Search results for: emotional intelligence
384 Investigating the Dimensions of Perceived Attributions in Making Sense of Failure: An Exploratory Study of Lebanese Entrepreneurs
Authors: Ghiwa Dandach
Abstract:
By challenging the anti-failure bias and contributing to the theoretical territory of the attribution theory, this thesis develops a comprehensive process for entrepreneurial learning from failure. The practical implication of the findings suggests assisting entrepreneurs (current, failing, and nascent) in effectively anticipating and reflecting upon failure. Additionally, the process is suggested to enhance the level of institutional and private (accelerators and financers) support provided to entrepreneurs, the implications of which may improve future opportunities for entrepreneurial success. Henceforth, exploring learning from failure is argued to impact the potential survival of future ventures, subsequently revitalizing the economic contribution of entrepreneurship. This learning process can be enhanced with the cognitive development of causal ascriptions for failure, which eventually impacts learning outcomes. However, the mechanism with which entrepreneurs make sense of failure, reflect on the journey, and transform experience into knowledge is still under-researched. More specifically, the cognitive process of failure attribution is under-explored, majorly in the context of developing economies, calling for a more insightful understanding on how entrepreneurs ascribe failure. Responding to the call for more thorough research in such cultural contexts, this study expands the understanding of the dimensions of failure attributions as perceived by entrepreneurs and the impact of these dimensions on learning outcomes in the Lebanese context. The research adopted the exploratory interpretivism paradigm and collected data from interviews with industry experts first, followed by narratives of entrepreneurs using the qualitative multimethod approach. The holistic and categorical content analysis of narratives, preceded by the thematic analysis of interviews, unveiled how entrepreneurs ascribe failure by developing minor and major dimensions of each failure attribution. The findings have also revealed how each dimension impacts the learning from failure when accompanied by emotional resilience. The thesis concludes that exploring in-depth the dimensions of failure attributions significantly determines the level of learning generated. They are moving beyond the simple categorisation of ascriptions as primary internal or external unveiled how learning may occur with each attribution at the individual, venture, and ecosystem levels. This has further accentuated that a major internal attribution of failure combined with a minor external attribution generated the highest levels of transformative and double-loop learning, emphasizing the role of personal blame and responsibility on enhancing learning outcomes.Keywords: attribution, entrepreneurship, reflection, sense-making, emotions, learning outcomes, failure, exit
Procedia PDF Downloads 231383 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling
Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha
Abstract:
The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat
Procedia PDF Downloads 58382 Telepsychiatry for Asian Americans
Authors: Jami Wang, Brian Kao, Davin Agustines
Abstract:
COVID-19 highlighted the active discrimination against the Asian American population easily seen through media, social tension, and increased crimes against the specific population. It is well known that long-term racism can also have a large impact on both emotional and psychological well-being. However, the healthcare disparity during this time also revealed how the Asian American community lacked the research data, political support, and medical infrastructure for this particular population. During a time when Asian American fear for safety with decreasing mental health, telepsychiatry is particularly promising. COVID-19 demonstrated how well psychiatry could integrate with telemedicine, with psychiatry being the second most utilized telemedicine visits. However, the Asian American community did not utilize the telepsychiatry resources as much as other groups. Because of this, we wanted to understand why the patient population who was affected the most by COVID-19 mentally did not seek out care. To do this, we decided to study the top top telepsychiatry platforms. The current top telepsychiatry companies in the United States include Teladoc and BetterHelp. In the Teladoc mental health sector, they only had 4 available languages (English, Spanish, French, and Danis,) with none of them being an Asian language. In a similar manner, Teladoc’s top competitor in the telepsychiatry space, BetterHelp, only listed a total of 3 Asian languages, including Mandarin, Japanese, and Malaysian. However, this is still a short list considering they have over 20 languages available. The shortage of available physicians that speak multiple languages is concerning, as it could be difficult for the Asian American community to relate with. There are limited mental health resources that cater to their likely cultural needs, further exacerbating the structural racism and institutional barriers to appropriate care. It is important to note that these companies do provide interpreters to comply with the nondiscrimination and language assistance federal law. However, interactions with an interpreter are not only more time-consuming but also less personal than talking directly with a physician. Psychiatry is the field that emphasizes interpersonal relationships. The trust between a physician and the patient is critical in developing patient rapport to guide in better understanding the clinical picture and treating the patient appropriately. The language barrier creates an additional barrier between the physician and patient. Because Asian Americans are one of the largest growing patient population bases, these telehealth companies have much to gain by catering to the Asian American market. Without providing adequate access to bilingual and bicultural physicians, the current system will only further exacerbate the growing disparity. The healthcare community and telehealth companies need to recognize that the Asian American population is a severely underserved population in mental health and has much to gain from telepsychiatry. The lack of language is one of many reasons why there is a disparity for Asian Americans in the mental health space.Keywords: telemedicine, psychiatry, Asian American, disparity
Procedia PDF Downloads 109381 Trajectories of Conduct Problems and Cumulative Risk from Early Childhood to Adolescence
Authors: Leslie M. Gutman
Abstract:
Conduct problems (CP) represent a major dilemma, with wide-ranging and long-lasting individual and societal impacts. Children experience heterogeneous patterns of conduct problems; based on the age of onset, developmental course and related risk factors from around age 3. Early childhood represents a potential window for intervention efforts aimed at changing the trajectory of early starting conduct problems. Using the UK Millennium Cohort Study (n = 17,206 children), this study (a) identifies trajectories of conduct problems from ages 3 to 14 years and (b) assesses the cumulative and interactive effects of individual, family and socioeconomic risk factors from ages 9 months to 14 years. The same factors according to three domains were assessed, including child (i.e., low verbal ability, hyperactivity/inattention, peer problems, emotional problems), family (i.e., single families, parental poor physical and mental health, large family size) and socioeconomic (i.e., low family income, low parental education, unemployment, social housing). A cumulative risk score for the child, family, and socioeconomic domains at each age was calculated. It was then examined how the cumulative risk scores explain variation in the trajectories of conduct problems. Lastly, interactive effects among the different domains of cumulative risk were tested. Using group-based trajectory modeling, four distinct trajectories were found including a ‘low’ problem group and three groups showing childhood-onset conduct problems: ‘school-age onset’; ‘early-onset, desisting’; and ‘early-onset, persisting’. The ‘low’ group (57% of the sample) showed a low probability of conducts problems, close to zero, from 3 to 14 years. The ‘early-onset, desisting’ group (23% of the sample) demonstrated a moderate probability of CP in early childhood, with a decline from 3 to 5 years and a low probability thereafter. The ‘early-onset, persistent’ group (8%) followed a high probability of conduct problems, which declined from 11 years but was close to 70% at 14 years. In the ‘school-age onset’ group, 12% of the sample showed a moderate probability of conduct problems from 3 and 5 years, with a sharp increase by 7 years, increasing to 50% at 14 years. In terms of individual risk, all factors increased the likelihood of being in the childhood-onset groups compared to the ‘low’ group. For cumulative risk, the socioeconomic domain at 9 months and 3 years, the family domain at all ages except 14 years and child domain at all ages were found to differentiate childhood-onset groups from the ‘low’ group. Cumulative risk at 9 months and 3 years did not differentiate between the ‘school-onset’ group and ‘low’ group. Significant interactions were found between the domains for the ‘early-onset, desisting group’ suggesting that low levels of risk in one domain may buffer the effects of high risk in another domain. The implications of these findings for preventive interventions will be highlighted.Keywords: conduct problems, cumulative risk, developmental trajectories, early childhood, adolescence
Procedia PDF Downloads 253380 Contribution of Artificial Intelligence in the Studies of Natural Compounds Against SARS-COV-2
Authors: Salah Belaidi
Abstract:
We have carried out extensive and in-depth research to search for bioactive compounds based on Algerian plants. A selection of 50 ligands from Algerian medicinal plants. Several compounds used in herbal medicine have been drawn using Marvin Sketch software. We determined the three-dimensional structures of the ligands with the MMFF94 force field in order to prepare these ligands for molecular docking. The 3D protein structure of the SARS-CoV-2 main protease was taken from the Protein Data Bank. We used AutoDockVina software to apply molecular docking. The hydrogen atoms were added during the molecular docking process, and all the twist bonds of the ligands were added using the (ligand) module in the AutoDock software. The COVID-19 main protease (Mpro) is a key enzyme that plays a vital role in viral transcription and mediating replication, so it is a very attractive drug target for SARS-CoV-2. In this work, an evaluation was carried out on the biologically active compounds present in these selected medicinal plants as effective inhibitors of the protease enzyme of COVID-19, with an in-depth computational calculation of the molecular docking using the Autodock Vina software. The top 7 ligands: Phloroglucinol, Afzelin, Myricetin-3-O- rutinosidTricin 7-neohesperidoside, Silybin, Silychristinthat and Kaempferol are selected among the 50 molecules studied which are Algerian medicinal plants, whose selection is based on the best binding energy which is relatively low compared to the reference molecule with binding affinities of -9.3, -9.3, -9, -8.9, -8 .5, 8.3 and -8.3 kcal mol-1 respectively. Then, we analyzed the ADME properties of the best7 ligands using the web server SwissADME. Two ligands (Silybin, Silychristin) were found to be potential candidates for the discovery and design of novel drug inhibitors of the protease enzyme of SARS-CoV-2. The stability of the two ligands in complexing with the Mpro protease was validated by molecular dynamics simulation; they revealed a stable trajectory in both techniques, RMSD and RMSF, by showing molecular properties with coherent interactions in molecular dynamics simulations. Finally, we conclude that the Silybin ligand forms a more stable complex with the Mpro protease compared to the Silychristin ligand.Keywords: COVID-19, medicinal plants, molecular docking, ADME properties, molecular dynamics
Procedia PDF Downloads 43379 Ideas for Musical Activities and Games in the Early Year (IMAGINE-Autism): A Case Study Approach
Authors: Tania Lisboa, Angela Voyajolu, Adam Ockelford
Abstract:
The positive impact of music on the development of children with autism is widely acknowledged: music offers a unique channel for communication, wellbeing and self-regulation, as well as access to culture and a means of creative engagement. Yet, no coherent program exists for parents, carers and teachers to follow with their children in the early years, when the need for interventions is often most acute. Hence, research and the development of resources is urgently required. Autism is a project with children on the autism spectrum. The project aims at promoting the participants’ engagement with music through involvement in specially-designed musical activities with parents and carers. The main goal of the research is to verify the effectiveness of newly designed resources and strategies, which are based on the Sounds of Intent in the Early Years (SoI-EY) framework of musical development. This is a pilot study, comprising case studies of five children with autism in the early years. The data comprises semi-structured interviews, observations of videos, and feedback from parents on resources. Interpretative Phenomenological Analysis was chosen to analyze the interviews. The video data was coded in relation to the SoI-EY framework. The feedback from parents was used to evaluate the resources (i.e. musical activity cards). The participants’ wider development was also assessed through selected elements of the Early Years Foundation Stage (EYFS), a national assessment framework used in England: specifically, communication, language and social-emotional development. Five families of children on the autism spectrum (aged between 4-8 years) participated in the pilot. The research team visited each family 4 times over a 3-month period, during which the children were observed, and musical activities were suggested based on the child’s assessed level of musical development. Parents then trialed the activities, providing feedback and gathering further video observations of their child’s musical engagement between visits. The results of one case study will be featured in this paper, in which the evidence suggests that specifically tailored musical activity may promote communication and social engagement for a child with language difficulties on the autism spectrum. The resources were appropriate for the children’s involvement in musical activities. Findings suggest that non-specialist musical engagement with family and carers can be a powerful means to foster communication. The case study featured in this paper illustrates this with a child of limited verbal ability. There is a need for further research and development of resources that can be made available to all those working with children on the autism spectrum.Keywords: autism, development, music education, resources
Procedia PDF Downloads 105378 Reading as Moral Afternoon Tea: An Empirical Study on the Compensation Effect between Literary Novel Reading and Readers’ Moral Motivation
Authors: Chong Jiang, Liang Zhao, Hua Jian, Xiaoguang Wang
Abstract:
The belief that there is a strong relationship between reading narrative and morality has generally become the basic assumption of scholars, philosophers, critics, and cultural critics. The virtuality constructed by literary novels inspires readers to regard the narrative as a thinking experiment, creating the distance between readers and events so that they can freely and morally experience the positions of different roles. Therefore, the virtual narrative combined with literary characteristics is always considered as a "moral laboratory." Well-established findings revealed that people show less lying and deceptive behaviors in the morning than in the afternoon, called the morning morality effect. As a limited self-regulation resource, morality will be constantly depleted with the change of time rhythm under the influence of the morning morality effect. It can also be compensated and restored in various ways, such as eating, sleeping, etc. As a common form of entertainment in modern society, literary novel reading gives people more virtual experience and emotional catharsis, just as a relaxing afternoon tea that helps people break away from fast-paced work, restore physical strength, and relieve stress in a short period of leisure. In this paper, inspired by the compensation control theory, we wonder whether reading literary novels in the digital environment could replenish a kind of spiritual energy for self-regulation to compensate for people's moral loss in the afternoon. Based on this assumption, we leverage the social annotation text content generated by readers in digital reading to represent the readers' reading attention. We then recognized the semantics and calculated the readers' moral motivation expressed in the annotations and investigated the fine-grained dynamics of the moral motivation changing in each time slot within 24 hours of a day. Comprehensively comparing the division of different time intervals, sufficient experiments showed that the moral motivation reflected in the annotations in the afternoon is significantly higher than that in the morning. The results robustly verified the hypothesis that reading compensates for moral motivation, which we called the moral afternoon tea effect. Moreover, we quantitatively identified that such moral compensation can last until 14:00 in the afternoon and 21:00 in the evening. In addition, it is interesting to find that the division of time intervals of different units impacts the identification of moral rhythms. Dividing the time intervals by four-hour time slot brings more insights of moral rhythms compared with that of three-hour and six-hour time slot.Keywords: digital reading, social annotation, moral motivation, morning morality effect, control compensation
Procedia PDF Downloads 151377 Caregivers Burden: Risk and Related Psychological Factors in Caregivers of Patients with Parkinson’s Disease
Authors: Pellecchia M. T., Savarese G., Carpinelli L., Calabrese M.
Abstract:
Introduction: Parkinson's disease (PD) is characterized by a progressive loss of autonomy which undoubtedly has a significant impact on the quality of life of caregivers, and parents are the main informal caregivers. Caring for a person with PD is associated with an increased risk of psychiatric morbidity and persistent anxiety-depressive distress. The aim of the study is to investigate the burden on caregivers of patients with PD, through the use of multidimensional scales and to identify their personological and environmental determinants. Methods: The study has been approved by the Ethic Committee of the University of Salerno and informed consent for participation to the study was obtained from patients and their caregivers. The study was conducted at the Neurology Department of the A.O.U. "San Giovanni di Dio and Ruggi D’Aragona" of Salerno between September 2020 and May 2021. Materials: The questionnaires used were: a) Caregiver Burden Inventory - CBI a questionnaire of 24 items that allow identifying five sub-categories of burden (objective, psychological, physical, social, emotional); b) Depression Anxiety Stress Scales Short Version - DASS-21 questionnaire consisting of 21 items and valid in examining three distinct but interrelated areas (depression, anxiety and stress); c) Family Strain Questionnaire Short Form - FSQ-SF is a questionnaire of 30 items grouped in areas of increasing psychological risk (OK, R, SR, U); d) Zarit Caregiver Burden Inventory - ZBI, consisting of 22 items based on the analysis of two main factors: personal stress and pressure related to his role; e) Life Satisfaction, a single item that aims to evaluate the degree of life satisfaction in a global way using a 0-100 Likert scale. Findings: N ° 29 caregivers (M age = 55.14, SD = 9.859; 69% F) participated in the study. 20.6% of the sample had severe and severe burden (CBI score = M = 26.31; SD = 22.43) and 13.8% of participants had moderate to severe burden (ZBI). The FSQ-SF highlighted a minority of caregivers who need psychological support, in some cases urgent (Area SR and Area U). The DASS-21 results show a prevalence of stress-related symptoms (M = 10.90, SD = 10.712) compared to anxiety (M = 7.52, SD = 10.752) and depression (M = 8, SD = 10.876). There are significant correlations between some specific variables and mean test scores: retired caregivers report higher ZBI scores (p = 0.423) and lower Life Satisfaction levels (p = -0.460) than working caregivers; years of schooling show a negative linear correlation with the ZBI score (p = -0.491). The T-Test indicates that caregivers of patients with cognitive impairment are at greater risk than those of patients without cognitive impairment. Conclusions: It knows the factors that affect the burden the most would allow for early recognition of risky situations and caregivers who would need adequate support.Keywords: anxious-depressive axis, caregivers’ burden, Parkinson’ disease, psychological risks
Procedia PDF Downloads 219376 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence
Authors: Mohammed Al Sulaimani, Hamad Al Manhi
Abstract:
With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems
Procedia PDF Downloads 37375 Designing Form, Meanings, and Relationships for Future Industrial Products. Case Study Observation of PAD
Authors: Elisabetta Cianfanelli, Margherita Tufarelli, Paolo Pupparo
Abstract:
The dialectical mediation between desires and objects or between mass production and consumption continues to evolve over time. This relationship is influenced both by variable geometries of contexts that are distant from the mere design of product form and by aspects rooted in the very definition of industrial design. In particular, the overcoming of macro-areas of innovation in the technological, social, cultural, formal, and morphological spheres, supported by recent theories in critical and speculative design, seems to be moving further and further away from the design of the formal dimension of advanced products. The articulated fabric of theories and practices that feed the definition of “hyperobjects”, and no longer objects describes a common tension in all areas of design and production of industrial products. The latter are increasingly detached from the design of the form and meaning of the same in mass productions, thus losing the quality of products capable of social transformation. For years we have been living in a transformative moment as regards the design process in the definition of the industrial product. We are faced with a dichotomy in which there is, on the one hand, a reactionary aversion to the new techniques of industrial production and, on the other hand, a sterile adoption of the techniques of mass production that we can now consider traditional. This ambiguity becomes even more evident when we talk about industrial products, and we realize that we are moving further and further away from the concepts of "form" as a synthesis of a design thought aimed at the aesthetic-emotional component as well as the functional one. The design of forms and their contents, as statutes of social acts, allows us to investigate the tension on mass production that crosses seasons, trends, technicalities, and sterile determinisms. The design culture has always determined the formal qualities of objects as a sum of aesthetic characteristics functional and structural relationships that define a product as a coherent unit. The contribution proposes a reflection and a series of practical experiences of research on the form of advanced products. This form is understood as a kaleidoscope of relationships through the search for an identity, the desire for democratization, and between these two, the exploration of the aesthetic factor. The study of form also corresponds to the study of production processes, technological innovations, the definition of standards, distribution, advertising, the vicissitudes of taste and lifestyles. Specifically, we will investigate how the genesis of new forms for new meanings introduces a change in the relative innovative production techniques. It becomes, therefore, fundamental to investigate, through the reflections and the case studies exposed inside the contribution, also the new techniques of production and elaboration of the forms of the products, as new immanent and determining element inside the planning process.Keywords: industrial design, product advanced design, mass productions, new meanings
Procedia PDF Downloads 127374 Pervasive Computing: Model to Increase Arable Crop Yield through Detection Intrusion System (IDS)
Authors: Idowu Olugbenga Adewumi, Foluke Iyabo Oluwatoyinbo
Abstract:
Presently, there are several discussions on the food security with increase in yield of arable crop throughout the world. This article, briefly present research efforts to create digital interfaces to nature, in particular to area of crop production in agriculture with increase in yield with interest on pervasive computing. The approach goes beyond the use of sensor networks for environmental monitoring but also by emphasizing the development of a system architecture that detect intruder (Intrusion Process) which reduce the yield of the farmer at the end of the planting/harvesting period. The objective of the work is to set a model for setting up the hand held or portable device for increasing the quality and quantity of arable crop. This process incorporates the use of infrared motion image sensor with security alarm system which can send a noise signal to intruder on the farm. This model of the portable image sensing device in monitoring or scaring human, rodent, birds and even pests activities will reduce post harvest loss which will increase the yield on farm. The nano intelligence technology was proposed to combat and minimize intrusion process that usually leads to low quality and quantity of produce from farm. Intranet system will be in place with wireless radio (WLAN), router, server, and client computer system or hand held device e.g PDAs or mobile phone. This approach enables the development of hybrid systems which will be effective as a security measure on farm. Since, precision agriculture has developed with the computerization of agricultural production systems and the networking of computerized control systems. In the intelligent plant production system of controlled greenhouses, information on plant responses, measured by sensors, is used to optimize the system. Further work must be carry out on modeling using pervasive computing environment to solve problems of agriculture, as the use of electronics in agriculture will attracts more youth involvement in the industry.Keywords: pervasive computing, intrusion detection, precision agriculture, security, arable crop
Procedia PDF Downloads 409373 Sprinting Beyond Sexism and Gender Stereotypes: Indian Women Fans' Experiences in the Sports Fandom
Authors: Siddhi Deshpande, Jo Jo Chacko Eapen
Abstract:
Despite almost half of India’s female population engages in watching sports, their experiences in the sports fandom are concealed by ‘traditional masculinity,’ leading to potential exclusion and harassment. To explore these experiences in-depth, this qualitative study aims to understand what coping strategies Indian women fans employ, to sustain their team identification. Employing criterion sampling, participants were screened using The Sports Spectators Identification Scale (SSIS) to assess team identification and a Brief Sexism Questionnaire to confirm participants’ experience with sexism as it aligns with the purpose of the study. The participants were Indian women who had been following any sport for more than eight years, were fluent in English, and were not professionals in Sports. Ten highly identified fans with gendered experiences were recruited for one-on-one semi-structured, in-depth interviews. The data was analyzed using Interpretive Phenomenological Analysis (IPA) to understand the lived-in experiences of women fans experiencing sexism and gender stereotypes, revealing superordinate themes of (1) Ontogenesis and Emotional Investment; (2) Gendered Expectations and Sexism; (3) Coping Strategies and Resilience; (4) Identity, Femininity, Empowerment; (5) Advocacy for Equality and Inclusivity. The findings reflect that Indian women fans experience social exclusion, harassment, sexualization, and commodification, in both online and offline fandoms, where they are disproportionately targeted with threats, misogynistic comments, and attraction-based assumptions, questioning their ‘authenticity’ as fans due to their gender. Women fans interchange between proactive strategies of assertiveness, humor, and knowledge demonstration with defensive strategies of selective engagement, self-regulatory censorship, and desensitization to deal with sexism. In this interplay, the integration of women’s ‘fan identity’ with their self-concept showcases how being a sports fan adds meaning to their lives, despite the constant scrutiny in a male-dominated space, reflecting that femininity and sports should coexist. As a result, they find refuge in female fan communities due to their similar experiences in the fandom and advocate for an equal and inclusive environment where sports are above gender, and not the other way around. A key practical implication of this research is enabling sports organizations to develop inclusive fan engagement policies that actively encourage female fan participation. This includes sensitizing stadium staff and security personnel, promoting gender-neutral language, and, most importantly, establishing safety protocols to protect female fans from adverse experiences in the fandom.Keywords: coping strategies, female sports fans, femininity, gendered experiences, team identification
Procedia PDF Downloads 68372 Towards a More Inclusive Society: A Study on the Assimilation and Integration of the Migrant Children in Kerala
Authors: Arun Perumbilavil Anand
Abstract:
For the past few years, the state of Kerala has been witnessing a large inflow of migrant workers from other states of the country, which emerged as a result of demographic transition and Gulf emigration. The in-migration patterns in Kerala have changed over the time with the migrants having a higher residence history bringing their families to the state, thereby making the process more complicated and divergent in its approach. These developments have led to an increase in the young migrant population at least in some parts of the state, which has opened up doubts and questions related to their future in the host society. At this juncture, the study ponders into the factors that are associated with the assimilation and wellbeing of migrant children in the society of Kerala. As one of the objectives, the study also analyzed the influence and role played by the educational institutions (both public and private) in meeting the needs and aspirations of both the children and their parents. The study gains significance as it tries to identify various impediments that hinder the cognitive skill formation and behaviour patterns of the migrant children in the host society. Data and Methodology: The study is based on the primary data collected through a series of interviews and interactions held with parents, children, and teachers of different educational institutions, including both public and private. The primary survey also made use of research techniques like observation, in-depth interviews, and case study method. The study was conducted in schools in the Kanjikode area of the Palakkad district in Kerala. The findings of the study are on the basis of a survey conducted in four schools and 40 migrant children. Findings: The study found that majority of the children have wholly integrated and assimilated into the host society. The influence of the peer group was quite visible in giving stimulus to the assimilation process. Most of the children do not have any emotional or cultural sentiments attached to their state of origin, and they consider Kerala as their ‘home state’ and the local language (Malayalam) as their ‘mother tongue'. The study could also find that the existing education system in the host society fails to meet the needs and aspirations of migrants as well as that of their children. On a comparative scale, to some extent, private schools have succeeded in fulfiling the special requirements of the migrant children. An interesting point that the study could pinpoint at is that the children of the migrants show better health conditions and wellbeing than compared to the natives, which is usually addressed as an epidemiologic paradox. As a concluding remark, the study recommends the inclusion concept of inclusive education into the education system of the state with giving due emphasis on those who are at higher risk of being excluded or marginalized, along with fostering increased interaction between diverse groups.Keywords: assimilation, Kerala, migrant children, well-being
Procedia PDF Downloads 173371 A Systematic Review Investigating the Use of EEG Measures in Neuromarketing
Authors: A. M. Byrne, E. Bonfiglio, C. Rigby, N. Edelstyn
Abstract:
Introduction: Neuromarketing employs numerous methodologies when investigating products and advertisement effectiveness. Electroencephalography (EEG), a non-invasive measure of electrical activity from the brain, is commonly used in neuromarketing. EEG data can be considered using time-frequency (TF) analysis, where changes in the frequency of brainwaves are calculated to infer participant’s mental states, or event-related potential (ERP) analysis, where changes in amplitude are observed in direct response to a stimulus. This presentation discusses the findings of a systematic review of EEG measures in neuromarketing. A systematic review summarises evidence on a research question, using explicit measures to identify, select, and critically appraise relevant research papers. Thissystematic review identifies which EEG measures are the most robust predictor of customer preference and purchase intention. Methods: Search terms identified174 papers that used EEG in combination with marketing-related stimuli. Publications were excluded if they were written in a language other than English or were not published as journal articles (e.g., book chapters). The review investigated which TF effect (e.g., theta-band power) and ERP component (e.g., N400) most consistently reflected preference and purchase intention. Machine-learning prediction was also investigated, along with the use of EEG combined with physiological measures such as eye-tracking. Results: Frontal alpha asymmetry was the most reliable TF signal, where an increase in activity over the left side of the frontal lobe indexed a positive response to marketing stimuli, while an increase in activity over the right side indexed a negative response. The late positive potential, a positive amplitude increase around 600 ms after stimulus presentation, was the most reliable ERP component, reflecting the conscious emotional evaluation of marketing stimuli. However, each measure showed mixed results when related to preference and purchase behaviour. Predictive accuracy was greatly improved through machine-learning algorithms such as deep neural networks, especially when combined with eye-tracking or facial expression analyses. Discussion: This systematic review provides a novel catalogue of the most effective use of each EEG measure commonly used in neuromarketing. Exciting findings to emerge are the identification of the frontal alpha asymmetry and late positive potential as markers of preferential responses to marketing stimuli. Predictive accuracy using machine-learning algorithms achieved predictive accuracies as high as 97%, and future research should therefore focus on machine-learning prediction when using EEG measures in neuromarketing.Keywords: EEG, ERP, neuromarketing, machine-learning, systematic review, time-frequency
Procedia PDF Downloads 121370 Rehabilitation Team after Brain Damages as Complex System Integrating Consciousness
Authors: Olga Maksakova
Abstract:
A work with unconscious patients after acute brain damages besides special knowledge and practical skills of all the participants requires a very specific organization. A lot of said about team approach in neurorehabilitation, usually as for outpatient mode. Rehabilitologists deal with fixed patient problems or deficits (motion, speech, cognitive or emotional disorder). Team-building means superficial paradigm of management psychology. Linear mode of teamwork fits casual relationships there. Cases with deep altered states of consciousness (vegetative states, coma, and confusion) require non-linear mode of teamwork: recovery of consciousness might not be the goal due to phenomenon uncertainty. Rehabilitation team as Semi-open Complex System includes the patient as a part. Patient's response pattern becomes formed not only with brain deficits but questions-stimuli, context, and inquiring person. Teamwork is sourcing of phenomenology knowledge of patient's processes as Third-person approach is replaced with Second- and after First-person approaches. Here is a chance for real-time change. Patient’s contacts with his own body and outward things create a basement for restoration of consciousness. The most important condition is systematic feedbacks to any minimal movement or vegetative signal of the patient. Up to now, recovery work with the most severe contingent is carried out in the mode of passive physical interventions, while an effective rehabilitation team should include specially trained psychologists and psychotherapists. It is they who are able to create a network of feedbacks with the patient and inter-professional ones building up the team. Characteristics of ‘Team-Patient’ system (TPS) are energy, entropy, and complexity. Impairment of consciousness as the absence of linear contact appears together with a loss of essential functions (low energy), vegetative-visceral fits (excessive energy and low order), motor agitation (excessive energy and excessive order), etc. Techniques of teamwork are different in these cases for resulting optimization of the system condition. Directed regulation of the system complexity is one of the recovery tools. Different signs of awareness appear as a result of system self-organization. Joint meetings are an important part of teamwork. Regular or event-related discussions form the language of inter-professional communication, as well as the patient's shared mental model. Analysis of complex communication process in TPS may be useful for creation of the general theory of consciousness.Keywords: rehabilitation team, urgent rehabilitation, severe brain damage, consciousness disorders, complex system theory
Procedia PDF Downloads 149369 Cash Management in Response to Inflationary Pressures: An Innovative Approach Towards Enhanced Corporate Resilience in Morocco
Authors: Badrane Nohayla
Abstract:
In a global economic context marked by growing instability and persistent inflationary pressures, Moroccan companies are facing unprecedented challenges. With galloping inflation exerting increasing pressure on the Moroccan economy, it is becoming crucial for companies to rethink their cash management approach. In fact, this complex economic situation, marked by rising commodity costs, currency volatility and market uncertainty, requires an innovative strategic response. In this regard, the present article delves into how innovation in cash management can play a pivotal role in mitigating the destabilising effects of inflation while bolstering the financial resilience of Moroccan companies. The primary objective of this paper is to illuminate the innovative strategies that can be adopted to counteract inflationary pressures. It focuses on exploring advanced financial and technological approaches, such as the use of artificial intelligence for financial forecasting, the automation of cash management processes, and the implementation of hedging strategies to safeguard against price and interest rate fluctuations. Furthermore, in the Moroccan context, where recent inflation has heightened economic vulnerabilities, these innovative strategies are vital for optimising performance and ensuring businesses survival. By integrating these cutting-edge practices into their cash management frameworks, Moroccan companies can not only mitigate the immediate impacts of inflation on their operations but also position themselves more securely to withstand future challenges. In doing so, they enhance their capacity to navigate an uncertain economic landscape and seize sustainable growth opportunities, thereby strengthening their long-term resilience. It is worth noting that embracing innovative cash management is not merely a response to current economic challenges but a strategic investment in future-proofing businesses. By leveraging innovation, Moroccan companies can develop adaptive capabilities that will enhance their resilience to future crises, whether these stem from economic fluctuations or other external shocks. Thus, innovation emerges not just as an adjustment tool but as a critical strategic driver for thriving in a future where economic uncertainty may well become the norm.Keywords: innovative cash management, inflation, resilience, financial risks, moroccan companies
Procedia PDF Downloads 10368 Through Additive Manufacturing. A New Perspective for the Mass Production of Made in Italy Products
Authors: Elisabetta Cianfanelli, Paolo Pupparo, Maria Claudia Coppola
Abstract:
The recent evolutions in the innovation processes and in the intrinsic tendencies of the product development process, lead to new considerations on the design flow. The instability and complexity that contemporary life describes, defines new problems in the production of products, stimulating at the same time the adoption of new solutions across the entire design process. The advent of Additive Manufacturing, but also of IOT and AI technologies, continuously puts us in front of new paradigms regarding design as a social activity. The totality of these technologies from the point of view of application describes a whole series of problems and considerations immanent to design thinking. Addressing these problems may require some initial intuition and the use of some provisional set of rules or plausible strategies, i.e., heuristic reasoning. At the same time, however, the evolution of digital technology and the computational speed of new design tools describe a new and contrary design framework in which to operate. It is therefore interesting to understand the opportunities and boundaries of the new man-algorithm relationship. The contribution investigates the man-algorithm relationship starting from the state of the art of the Made in Italy model, the most known fields of application are described and then focus on specific cases in which the mutual relationship between man and AI becomes a new driving force of innovation for entire production chains. On the other hand, the use of algorithms could engulf many design phases, such as the definition of shape, dimensions, proportions, materials, static verifications, and simulations. Operating in this context, therefore, becomes a strategic action, capable of defining fundamental choices for the design of product systems in the near future. If there is a human-algorithm combination within a new integrated system, quantitative values can be controlled in relation to qualitative and material values. The trajectory that is described therefore becomes a new design horizon in which to operate, where it is interesting to highlight the good practices that already exist. In this context, the designer developing new forms can experiment with ways still unexpressed in the project and can define a new synthesis and simplification of algorithms, so that each artifact has a signature in order to define in all its parts, emotional and structural. This signature of the designer, a combination of values and design culture, will be internal to the algorithms and able to relate to digital technologies, creating a generative dialogue for design purposes. The result that is envisaged indicates a new vision of digital technologies, no longer understood only as of the custodians of vast quantities of information, but also as a valid integrated tool in close relationship with the design culture.Keywords: decision making, design euristics, product design, product design process, design paradigms
Procedia PDF Downloads 121367 Working From Home: On the Relationship Between Place Attachment to Work Place, Extraversion and Segmentation Preference to Burnout
Authors: Diamant Irene, Shklarnik Batya
Abstract:
In on to its widespread effects on health and economic issues, Covid-19 shook the work and employment world. Among the prominent changes during the pandemic is the work-from-home trend, complete or partial, as part of social distancing. In fact, these changes accelerated an existing tendency of work flexibility already underway before the pandemic. Technology and means of advanced communications led to a re-assessment of “place of work” as a physical space in which work takes place. Today workers can remotely carry out meetings, manage projects, work in groups, and different research studies point to the fact that this type of work has no adverse effect on productivity. However, from the worker’s perspective, despite numerous advantages associated with work from home, such as convenience, flexibility, and autonomy, various drawbacks have been identified such as loneliness, reduction of commitment, home-work boundary erosion, all risk factors relating to the quality of life and burnout. Thus, a real need has arisen in exploring differences in work-from-home experiences and understanding the relationship between psychological characteristics and the prevalence of burnout. This understanding may be of significant value to organizations considering a future hybrid work model combining in-office and remote working. Based on Hobfoll’s Theory of Conservation of Resources, we hypothesized that burnout would mainly be found among workers whose physical remoteness from the workplace threatens or hinders their ability to retain significant individual resources. In the present study, we compared fully remote and partially remote workers (hybrid work), and we examined psychological characteristics and their connection to the formation of burnout. Based on the conceptualization of Place Attachment as the cognitive-emotional bond of an individual to a meaningful place and the need to maintain closeness to it, we assumed that individuals characterized with Place Attachment to the workplace would suffer more from burnout when working from home. We also assumed that extrovert individuals, characterized by the need of social interaction at the workplace and individuals with segmentationpreference – a need for separation between different life domains, would suffer more from burnout, especially among fully remote workers relative to partially remote workers. 194 workers, of which 111 worked from home in full and 83 worked partially from home, aged 19-53, from different sectors, were tested using an online questionnaire through social media. The results of the study supported our assumptions. The repercussions of these findings are discussed, relating to future occupational experience, with an emphasis on suitable occupational adjustment according to the psychological characteristics and needs of workers.Keywords: working from home, burnout, place attachment, extraversion, segmentation preference, Covid-19
Procedia PDF Downloads 193366 A Good Start for Digital Transformation of the Companies: A Literature and Experience-Based Predefined Roadmap
Authors: Batuhan Kocaoglu
Abstract:
Nowadays digital transformation is a hot topic both in service and production business. For the companies who want to stay alive in the following years, they should change how they do their business. Industry leaders started to improve their ERP (Enterprise Resource Planning) like backbone technologies to digital advances such as analytics, mobility, sensor-embedded smart devices, AI (Artificial Intelligence) and more. Selecting the appropriate technology for the related business problem also is a hot topic. Besides this, to operate in the modern environment and fulfill rapidly changing customer expectations, a digital transformation of the business is required and change the way the business runs, affect how they do their business. Even the digital transformation term is trendy the literature is limited and covers just the philosophy instead of a solid implementation plan. Current studies urge firms to start their digital transformation, but few tell us how to do. The huge investments scare companies with blur definitions and concepts. The aim of this paper to solidify the steps of the digital transformation and offer a roadmap for the companies and academicians. The proposed roadmap is developed based upon insights from the literature review, semi-structured interviews, and expert views to explore and identify crucial steps. We introduced our roadmap in the form of 8 main steps: Awareness; Planning; Operations; Implementation; Go-live; Optimization; Autonomation; Business Transformation; including a total of 11 sub-steps with examples. This study also emphasizes four dimensions of the digital transformation mainly: Readiness assessment; Building organizational infrastructure; Building technical infrastructure; Maturity assessment. Finally, roadmap corresponds the steps with three main terms used in digital transformation literacy as Digitization; Digitalization; and Digital Transformation. The resulted model shows that 'business process' and 'organizational issues' should be resolved before technology decisions and 'digitization'. Companies can start their journey with the solid steps, using the proposed roadmap to increase the success of their project implementation. Our roadmap is also adaptable for relevant Industry 4.0 and enterprise application projects. This roadmap will be useful for companies to persuade their top management for investments. Our results can be used as a baseline for further researches related to readiness assessment and maturity assessment studies.Keywords: digital transformation, digital business, ERP, roadmap
Procedia PDF Downloads 174365 Movie and Theater Marketing Using the Potentials of Social Networks
Authors: Seyed Reza Naghibulsadat
Abstract:
The nature of communication includes various forms of media productions, which include film and theater. In the current situation, since social networks have emerged, they have brought their own communication capabilities and have features that show speed, public access, lack of media organization and the production of extensive content, and the development of critical thinking; Also, they contain capabilities to develop access to all kinds of media productions, including movies and theater shows; Of course, this works differently in different conditions and communities. In terms of the scale of exploitation, the film has a more general audience, and the theater has a special audience. The film industry is more developed based on more modern technologies, but the theater, based on the older ways of communication, contains more intimate and emotional aspects. ; But in general, the main focus is the development of access to movies and theater shows, which is emphasized by those involved in this field due to the capabilities of social networks. In this research, we will look at these 2 areas and the relevant components for both areas through social networks and also the common points of both types of media production. The main goal of this research is to know the strengths and weaknesses of using social networks for the marketing of movies and theater shows and, at the same time are, also considered the opportunities and threats of this field. The attractions of these two types of media production, with the emergence of social networks, and the ability to change positions, can provide the opportunity to become a media with greater exploitation and higher profitability; But the main consideration is the opinions about these capabilities and the ability to use them for film and theater marketing. The main question of the research is, what are the marketing components for movies and theaters using social media capabilities? What are its strengths and weaknesses? And what opportunities and threats are facing this market? This research has been done with two methods SWOT and meta-analysis. Non-probability sampling has been used with purposeful technique. The results show that a recent approach is an approach based on eliminating threats and weaknesses and emphasizing strengths, and exploiting opportunities in the direction of developing film and theater marketing based on the capabilities of social networks within the framework of local cultural values and presenting achievements on an international scale or It is universal. This introduction leads to the introduction of authentic Iranian culture and foreign enthusiasts in the framework of movies and theater art. Therefore, for this issue, the model for using the capabilities of social networks for movie or theater marketing, according to the results obtained from Respondents, is a model based on SO strategies and, in other words, offensive strategies so that it can take advantage of the internal strengths and made maximum use of foreign situations and opportunities to develop the use of movies and theater performances.Keywords: marketing, movies, theatrical show, social network potentials
Procedia PDF Downloads 80364 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning
Authors: Madhawa Basnayaka, Jouni Paltakari
Abstract:
Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.Keywords: artificial intelligence, chipless RFID, deep learning, machine learning
Procedia PDF Downloads 53363 An Exploration of Possible Impact of Drumming on Mental Health in a Hospital Setting
Authors: Zhao Luqian, Wang Yafei
Abstract:
Participation in music activities is beneficial for enhancing wellbeing, especially for aged people (Creech, 2013). Looking at percussion group in particular, it can facilitate a sense of belonging, relaxation, energy, and productivity, learning, enhanced mood, humanising, seems of accomplishment, escape from trauma, and emotional expression (Newman, 2015). In health literatures, group drumming is effective in reducing stress and improving multiple domains of social-motional behaviors (Ho et al., 2011; Maschi et al., 2010) because it offers a creative and mutual learning space that allows patients to establish a positive peer interaction (Mungas et al., 2014; Perkins, 2016). However, very few studies have investigated the effect of group drumming from the aspect of patients’ needs. Therefore, this study focuses on the discussion of patients' specific needs within mental health and explores how group percussion may meet their needs. Seligman’s (2011) five core elements of mental health were applied as patients’ needs in this study: (1) Positive emotions; (2) Engagement; (3) Relationships; (4) Meaning and (5) Accomplishment. 12 participants aged 57- 80 years were interviewed individually. The researcher also had observation in four drumming groups simultaneously. The results reveal that group drumming could improve participants’ mental wellbeing. First, it created a therapeutic health care environment extending beyond the elimination of boredom, and patients could focus on positive emotions during the session of group drumming. Secondly, it was effective in satisfying patients’ level of engagement. Thirdly, this study found that joining a percussion group would require patients to work on skills such as turn-taking and sharing. This equal relationship is helpful for releasing patients’ negative mood and thus forming tighter relationships between and among them. Fourthly, group drumming was found to meet patients’ meaning needs through offering them a place of belonging and a place for sharing. Its leaner-oriented approach engaged patients by a sense of belonging, accepting, connecting, and ownership. Finally, group drumming could meet patients’ needs for accomplishment through the learning process. The inclusive learning process, which indicates there is no right or wrong throughout the process, allowed patients to make their own decisions. In conclusion, it is difficult for patients to achieve positive emotions, engagement, relationships, meanings, and accomplishments in a hospital setting. Drumming can be practiced for enhancement in terms of reducing patients’ negative emotions and improving their experiences in a hospital through enriched social interaction and sense of accomplishment. Also, it can help patients to enhance social skills in a controlled environment.Keywords: group drumming, hospital, mental health, music psychology
Procedia PDF Downloads 92362 Improved Technology Portfolio Management via Sustainability Analysis
Authors: Ali Al-Shehri, Abdulaziz Al-Qasim, Abdulkarim Sofi, Ali Yousef
Abstract:
The oil and gas industry has played a major role in improving the prosperity of mankind and driving the world economy. According to the International Energy Agency (IEA) and Integrated Environmental Assessment (EIA) estimates, the world will continue to rely heavily on hydrocarbons for decades to come. This growing energy demand mandates taking sustainability measures to prolong the availability of reliable and affordable energy sources, and ensure lowering its environmental impact. Unlike any other industry, the oil and gas upstream operations are energy-intensive and scattered over large zonal areas. These challenging conditions require unique sustainability solutions. In recent years there has been a concerted effort by the oil and gas industry to develop and deploy innovative technologies to: maximize efficiency, reduce carbon footprint, reduce CO2 emissions, and optimize resources and material consumption. In the past, the main driver for research and development (R&D) in the exploration and production sector was primarily driven by maximizing profit through higher hydrocarbon recovery and new discoveries. Environmental-friendly and sustainable technologies are increasingly being deployed to balance sustainability and profitability. Analyzing technology and its sustainability impact is increasingly being used in corporate decision-making for improved portfolio management and allocating valuable resources toward technology R&D.This paper articulates and discusses a novel workflow to identify strategic sustainable technologies for improved portfolio management by addressing existing and future upstream challenges. It uses a systematic approach that relies on sustainability key performance indicators (KPI’s) including energy efficiency quotient, carbon footprint, and CO2 emissions. The paper provides examples of various technologies including CCS, reducing water cuts, automation, using renewables, energy efficiency, etc. The use of 4IR technologies such as Artificial Intelligence, Machine Learning, and Data Analytics are also discussed. Overlapping technologies, areas of collaboration and synergistic relationships are identified. The unique sustainability analyses provide improved decision-making on technology portfolio management.Keywords: sustainability, oil& gas, technology portfolio, key performance indicator
Procedia PDF Downloads 187361 Prospective Relations of Childhood Maltreatment, Temperament and Delinquency among Prisoners: Moderated Mediation Effect of Age and Education
Authors: Razia Anjum, Zaqia Bano, Chan Wai
Abstract:
Temperament has been described as a multifaceted and potentially value-laden construct in literature but there is scarcity of research work in area of forensic psychology predominantly in south Asian countries. Present exposition explored the mediated effect of temperament towards the childhood maltreatment and delinquency. Further the moderated effect of prisoner’s age and education will be examined. Variable System for Windows 1.3 version was used to analyze the data provided by 517 prisoners (407 males, 110 females) from four districts prisons situated at Pakistan. Cross sectional research design was used in this study and representative sample was approached through purposive sampling technique. Only those prisoners were the part of study who maltreated in their childhood in form of physical abuse, psychological abuse, sexual abuse or experienced the emotional neglect. After exploration the childhood adversities through ‘Child Abuse Self-Report Scale’, then the prisoner’s temperament styles were explored through ‘Adult Temperament Scale’. Later on, the investigation with particular to the delinquent behaviors was carried out. The findings suggested that the presence of four temperamental styles (choleric, melancholic, phlegmatic, and sanguine) mediated the childhood maltreatment-delinquency relationship in late adulthood but not in early adulthood. Marked exploration was the significant moderated effect of Prisoner’s age and their level of education that effect the relationship of temperament towards the childhood maltreatment and the delinquency, in this way results are consistent with views on cumulative pathways to delinquency that undergone through the effect of childhood maltreatment. Results indicated that Choleric, Melancholic temperament was the positive predictor of delinquency, whereas. The Phlegmatic and Sanguine temperament were the negative predictor of delinquency, in this way, different types of temperament left an indelible trace on delinquency that can work out by modifying the individual temperament. On the basis of results, it could be concluded that inclination towards the delinquent behaviors including theft, drug abuse, lying, noncompliance behavior, police encounter, violence, cheating, gambling, harassment, homosexuality and heterosexuality could be minimized if properly screen out the temperament. Moreover, study determined the two other significant moderated effect of age towards the involvement in delinquent behaviors and moderated effect of education towards childhood maltreatment and the temperament. Findings suggested that with marked increase in number of years in age the probability to get involve in delinquent behaviors will decrease and the result was consistent with the assumption that education can work as buffered to maximize or minimize the effect of trauma and can shape the temperament accordingly. Results are consistent with views on cumulative disadvantage with the socio-psychological faultiness of community.Keywords: delinquent behaviors, temperament, prisoners, moderated mediation analysis
Procedia PDF Downloads 106360 Development of a Decision Model to Optimize Total Cost in Food Supply Chain
Authors: Henry Lau, Dilupa Nakandala, Li Zhao
Abstract:
All along the length of the supply chain, fresh food firms face the challenge of managing both product quality, due to the perishable nature of the products, and product cost. This paper develops a method to assist logistics managers upstream in the fresh food supply chain in making cost optimized decisions regarding transportation, with the objective of minimizing the total cost while maintaining the quality of food products above acceptable levels. Considering the case of multiple fresh food products collected from multiple farms being transported to a warehouse or a retailer, this study develops a total cost model that includes various costs incurred during transportation. The practical application of the model is illustrated by using several computational intelligence approaches including Genetic Algorithms (GA), Fuzzy Genetic Algorithms (FGA) as well as an improved Simulated Annealing (SA) procedure applied with a repair mechanism for efficiency benchmarking. We demonstrate the practical viability of these approaches by using a simulation study based on pertinent data and evaluate the simulation outcomes. The application of the proposed total cost model was demonstrated using three approaches of GA, FGA and SA with a repair mechanism. All three approaches are adoptable; however, based on the performance evaluation, it was evident that the FGA is more likely to produce a better performance than the other two approaches of GA and SA. This study provides a pragmatic approach for supporting logistics and supply chain practitioners in fresh food industry in making important decisions on the arrangements and procedures related to the transportation of multiple fresh food products to a warehouse from multiple farms in a cost-effective way without compromising product quality. This study extends the literature on cold supply chain management by investigating cost and quality optimization in a multi-product scenario from farms to a retailer and, minimizing cost by managing the quality above expected quality levels at delivery. The scalability of the proposed generic function enables the application to alternative situations in practice such as different storage environments and transportation conditions.Keywords: cost optimization, food supply chain, fuzzy sets, genetic algorithms, product quality, transportation
Procedia PDF Downloads 225359 Principal Well-Being at Hong Kong: A Quantitative Investigation
Authors: Junjun Chen, Yingxiu Li
Abstract:
The occupational well-being of school principals has played a vital role in the pursuit of individual and school wellness and success. However, principals’ well-being worldwide is under increasing threat because of the challenging and complex nature of their work and growing demands for school standardisation and accountability. Pressure is particularly acute in the post-pandemicfuture as principals attempt to deal with the impact of the pandemic on top of more regular demands. This is particularly true in Hong Kong, as school principals are increasingly wedged between unparalleled political, social, and academic responsibilities. Recognizing the semantic breadth of well-being, scholars have not determined a single, mutually agreeable definition but agreed that the concept of well-being has multiple dimensions across various disciplines. The multidimensional approach promises more precise assessments of the relationships between well-being and other concepts than the ‘affect-only’ approach or other single domains for capturing the essence of principal well-being. The multiple-dimension well-being concept is adopted in this project to understand principal well-being in this study. This study aimed to understand the situation of principal well-being and its influential drivers with a sample of 670 principals from Hong Kong and Mainland China. An online survey was sent to the participants after the breakout of COVID-19 by the researchers. All participants were well informed about the purposes and procedure of the project and the confidentiality of the data prior to filling in the questionnaire. Confirmatory factor analysis and structural equation modelling performed with Mplus were employed to deal with the dataset. The data analysis procedure involved the following three steps. First, the descriptive statistics (e.g., mean and standard deviation) were calculated. Second, confirmatory factor analysis (CFA) was used to trim principal well-being measurement performed with maximum likelihood estimation. Third, structural equation modelling (SEM) was employed to test the influential factors of principal well-being. The results of this study indicated that the overall of principal well-being were above the average mean score. The highest ranking in this study given by the principals was to their psychological and social well-being (M = 5.21). This was followed by spiritual (M = 5.14; SD = .77), cognitive (M = 5.14; SD = .77), emotional (M = 4.96; SD = .79), and physical well-being (M = 3.15; SD = .73). Participants ranked their physical well-being the lowest. Moreover, professional autonomy, supervisor and collegial support, school physical conditions, professional networking, and social media have showed a significant impact on principal well-being. The findings of this study will potentially enhance not only principal well-being, but also the functioning of an individual principal and a school without sacrificing principal well-being for quality education in the process. This will eventually move one step forward for a new future - a wellness society advocated by OECD. Importantly, well-being is an inside job that begins with choosing to have wellness, whilst supports to become a wellness principal are also imperative.Keywords: well-being, school principals, quantitative, influential factors
Procedia PDF Downloads 86358 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 98357 Artificial Intelligence in Ethiopian Higher Education: The Impact of Digital Readiness Support, Acceptance, Risk, and Trust on Adoption
Authors: Merih Welay Welesilassie
Abstract:
Understanding educators' readiness to incorporate AI tools into their teaching methods requires comprehensively examining the influencing factors. This understanding is crucial, given the potential of these technologies to personalise learning experiences, improve instructional effectiveness, and foster innovative pedagogical approaches. This study evaluated factors affecting teachers' adoption of AI tools in their English language instruction by extending the Technology Acceptance Model (TAM) to encompass digital readiness support, perceived risk, and trust. A cross-sectional quantitative survey was conducted with 128 English language teachers, supplemented by qualitative data collection from 15 English teachers. The structural mode analysis indicated that implementing AI tools in Ethiopian higher education was notably influenced by digital readiness support, perceived ease of use, perceived usefulness, perceived risk, and trust. Digital readiness support positively impacted perceived ease of use, usefulness, and trust while reducing safety and privacy risks. Perceived ease of use positively correlated with perceived usefulness but negatively influenced trust. Furthermore, perceived usefulness strengthened trust in AI tools, while perceived safety and privacy risks significantly undermined trust. Trust was crucial in increasing educators' willingness to adopt AI technologies. The qualitative analysis revealed that the teachers exhibited strong content and pedagogical knowledge but needed more technology-related knowledge. Moreover, It was found that the teachers did not utilise digital tools to teach English. The study identified several obstacles to incorporating digital tools into English lessons, such as insufficient digital infrastructure, a shortage of educational resources, inadequate professional development opportunities, and challenging policies and governance. The findings provide valuable guidance for educators, inform policymakers about creating supportive digital environments, and offer a foundation for further investigation into technology adoption in educational settings in Ethiopia and similar contexts.Keywords: digital readiness support, AI acceptance, perceived risc, AI trust
Procedia PDF Downloads 27356 Fast Estimation of Fractional Process Parameters in Rough Financial Models Using Artificial Intelligence
Authors: Dávid Kovács, Bálint Csanády, Dániel Boros, Iván Ivkovic, Lóránt Nagy, Dalma Tóth-Lakits, László Márkus, András Lukács
Abstract:
The modeling practice of financial instruments has seen significant change over the last decade due to the recognition of time-dependent and stochastically changing correlations among the market prices or the prices and market characteristics. To represent this phenomenon, the Stochastic Correlation Process (SCP) has come to the fore in the joint modeling of prices, offering a more nuanced description of their interdependence. This approach has allowed for the attainment of realistic tail dependencies, highlighting that prices tend to synchronize more during intense or volatile trading periods, resulting in stronger correlations. Evidence in statistical literature suggests that, similarly to the volatility, the SCP of certain stock prices follows rough paths, which can be described using fractional differential equations. However, estimating parameters for these equations often involves complex and computation-intensive algorithms, creating a necessity for alternative solutions. In this regard, the Fractional Ornstein-Uhlenbeck (fOU) process from the family of fractional processes offers a promising path. We can effectively describe the rough SCP by utilizing certain transformations of the fOU. We employed neural networks to understand the behavior of these processes. We had to develop a fast algorithm to generate a valid and suitably large sample from the appropriate process to train the network. With an extensive training set, the neural network can estimate the process parameters accurately and efficiently. Although the initial focus was the fOU, the resulting model displayed broader applicability, thus paving the way for further investigation of other processes in the realm of financial mathematics. The utility of SCP extends beyond its immediate application. It also serves as a springboard for a deeper exploration of fractional processes and for extending existing models that use ordinary Wiener processes to fractional scenarios. In essence, deploying both SCP and fractional processes in financial models provides new, more accurate ways to depict market dynamics.Keywords: fractional Ornstein-Uhlenbeck process, fractional stochastic processes, Heston model, neural networks, stochastic correlation, stochastic differential equations, stochastic volatility
Procedia PDF Downloads 123355 Analyzing the Use of Augmented and Virtual Reality to Teach Social Skills to Students with Autism
Authors: Maggie Mosher, Adam Carreon, Sean Smith
Abstract:
A systematic literature review was conducted to explore the evidence base on the use of augmented reality (AR), virtual reality (VR), mixed reality (MR), and extended reality (XR) to present social skill instruction to school-age students with autism spectrum disorder (ASD). Specifically, the systematic review focus was on a. the participants and intervention agents using AR, VR, MR, and XR for social skill acquisition b. the social skills taught through these mediums and c. the social validity measures (i.e., goals, procedures, and outcomes) reported in these studies. Forty-one articles met the inclusion criteria. Researchers in six studies taught social skills to students through AR, in 27 studies through non-immersive VR, and in 10 studies through immersive VR. No studies used MR or XR. The primary targeted social skills were relationship skills, emotion recognition, social awareness, cooperation, and executive functioning. An intervention to improve many social skills was implemented by 73% of researchers, 17% taught a single skill, and 10% did not clearly state the targeted skill. The intervention was considered effective in 26 of the 41 studies (63%), not effective in four studies (10%), and 11 studies (27%) reported mixed results. No researchers reported information for all 17 social validity indicators. The social validity indicators reported by researchers ranged from two to 14. Social validity measures on the feelings toward and use of the technology were provided in 22 studies (54%). Findings indicated both AR and VR are promising platforms for providing social skill instruction to students with ASD. Studies utilizing this technology show a number of social validity indicators. However, the limited information provided on the various interventions, participant characteristics, and validity measures, offers insufficient evidence of the impact of these technologies in teaching social skills to students with ASD. Future research should develop a protocol for training treatment agents to assess the role of different variables (i.e., whether agents are customizing content, monitoring student learning, using intervention specific vocabulary in their day to day instruction). Sustainability may be increased by providing training in the technology to both treatment agents and participants. Providing scripts of instruction occurring within the intervention would provide the needed information to determine the primary method of teaching within the intervention. These variables play a role in maintenance and generalization of the social skills. Understanding the type of feedback provided would help researchers determine if students were able to feel rewarded for progressing through the scenarios or if students require rewarding aspects within the intervention (i.e., badges, trophies). AR has the potential to generalize instruction and VR has the potential for providing a practice environment for performance deficits. Combining these two technologies into a mixed reality intervention may provide a more cohesive and effective intervention.Keywords: autism, augmented reality, social and emotional learning, social skills, virtual reality
Procedia PDF Downloads 113