Duquesne, Emilie Goncalves, Bruno Estebe, Serge Boubigot

Abstract:

Stringent fire safety regulations are enforced in the aeronautical industry due to the consequences that potential fire event on an aircraft might imply. This is so much true that the fire issue is considered right from the design of the aircraft structure. Due to the incorporation of an increasing amount of polymer matrix composites in replacement of more conventional materials like metals, the nature of the fire risks is changing. The choice of materials used is consequently of prime importance as well as the evaluation of its resistance to fire. The fire testing is mostly done using the so-called certification tests according to standards such as the ISO2685:1998(E). The latter describes a protocol to evaluate the fire resistance of structures located in fire zone (ability to withstand fire for 5min). The test consists in exposing an at least 300x300mm² sample to an 1100°C propane flame with a calibrated heat flux of 116kW/m². This type of test is time-consuming, expensive and gives access to limited information in terms of fire behavior of the materials (pass or fail test). Consequently, it can barely be used for material development purposes. In this context, the laboratory UMET in collaboration with industrial partners has developed a horizontal and a vertical small-scale instrumented fire benches for the characterization of the fire behavior of composites. The benches using smaller samples (no more than 150x150mm²) enables to cut downs costs and hence to increase sampling throughput. However, the main added value of our benches is the instrumentation used to collect useful information to understand the behavior of the materials. Indeed, measurements of the sample backside temperature are performed using IR camera in both configurations. In addition, for the vertical set up, a complete characterization of the degradation process, can be achieved via mass loss measurements and quantification of the gasses released during the tests. These benches have been used to characterize and study the fire behavior of aeronautical carbon/epoxy composites. The horizontal set up has been used in particular to study the performances and durability of protective intumescent coating on 2mm thick 2D laminates. The efficiency of this approach has been validated, and the optimized coating thickness has been determined as well as the performances after aging. Reductions of the performances after aging were attributed to the migration of some of the coating additives. The vertical set up has enabled to investigate the degradation process of composites under fire. An isotropic and a unidirectional 4mm thick laminates have been characterized using the bench and post-fire analyses. The mass loss measurements and the gas phase analyses of both composites do not present significant differences unlike the temperature profiles in the thickness of the samples. The differences have been attributed to differences of thermal conductivity as well as delamination that is much more pronounced for the isotropic composite (observed on the IR-images). This has been confirmed by X-ray microtomography. The developed benches have proven to be valuable tools to develop fire safe composites.

Keywords: aeronautical carbon/epoxy composite, durability, intumescent coating, small-scale ‘ISO 2685 like’ fire resistance test, X-ray microtomography

Procedia PDF Downloads 266
4447 Design of EV Steering Unit Using AI Based on Estimate and Control Model

Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin

Abstract:

Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.

Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system

Procedia PDF Downloads 23
4446 Solid Oral Leiomyoma: Clinical Case Report

Authors: Hurtado Zuñiga Yonel Marcos, Ferreira Joao Tiago

Abstract:

Introduction: Leiomyoma is a benign smooth muscle tumor. It is predominantly found between 40-49 years with a small prevalence in men. It is commonly found in the uterus, stomach, and in areas with smooth muscle. It presents as nodular, solitary, variable size, slow growing, and asymptomatic. It is classified into solid, vascular, and epithelioid leiomyoma. Vascular leiomyoma is the most common in the oral cavity. Oral leiomyomas are very rare because a smooth muscle in the oral cavity isn’t common. The most frequent areas of this pathologyaretongue, lip, buccal mucosa, and palate. It may be derived from the vascular walls or excretory ducts of the salivary glands. The diagnosis is made by histologically analysis. The treatment of choice is complete excision. Recurrence is rare. Objective: To report the case of a solid leiomyoma on the dorsum of the tongue and review the literature. Case description: A 78-year-old female patient presented a nodular (ovoid) elevation of 8x6mm, brownish color, with irregular limits and firm consistency located in the dorsal part of the tongue with slight symptoms. An excisional biopsy was performed, photographic record, and 3 weeks post-surgical follow-up. Result: The surgical specimen was submitted to an anatomopathological analysis, resulting in a benign nodule with defined limits compatible with solid leiomyoma of the tongue. Discussion: It is a pathology that presents in a solitary, nodular, well-defined, asymptomatic form; in the oral cavity, leiomyomas are found in the tongue, lip, buccal mucosa, and palate; as in our patient, it was nodular and, in the tongue, with a difference only in the symptomatology. The most prevalent age is 40-49 years and with small predominance in men, unlike our female patient with 78 years. Conclusions: Oral leiomyoma is a rare benign lesion that presents as a solitary nodular nodule; for its diagnosis, an anatomopathological analysis should be performed, and the treatment of choice is total excision with little recurrence.

Keywords: tongue, bening tumor, oral leiomyoma, leiomyoma

Procedia PDF Downloads 213
4445 Microstructural and Optical Characterization of High-quality ZnO Nano-rods Deposited by Simple Electrodeposition Process

Authors: Somnath Mahato, Minarul Islam Sarkar, Luis Guillermo Gerling, Joaquim Puigdollers, Asit Kumar Kar

Abstract:

Nanostructured Zinc Oxide (ZnO) thin films have been successfully deposited on indium tin oxide (ITO) coated glass substrates by a simple two electrode electrodeposition process at constant potential. The preparative parameters such as deposition time, deposition potential, concentration of solution, bath temperature and pH value of electrolyte have been optimized for deposition of uniform ZnO thin films. X-ray diffraction studies reveal that the prepared ZnO thin films have a high preferential oriented c-axis orientation with compact hexagonal (wurtzite) structure. Surface morphological studies show that the ZnO films are smooth, continuous, uniform without cracks or holes and compact with nanorod-like structure on the top of the surface. Optical properties reveal that films exhibit higher absorbance in the violet region of the optical spectrum; it gradually decreased in the visible range with increases in wavelength and became least at the beginning of NIR region. The photoluminescence spectra shows that the observed peaks are attributed to the various structural defects in the nanostructured ZnO crystal. The microstructural and optical properties suggest that the electrodeposited ZnO thin films are suitable for application in photosensitive devices such as photovoltaic solar cells photoelectrochemical cells and light emitting diodes etc.

Keywords: electrodeposition, microstructure, optical properties, ZnO thin films

Procedia PDF Downloads 312
4444 Soil/Phytofisionomy Relationship in Southeast of Chapada Diamantina, Bahia, Brazil

Authors: Marcelo Araujo da Nóbrega, Ariel Moura Vilas Boas

Abstract:

This study aims to characterize the physicochemical aspects of the soils of southeastern Chapada Diamantina - Bahia related to the phytophysiognomies of this area, rupestrian field, small savanna (savanna fields), small dense savanna (savanna fields), savanna (Cerrado), dry thorny forest (Caatinga), dry thorny forest/savanna, scrub (Carrasco - ecotone), forest island (seasonal semi-deciduous forest - Capão) and seasonal semi-deciduous forest. To achieve the research objective, soil samples were collected in each plant formation and analyzed in the soil laboratory of ESALQ - USP in order to identify soil fertility through the determination of pH, organic matter, phosphorus, potassium, calcium, magnesium, potential acidity, sum of bases, cation exchange capacity and base saturation. The composition of soil particles was also checked; that is, the texture, step made in the terrestrial ecosystems laboratory of the Department of Ecology of USP and in the soil laboratory of ESALQ. Another important factor also studied was to show the variations in the vegetation cover in the region as a function of soil moisture in the different existing physiographic environments. Another study carried out was a comparison between the average soil moisture data with precipitation data from three locations with very different phytophysiognomies. The soils found in this part of Bahia can be classified into 5 classes, with a predominance of oxisols. All of these classes have a great diversity of physical and chemical properties, as can be seen in photographs and in particle size and fertility analyzes. The deepest soils are located in the Central Pediplano of Chapada Diamantina where the dirty field, the clean field, the executioner and the semideciduous seasonal forest (Capão) are located, and the shallower soils were found in the rupestrian field, dry thorny forest, and savanna fields, the latter located on a hillside. As for the variations in water in the region's soil, the data indicate that there were large spatial variations in humidity in both the rainy and dry periods.

Keywords: Bahia, Brazil, chapada diamantina, phytophysiognomies, soils

Procedia PDF Downloads 137
4443 Digitization of European SMEs in Tourism and Hospitality: The Case of Greek Hoteliers

Authors: Joanna K. Konstantinou

Abstract:

The aim of this study is to explore the need of small and medium-sized businesses in tourism and hospitality industry to adopt technology and enhance their degree of digitalization, along with the main benefits enjoyed by technology and the main challenges that hinder its adoption. Within a hermeneutic phenomenological perspective, semi-structured interviews were conducted with three hotel owners and the focus was to identify the main reasons of adoption of technology, enablers and barriers. The findings were grouped with the goal of identifying typology of business practices in using and adopting technology.

Keywords: digitization, SMEs, tourism and hospitality, challenges, benefits

Procedia PDF Downloads 250
4442 Carrying Capacity Estimation for Small Hydro Plant Located in Torrential Rivers

Authors: Elena Carcano, James Ball, Betty Tiko

Abstract:

Carrying capacity refers to the maximum population that a given level of resources can sustain over a specific period. In undisturbed environments, the maximum population is determined by the availability and distribution of resources, as well as the competition for their utilization. This information is typically obtained through long-term data collection. In regulated environments, where resources are artificially modified, populations must adapt to changing conditions, which can lead to additional challenges due to fluctuations in resource availability over time and throughout development. An example of this is observed in hydropower plants, which alter water flow and impact fish migration patterns and behaviors. To assess how fish species can adapt to these changes, specialized surveys are conducted, which provide valuable information on fish populations, sample sizes, and density before and after flow modifications. In such situations, it is highly recommended to conduct hydrological and biological monitoring to gain insight into how flow reductions affect species adaptability and to prevent unfavorable exploitation conditions. This analysis involves several planned steps that help design appropriate hydropower production while simultaneously addressing environmental needs. Consequently, the study aims to strike a balance between technical assessment, biological requirements, and societal expectations. Beginning with a small hydro project that requires restoration, this analysis focuses on the lower tail of the Flow Duration Curve (FDC), where both hydrological and environmental goals can be met. The proposed approach involves determining the threshold condition that is tolerable for the most vulnerable species sampled (Telestes Muticellus) by identifying a low flow value from the long-term FDC. The results establish a practical connection between hydrological and environmental information and simplify the process by establishing a single reference flow value that represents the minimum environmental flow that should be maintained.

Keywords: carrying capacity, fish bypass ladder, long-term streamflow duration curve, eta-beta method, environmental flow

Procedia PDF Downloads 26
4441 Characterization of a Putative Type 1 Toxin-Antitoxin System in Shigella Flexneri

Authors: David Sarpong, Waleed Khursheed, Ernest Danquah, Erin Murphy

Abstract:

Shigella is a pathogenic bacterium responsible for shigellosis, a severe diarrheal disease that claims the lives of immunocompromised individuals worldwide. To develop therapeutics against this disease, an understanding of the molecular mechanisms underlying the pathogen’s physiology is crucial. Small non-coding RNAs (sRNAs) have emerged as important regulators of bacterial physiology, including as components of toxin-antitoxin systems. In this study, we investigated the role of RyfA in S. flexneri physiology and virulence. RyfA, originally identified as an sRNA in Escherichia coli, is conserved within the Enterobacteriaceae family, including Shigella. Whereas two copies of ryfA are present in S. dysenteriae, all other Shigella species contain only one copy of the gene. Additionally, we identified a putative open reading frame within the RyfA transcript, suggesting that it may be a dual-functioning gene encoding a small protein in addition to its sRNA function. To study ryfA in vitro, we cloned the gene into an inducible plasmid and observed the effect on bacterial growth. Here, we report that RyfA production inhibits the growth of S. flexneri, and this inhibition is dependent on the contained open reading frame. In-silico analyses have revealed the presence of two divergently transcribed sRNAs, RyfB1 and RyfB2, which share nucleotide complementarity with RyfA and thus are predicted to function as anti-toxins. Our data demonstrate that RyfB2 has a stronger antitoxin effect than RyfB1. This regulatory pattern suggests a novel form of a toxin-antitoxin system in which the activity of a single toxin is inhibited to varying degrees by two sRNA antitoxins. Studies are ongoing to investigate the regulatory mechanism(s) of the antitoxin genes, as well as the downstream targets and mechanism of growth inhibition by the RyfA toxin. This study offers distinct insights into the regulatory mechanisms underlying Shigella physiology and may inform the development of new anti-Shigella therapeutics.

Keywords: sRNA, shigella, toxin-antitoxin, Type 1 toxin antitoxin

Procedia PDF Downloads 40
4440 Carbon Nanomaterials from Agricultural Wastes for Adsorption of Organic Pollutions

Authors: Magdalena Blachnio, Viktor Bogatyrov, Mariia Galaburda, Anna Derylo-Marczewska

Abstract:

Agricultural waste materials from traditional oil mill and after extraction of natural raw materials in supercritical conditions were used for the preparation of carbon nanomaterials (activated carbons) by two various methods. Chemical activation using acetic acid and physical activation with a gaseous agent (carbon dioxide) were chosen as mild and environmentally friendly ones. The effect of influential factors: type of raw material, temperature and activation agent on the porous structure characteristics of the materials was discussed by using N₂ adsorption/desorption isotherms at 77 K. Furthermore scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to examine the physicochemical properties of the obtained sorbents. Selection of a raw material and an optimization of the conditions of the synthesis process, allowed to obtain the cheap sorbents with a targeted distribution of pores enabling effective adsorption of the model organic pollutants carried out in the multicomponent systems. Adsorption behavior (capacity and rate) of the chosen activated carbons was estimated by utilizing Crystal violet (CV), 4-chlorophenoxyacetic acid (4-CPA), 2.4-dichlorophenoxyacetic acid (2.4-D) as the adsorbates. Both rate and adsorption capacity of the organics on the sorbents evidenced that the activated carbons could be effectively used in sewage treatment plants. The mechanisms of organics adsorption were studied and correlated with activated carbons properties.

Keywords: activated carbon, adsorption equilibrium, adsorption kinetics, organics adsorption

Procedia PDF Downloads 168
4439 Oligoalkylamine Modified Poly(Amidoamine) Generation 4.5 Dendrimer for the Delivery of Small Interfering RNA

Authors: Endris Yibru Hanurry, Wei-Hsin Hsu, Hsieh-Chih Tsai

Abstract:

In recent years, the discovery of small interfering RNAs (siRNAs) has got great attention for the treatment of cancer and other diseases. However, the therapeutic efficacy of siRNAs has been faced with many drawbacks because of short half-life in blood circulation, poor membrane penetration, weak endosomal escape and inadequate release into the cytosol. To overcome these drawbacks, we designed a non-viral vector by conjugating polyamidoamine generation 4.5 dendrimer (PDG4.5) with diethylenetriamine (DETA)- and tetraethylenepentamine (TEPA) followed by binding with siRNA to form polyplexes through electrostatic interaction. The result of 1H nuclear magnetic resonance (NMR), 13C NMR, correlation spectroscopy, heteronuclear single–quantum correlation spectroscopy, and Fourier transform infrared spectroscopy confirmed the successful conjugation of DETA and TEPA with PDG4.5. Then, the size, surface charge, morphology, binding ability, stability, release assay, toxicity and cellular internalization were analyzed to explore the physicochemical and biological properties of PDG4.5-DETA and PDG4.5-TEPA polyplexes at specific N/P ratios. The polyplexes (N/P = 8) exhibited spherical nanosized (125 and 85 nm) particles with optimum surface charge (13 and 26 mV), showed strong siRNA binding ability, protected the siRNA against enzyme digestion and accepted biocompatibility to the HeLa cells. Qualitatively, the fluorescence microscopy image revealed the delocalization (Manders’ coefficient 0.63 and 0.53 for PDG4.5-DETA and PDG4.5-TEPA, respectively) of polyplexes and the translocation of the siRNA throughout the cytosol to show a decent cellular internalization and intracellular biodistribution of polyplexes in HeLa cells. Quantitatively, the flow cytometry result indicated that a significant (P < 0.05) amount of siRNA was internalized by cells treated with PDG4.5-DETA (68.5%) and PDG4.5-TEPA (73%) polyplexes. Generally, PDG4.5-DETA and PDG4.5-TEPA were ideal nanocarriers of siRNA in vitro and might be used as promising candidates for in vivo study and future pharmaceutical applications.

Keywords: non-viral carrier, oligoalkylamine, poly(amidoamine) dendrimer, polyplexes, siRNA

Procedia PDF Downloads 124
4438 ORR Electrocatalyst for Batteries and Fuel Cells Development with SiO2/Carbon Black Based Composite Nanomaterials

Authors: Maryam Kiani

Abstract:

This study focuses on the development of composite nanomaterials based on SiO2 and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO2/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO2 into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO2 facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO2/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.

Keywords: oxygen reduction reaction, batteries, fuel cells, electrrocatalyst

Procedia PDF Downloads 103
4437 Influence of Produced Water Mixed With Crude Oil on the Geotechnical Properties of Sandy Soil

Authors: Khalifa Abdunaser

Abstract:

This study investigated the effects of oil contamination due to pro-duced water leaks that created lakes decades ago, as well as the extent of its im-pact on altering the geotechnical characteristics of the soil, which could act as a barrier to groundwater access The concentration of total petroleum hydrocarbons (TPH), which is the main component in the contaminated soil, was measured using a variety of analyses. Additionally, some extensive laboratory tests were performed to examine the effects on the soil's geotechnical properties, including particle size distribution, shear strength, consistency limits, specific gravity, and permeability coefficient. A clear decrease in TPH concentration was observed with increasing depth, and it is expected to end within only a few meters. It was found that there is a signifi-cant effect of this pollutant on the size of the soil particles, which led to them be-coming coarser than the uncontaminated soil particles. Moreover, it causes a de-crease in fluid and plastic boundaries, as well as an increase in cohesion between soil particles. However, the angle of internal friction decreases with the increase in the content of petroleum hydrocarbons in the soil samples. It came to light that determining the permeability coefficient as one of the physical characteristics of the most important factors responsible for the passage of pollutants in the groundwater, as it showed an obvious reduction in the permeability, which is the main reason dealt as an obstacle to the arrival of oil pollutants to the groundwater.

Keywords: TPH, specific gravity, oil lake, Libya

Procedia PDF Downloads 87