Search results for: elaboration likelihood model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17341

Search results for: elaboration likelihood model

14641 Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece

Authors: Dimitrios Triantakonstantis, Demetris Stathakis

Abstract:

Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.

Keywords: artificial neural networks, CORINE, urban atlas, urban growth prediction

Procedia PDF Downloads 529
14640 Mathematical Model of the Spread of Herpes Simplex Virus Type-2 in Heterosexual Relations with and without Condom Usage in a College Population

Authors: Jacob A. Braun

Abstract:

This paper uses mathematical modeling to show the spread of Herpes Simplex type-2 with and without the usage of condoms in a college population. The model uses four differential equations to calculate the data for the simulation. The dt increment used is one week. It also runs based on a fixated period. The period chosen was five years to represent time spent in college. The average age of the individual is 21, once again to represent the age of someone in college. In the total population, there are almost two times as many women who have Herpes Simplex Type-2 as men. Additionally, Herpes Simplex Type-2 does not have a known cure. The goal of the model is to show how condom usage affects women’s chances of receiving the virus in the hope of being able to reduce the number of women infected. In the end, the model demonstrates that condoms offer significant protection to women from the virus. Since fewer women are infected with the virus when condoms are used, in turn, fewer males are infected. Since Herpes Simplex Type-2 affects the carrier for their whole life, a small decrease of infections could lead to large ramifications over time. Specifically, a small decrease of infections at a young age, such as college, could have a very big effect on the long-term number of people infected with the virus.

Keywords: college, condom, Herpes, mathematical modelling

Procedia PDF Downloads 216
14639 Research on Supply Chain Coordination Based on Lateral Transshipment in the Background of New Retail

Authors: Yue Meng, Lingyun Wei

Abstract:

In this paper, the coordination problem of a supply chain system composed of multiple retailers and manufacturers is studied under the background of the new retail supply chain. Taking a system composed of two retailers and one manufacturer as an example, this paper introduces an online store owned by the manufacturer to reflect the characteristics of the combination of online and offline new retail. Then, this paper gives the conditions that need to be satisfied to realize the coordination between retailers and manufacturers, such as the revenue sharing coefficient. The supply chain coordination model is compared with the newsboy model through a specific example. Finally, the conclusion is drawn that the profits of the coordinated supply chain and its members are better than the corresponding profits under the newsboy model; that is, the coordination of the supply chain is realized by using the revenue sharing contract and the transshipment fund mechanism.

Keywords: transshipment, coordination, multi-retailer, revenue-sharing contract

Procedia PDF Downloads 143
14638 Image Instance Segmentation Using Modified Mask R-CNN

Authors: Avatharam Ganivada, Krishna Shah

Abstract:

The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.

Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision

Procedia PDF Downloads 73
14637 Measuring Strategic Management Maturity: An Empirical Study in Turkish Public and Private Sector Organizations

Authors: F. Demir

Abstract:

Strategic Management is highly critical for all types of organizations. This paper examines maturity level of strategic management practices of public and private sector organizations in Turkey, and presents a conceptual model for assessing the maturity of strategic management in any organization. This research focuses on R&D intensive organizations (RDO) because it is claimed that such organizations are more innovative and innovation is a critical part of the model. The Strategic management maturity model (S-3M) is basically composed of six maturity levels with five different dimensions. Based on 63 organizations, the findings reveal that the average maturity of all organizations in the sample group is three out of five. It corresponds to the stage of ‘performed’. Results simply show that the majority of organizations from various industries and sectors implement strategic management activities; however, they experience multiple challenges to optimize strategic management processes and integrate organizational components with business strategies. Briefly, they struggle to become an innovative organization.

Keywords: strategic management maturity, innovation, developing countries, research and development

Procedia PDF Downloads 288
14636 Effects of Changes in LULC on Hydrological Response in Upper Indus Basin

Authors: Ahmad Ammar, Umar Khan Khattak, Muhammad Majid

Abstract:

Empirically based lumped hydrologic models have an extensive track record of use for various watershed managements and flood related studies. This study focuses on the impacts of LULC change for 10 year period on the discharge in watershed using lumped model HEC-HMS. The Indus above Tarbela region acts as a source of the main flood events in the middle and lower portions of Indus because of the amount of rainfall and topographic setting of the region. The discharge pattern of the region is influenced by the LULC associated with it. In this study the Landsat TM images were used to do LULC analysis of the watershed. Satellite daily precipitation TRMM data was used as input rainfall. The input variables for model building in HEC-HMS were then calculated based on the GIS data collected and pre-processed in HEC-GeoHMS. SCS-CN was used as transform model, SCS unit hydrograph method was used as loss model and Muskingum was used as routing model. For discharge simulation years 2000 and 2010 were taken. HEC-HMS was calibrated for the year 2000 and then validated for 2010.The performance of the model was assessed through calibration and validation process and resulted R2=0.92 during calibration and validation. Relative Bias for the years 2000 was -9% and for2010 was -14%. The result shows that in 10 years the impact of LULC change on discharge has been negligible in the study area overall. One reason is that, the proportion of built-up area in the watershed, which is the main causative factor of change in discharge, is less than 1% of the total area. However, locally, the impact of development was found significant in built up area of Mansehra city. The analysis was done on Mansehra city sub-watershed with an area of about 16 km2 and has more than 13% built up area in 2010. The results showed that with an increase of 40% built-up area in the city from 2000 to 2010 the discharge values increased about 33 percent, indicating the impact of LULC change on discharge value.

Keywords: LULC change, HEC-HMS, Indus Above Tarbela, SCS-CN

Procedia PDF Downloads 513
14635 Constructing a Semi-Supervised Model for Network Intrusion Detection

Authors: Tigabu Dagne Akal

Abstract:

While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.

Keywords: intrusion detection, data mining, computer science, data mining

Procedia PDF Downloads 296
14634 A New Realization of Multidimensional System for Grid Sensor Network

Authors: Yang Xiong, Hua Cheng

Abstract:

In this paper, for the basic problem of wireless sensor network topology control and deployment, the Roesser model in rectangular grid sensor networks is presented. In addition, a general constructive realization procedure will be proposed. The procedure enables a distributed implementation of linear systems on a sensor network. A non-trivial example is illustrated.

Keywords: grid sensor networks, Roesser model, state-space realization, multidimensional systems

Procedia PDF Downloads 655
14633 Estimation of PM2.5 Emissions and Source Apportionment Using Receptor and Dispersion Models

Authors: Swetha Priya Darshini Thammadi, Sateesh Kumar Pisini, Sanjay Kumar Shukla

Abstract:

Source apportionment using Dispersion model depends primarily on the quality of Emission Inventory. In the present study, a CMB receptor model has been used to identify the sources of PM2.5, while the AERMOD dispersion model has been used to account for missing sources of PM2.5 in the Emission Inventory. A statistical approach has been developed to quantify the missing sources not considered in the Emission Inventory. The inventory of each grid was improved by adjusting emissions based on road lengths and deficit in measured and modelled concentrations. The results showed that in CMB analyses, fugitive sources - soil and road dust - contribute significantly to ambient PM2.5 pollution. As a result, AERMOD significantly underestimated the ambient air concentration at most locations. The revised Emission Inventory showed a significant improvement in AERMOD performance which is evident through statistical tests.

Keywords: CMB, GIS, AERMOD, PM₂.₅, fugitive, emission inventory

Procedia PDF Downloads 340
14632 Temperature Control Improvement of Membrane Reactor

Authors: Pornsiri Kaewpradit, Chalisa Pourneaw

Abstract:

Temperature control improvement of a membrane reactor with exothermic and reversible esterification reaction is studied in this work. It is well known that a batch membrane reactor requires different control strategies from a continuous one due to the fact that it is operated dynamically. Due to the effect of the operating temperature, the suitable control scheme has to be designed based reliable predictive model to achieve a desired objective. In the study, the optimization framework has been preliminary formulated in order to determine an optimal temperature trajectory for maximizing a desired product. In model predictive control scheme, a set of predictive models have been initially developed corresponding to the possible operating points of the system. The multiple predictive control moves have been further calculated on-line using the developed models corresponding to current operating point. It is obviously seen in the simulation results that the temperature control has been improved compared to the performance obtained by the conventional predictive controller. Further robustness tests have also been investigated in this study.

Keywords: model predictive control, batch reactor, temperature control, membrane reactor

Procedia PDF Downloads 468
14631 A Predator-Prey Model with Competitive Interaction amongst the Preys

Authors: Titus G. Kassem, Izang A. Nyam

Abstract:

A mathematical model is constructed to study the effect of predation on two competing species in which one of the competing species is a prey to the predator whilst the other species are not under predation. Conditions for the existence and stability of equilibrium solutions were determined. Numerical simulation results indicate the possibility of a stable coexistence of the three interacting species in form of stable oscillations under certain parameter values. We also noticed that under some certain parameter values, species under predation go into extinction.

Keywords: competition, predator-prey, species, ecology

Procedia PDF Downloads 278
14630 Matching Law in Autoshaped Choice in Neural Networks

Authors: Giselle Maggie Fer Castañeda, Diego Iván González

Abstract:

The objective of this work was to study the autoshaped choice behavior in the Donahoe, Burgos and Palmer (DBP) neural network model and analyze it under the matching law. Autoshaped choice can be viewed as a form of economic behavior defined as the preference between alternatives according to their relative outcomes. The Donahoe, Burgos and Palmer (DBP) model is a connectionist proposal that unifies operant and Pavlovian conditioning. This model has been used for more than three decades as a neurobehavioral explanation of conditioning phenomena, as well as a generator of predictions suitable for experimental testing with non-human animals and humans. The study consisted of different simulations in which, in each one, a ratio of reinforcement was established for two alternatives, and the responses (i.e., activations) in each of them were measured. Choice studies with animals have demonstrated that the data generally conform closely to the generalized matching law equation, which states that the response ratio equals proportionally to the reinforcement ratio; therefore, it was expected to find similar results with the neural networks of the Donahoe, Burgos and Palmer (DBP) model since these networks have simulated and predicted various conditioning phenomena. The results were analyzed by the generalized matching law equation, and it was observed that under some contingencies, the data from the networks adjusted approximately to what was established by the equation. Implications and limitations are discussed.

Keywords: matching law, neural networks, computational models, behavioral sciences

Procedia PDF Downloads 74
14629 Numerical Modeling of Waves and Currents by Using a Hydro-Sedimentary Model

Authors: Mustapha Kamel Mihoubi, Hocine Dahmani

Abstract:

Over recent years much progress has been achieved in the fields of numerical modeling shoreline processes: waves, currents, waves and current. However, there are still some problems in the existing models to link the on the first, the hydrodynamics of waves and currents and secondly, the sediment transport processes and due to the variability in time, space and interaction and the simultaneous action of wave-current near the shore. This paper is the establishment of a numerical modeling to forecast the sediment transport from development scenarios of harbor structure. It is established on the basis of a numerical simulation of a water-sediment model via a 2D model using a set of codes calculation MIKE 21-DHI software. This is to examine the effect of the sediment transport drivers following the dominant incident wave in the direction to pass input harbor work under different variants planning studies to find the technical and economic limitations to the sediment transport and protection of the harbor structure optimum solution.

Keywords: swell, current, radiation, stress, mesh, mike21, sediment

Procedia PDF Downloads 469
14628 Knowledge Decision of Food Waste and Loss Reduction in Supply Chain System: A Case Study of Kingdom of Saudi Arabia

Authors: Nadia Adnan, Muhammad Mohsin Raza, Latha Ravindran

Abstract:

Based on the principles above, the study presents an economic model of food waste for consumers, intermediaries, and producers. We discriminate between purchasing and selling, purchases versus customers consumption, and gross output versus sales for each intermediary. To compensate for waste at each level of the supply chain, agents must charge higher sales prices. The research model can produce more accurate predictions about how actions (public regulations or private efforts) to reduce food waste impact markets, including indirect (cascading) effects. With a formal model, researchers demonstrate the uniqueness of these interaction effects and simulate an empirical model calibrated to market characteristics and waste rates in Saudi Arabia. Researchers demonstrate that the effects of waste reduction differ per commodity, depending on supply and demand elasticities, degree of openness to international commerce, and the beginning rates of food loss and waste at each level of the value chain. Because of the consequential effects related to the supply chain, initiatives to minimize food waste will be strengthened in some circumstances and partially countered in others.

Keywords: food loss, food waste, supply chain management, Saudi Arabia, food supply

Procedia PDF Downloads 107
14627 The Promotion Effects for a Supply Chain System with a Dominant Retailer

Authors: Tai-Yue Wang, Yi-Ho Chen

Abstract:

In this study, we investigate a two-echelon supply chain with two suppliers and three retailers among which one retailer dominates other retailers. A price competition demand function is used to model this dominant retailer, which is leading market. The promotion strategies and negotiation schemes are integrated to form decision-making models under different scenarios. These models are then formulated into different mathematical programming models. The decision variables such as promotional costs, retailer prices, wholesale price, and order quantity are included in these models. At last, the distributions of promotion costs under different cost allocation strategies are discussed. Finally, an empirical example used to validate our models. The results from this empirical example show that the profit model will create the largest profit for the supply chain but with different profit-sharing results. At the same time, the more risk a member can take, the more profits are distributed to that member in the utility model.

Keywords: supply chain, price promotion, mathematical models, dominant retailer

Procedia PDF Downloads 401
14626 Analytical Solution of the Boundary Value Problem of Delaminated Doubly-Curved Composite Shells

Authors: András Szekrényes

Abstract:

Delamination is one of the major failure modes in laminated composite structures. Delamination tips are mostly captured by spatial numerical models in order to predict crack growth. This paper presents some mechanical models of delaminated composite shells based on shallow shell theories. The mechanical fields are based on a third-order displacement field in terms of the through-thickness coordinate of the laminated shell. The undelaminated and delaminated parts are captured by separate models and the continuity and boundary conditions are also formulated in a general way providing a large size boundary value problem. The system of differential equations is solved by the state space method for an elliptic delaminated shell having simply supported edges. The comparison of the proposed and a numerical model indicates that the primary indicator of the model is the deflection, the secondary is the widthwise distribution of the energy release rate. The model is promising and suitable to determine accurately the J-integral distribution along the delamination front. Based on the proposed model it is also possible to develop finite elements which are able to replace the computationally expensive spatial models of delaminated structures.

Keywords: J-integral, levy method, third-order shell theory, state space solution

Procedia PDF Downloads 131
14625 Parameter Estimation of Additive Genetic and Unique Environment (AE) Model on Diabetes Mellitus Type 2 Using Bayesian Method

Authors: Andi Darmawan, Dewi Retno Sari Saputro, Purnami Widyaningsih

Abstract:

Diabetes mellitus (DM) is a chronic disease in human that occurred if pancreas cannot produce enough of insulin hormone or the body uses ineffectively insulin hormone which causes increasing level of glucose in the blood, or it was called hyperglycemia. In Indonesia, DM is a serious disease on health because it can cause blindness, kidney disease, diabetic feet (gangrene), and stroke. The type of DM criteria can also be divided based on the main causes; they are DM type 1, type 2, and gestational. Diabetes type 1 or previously known as insulin-independent diabetes is due to a lack of production of insulin hormone. Diabetes type 2 or previously known as non-insulin dependent diabetes is due to ineffective use of insulin while gestational diabetes is a hyperglycemia that found during pregnancy. The most one type commonly found in patient is DM type 2. The main factors of this disease are genetic (A) and life style (E). Those disease with 2 factors can be constructed with additive genetic and unique environment (AE) model. In this article was discussed parameter estimation of AE model using Bayesian method and the inheritance character simulation on parent-offspring. On the AE model, there are response variable, predictor variables, and parameters were capable of representing the number of population on research. The population can be measured through a taken random sample. The response and predictor variables can be determined by sample while the parameters are unknown, so it was required to estimate the parameters based on the sample. Estimation of AE model parameters was obtained based on a joint posterior distribution. The simulation was conducted to get the value of genetic variance and life style variance. The results of simulation are 0.3600 for genetic variance and 0.0899 for life style variance. Therefore, the variance of genetic factor in DM type 2 is greater than life style.

Keywords: AE model, Bayesian method, diabetes mellitus type 2, genetic, life style

Procedia PDF Downloads 284
14624 Modeling of Tool Flank Wear in Finish Hard Turning of AISI D2 Using Genetic Programming

Authors: V. Pourmostaghimi, M. Zadshakoyan

Abstract:

Efficiency and productivity of the finish hard turning can be enhanced impressively by utilizing accurate predictive models for cutting tool wear. However, the ability of genetic programming in presenting an accurate analytical model is a notable characteristic which makes it more applicable than other predictive modeling methods. In this paper, the genetic equation for modeling of tool flank wear is developed with the use of the experimentally measured flank wear values and genetic programming during finish turning of hardened AISI D2. Series of tests were conducted over a range of cutting parameters and the values of tool flank wear were measured. On the basis of obtained results, genetic model presenting connection between cutting parameters and tool flank wear were extracted. The accuracy of the genetically obtained model was assessed by using two statistical measures, which were root mean square error (RMSE) and coefficient of determination (R²). Evaluation results revealed that presented genetic model predicted flank wear over the study area accurately (R² = 0.9902 and RMSE = 0.0102). These results allow concluding that the proposed genetic equation corresponds well with experimental data and can be implemented in real industrial applications.

Keywords: cutting parameters, flank wear, genetic programming, hard turning

Procedia PDF Downloads 179
14623 The Effect of Material Properties and Volumetric Changes in Phase Transformation to the Final Residual Stress of Welding Process

Authors: Djarot B. Darmadi

Abstract:

The wider growing Finite Element Method (FEM) application is caused by its benefits of cost saving and environment friendly. Also, by using FEM a deep understanding of certain phenomenon can be achieved. This paper observed the role of material properties and volumetric change when Solid State Phase Transformation (SSPT) takes place in residual stress formation due to a welding process of ferritic steels through coupled Thermo-Metallurgy-Mechanical (TMM) analysis. The correctness of FEM residual stress prediction was validated by experiment. From parametric study of the FEM model, it can be concluded that the material properties change tend to over-predicts residual stress in the weld center whilst volumetric change tend to underestimates it. The best final result is the compromise of both by incorporates them in the model which has a better result compared to a model without SSPT.

Keywords: residual stress, ferritic steels, SSPT, coupled-TMM

Procedia PDF Downloads 270
14622 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries

Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco

Abstract:

SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.

Keywords: forecasting, ordinary differential equations, SARS-COV-2 epidemic, SIR model

Procedia PDF Downloads 152
14621 Land Cover, Land Surface Temperature, and Urban Heat Island Effects in Tropical Sub Saharan City of Accra

Authors: Eric Mensah

Abstract:

The effects of rapid urbanisation of tropical sub-Saharan developing cities on local and global climate are of great concern due to the negative impacts of Urban Heat Island (UHI) effects. The importance of urban parks, vegetative cover and forest reserves in these tropical cities have been undervalued with a rapid degradation and loss of these vegetative covers to urban developments which continue to cause an increase in daily mean temperatures and changes to local climatic conditions. Using Landsat data of the same months and period intervals, the spatial variations of land cover changes, temperature, and vegetation were examined to determine how vegetation improves local temperature and the effects of urbanisation on daily mean temperatures over the past 12 years. The remote sensing techniques of maximum likelihood supervised classification, land surface temperature retrieval technique, and normalised differential vegetation index techniques were used to analyse and create the land use land cover (LULC), land surface temperature (LST), and vegetation and non-vegetation cover maps respectively. Results from the study showed an increase in daily mean temperature by 0.80 °C as a result of rapid increase in urban area by 46.13 sq. km and loss of vegetative cover by 46.24 sq. km between 2005 and 2017. The LST map also shows the existence of UHI within the urban areas of Accra, the potential mitigating effects offered by the existence of forest and vegetative cover as demonstrated by the existence of cool islands around the Achimota ecological forest and University of Ghana botanical gardens areas.

Keywords: land surface temperature, climate, remote sensing, urbanisation

Procedia PDF Downloads 320
14620 GPS Devices to Increase Efficiency of Indian Auto-Rickshaw Segment

Authors: Sanchay Vaidya, Sourabh Gupta, Gouresh Singhal

Abstract:

There are various modes of transport in metro cities in India, auto-rickshaws being one of them. Auto-rickshaws provide connectivity to all the places in the city offering last mile connectivity. Among all the modes of transport, the auto-rickshaw industry is the most unorganized and inefficient. Although unions exist in different cities they aren’t good enough to cope up with the upcoming advancements in the field of technology. An introduction of simple technology in this field may do wonder and help increase the revenues. This paper aims to organize this segment under a single umbrella using GPS devices and mobile phones. The paper includes surveys of about 300 auto-rickshaw drivers and 1000 plus commuters across 6 metro cities in India. Carrying out research and analysis provides a base for the development of this model and implementation of this innovative technique, which is discussed in this paper in detail with ample emphasis given on the implementation of this model.

Keywords: auto-rickshaws, business model, GPS device, mobile application

Procedia PDF Downloads 227
14619 A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model

Authors: M. Brandt, A. Peniak, J. Makarovič, P. Rafajdus

Abstract:

This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one.

Keywords: transformer, parametrical model of transformer, fault, sweep frequency response analysis, finite element method

Procedia PDF Downloads 483
14618 Excitation Modeling for Hidden Markov Model-Based Speech Synthesis Based on Wavelet Analysis

Authors: M. Kiran Reddy, K. Sreenivasa Rao

Abstract:

The conventional Hidden Markov Model (HMM)-based speech synthesis system (HTS) uses only a pulse excitation model, which significantly differs from natural excitation signal. Hence, buzziness can be perceived in the speech generated using HTS. This paper proposes an efficient excitation modeling method that can significantly reduce the buzziness, and improve the quality of HMM-based speech synthesis. The proposed approach models the pitch-synchronous residual frames extracted from the residual excitation signal. Each pitch synchronous residual frame is parameterized using 30 wavelet coefficients. These 30 wavelet coefficients are found to accurately capture the perceptually important information present in the residual waveform. In synthesis phase, the residual frames are reconstructed from the generated wavelet coefficients and are pitch-synchronously overlap-added to generate the excitation signal. The proposed excitation modeling method is integrated into HMM-based speech synthesis system. Evaluation results indicate that the speech synthesized by the proposed excitation model is significantly better than the speech generated using state-of-the-art excitation modeling methods.

Keywords: excitation modeling, hidden Markov models, pitch-synchronous frames, speech synthesis, wavelet coefficients

Procedia PDF Downloads 249
14617 Nutritional Importance and Functional Properties of Baobab Leaves

Authors: Khadijat Ayanpeju Abdulsalam, Bolanle Mary Olawoye, Paul Babatunde Ayoola

Abstract:

The potential of Baobab leaves is understudied and not yet fully documented. The purpose of this work is to highlight the important nutritional value and practical qualities of baobab leaves. In this research, proximate analysis was studied to determine the macronutrient quantitative analysis in baobab leaves. Studies were also conducted on other characteristics, such as moisture content, which is significant to the food business since it affects food quality, preservation, and resistance to deterioration. Dietary fiber, which was also studied, has important health benefits, such as lowering blood cholesterol levels by lowering low-density lipoprotein or "bad" cholesterol. It functions as an anti-obesity and anti-diabetic agent, lowering the likelihood of haemorrhoids developing. Additionally, increasing face bulk and short-chain fatty acid synthesis improves gastrointestinal health and overall wellness. Baobab leaves had a moisture content of 6.4%, fat of 16.1%, ash of 3.2%, protein of 18.7%, carbohydrate 57.2% and crude fiber of 4.1%. The minerals determined in the sample of baobab leaves are Ca, Fe, Mg, K, Na, P, and Zn with Potassium (347.6±0.70) as the most abundant mineral while Zn (9.31±0.60) is the least abundant. The functional properties studied include pH, gelation temperature, bulk density, water absorption capacity, oil absorption capacity, foaming property, emulsifying property, and stability and swelling capacity, which are 8.72, 29, 0.39, 138, 98.20, 0.80, 72.80, and 73.50 respectively. The Fourier Transform InfraRed absorption spectra show bands like C=O, C-Cl and N-H. Baobab leaves are edible, nutritious, and non-toxic, as the mineral contents are within the required range.

Keywords: dietary fibre, proximate analysis, macronutrients, minerals, baobab leaves, frequency range

Procedia PDF Downloads 72
14616 Adopting the Transition Management Model as a Tool for Sustainable Groundwater Management in Nigeria

Authors: Ali Bakari Mohammed

Abstract:

Transitioning is a continuous process of radical change in a society which involves co-evolution of institutional, technological, socio-cultural, and ecological developments at different scales and levels. Transition management model is a methodology that influences structural change of complex systems over a period (0-30 years) by experimenting and implementing new techniques. A transition management in the context of groundwater is a radical change from the current operate and control system to a next generation integrated and sustainable system that takes into account quality protection and sustained supply into the future. This study evaluates the transition management model in adopting it as a viable tool for the attainment of sustainable groundwater management. The outcome of the evaluation shows that there are three levels (strategic, tactical and operational) of operating the transition management model. At the strategic level, long-term goals for sustainable groundwater management are formulated, at the tactical level activities such as inter institutional networking, negotiation, planning and financing are carried out, and at the operational level, transition experiments and strategic niche management are carried out at the societal level. Overall, different actors and set of activities are required to partake at each management level. The outcome of this paper will provide basis for the implementation of the Sustainable Development Goal (SDG) 6 in Nigeria.

Keywords: transition management, groundwater, sustainable management, tool, Nigeria

Procedia PDF Downloads 271
14615 A Systematic Review and Meta-Analysis in Slow Gait Speed and Its Association with Worse Postoperative Outcomes in Cardiac Surgery

Authors: Vignesh Ratnaraj, Jaewon Chang

Abstract:

Background: Frailty is associated with poorer outcomes in cardiac surgery, but the heterogeneity in frailty assessment tools makes it difficult to ascertain its true impact in cardiac surgery. Slow gait speed is a simple, validated, and reliable marker of frailty. We performed a systematic review and meta-analysis to examine the effect of slow gait speed on postoperative cardiac surgical patients. Methods: PubMED, MEDLINE, and EMBASE databases were searched from January 2000 to August 2021 for studies comparing slow gait speed and “normal” gait speed. The primary outcome was in-hospital mortality. Secondary outcomes were composite mortality and major morbidity, AKI, stroke, deep sternal wound infection, prolonged ventilation, discharge to a healthcare facility, and ICU length of stay. Results: There were seven eligible studies with 36,697 patients. Slow gait speed was associated with an increased likelihood of in-hospital mortality (risk ratio [RR]: 2.32; 95% confidence interval [CI]: 1.87–2.87). Additionally, they were more likely to suffer from composite mortality and major morbidity (RR: 1.52; 95% CI: 1.38–1.66), AKI (RR: 2.81; 95% CI: 1.44–5.49), deep sternal wound infection (RR: 1.77; 95% CI: 1.59–1.98), prolonged ventilation >24 h (RR: 1.97; 95% CI: 1.48–2.63), reoperation (RR: 1.38; 95% CI: 1.05–1.82), institutional discharge (RR: 2.08; 95% CI: 1.61–2.69), and longer ICU length of stay (MD: 21.69; 95% CI: 17.32–26.05). Conclusion: Slow gait speed is associated with poorer outcomes in cardiac surgery. Frail patients are twofold more likely to die during hospital admission than non-frail counterparts and are at an increased risk of developing various perioperative complications.

Keywords: cardiac surgery, gait speed, recovery, frailty

Procedia PDF Downloads 73
14614 The Associations between Self-Determined Motivation and Physical Activity in Patients with Coronary Heart Disease

Authors: I. Hua Chu, Hsiang-Chi Yu, Hsuan Su

Abstract:

Purpose: To examine the associations between self-determined motivation and physical activity in patients with coronary heart disease (CHD) in a longitudinal study. Methods: Patients with CHD were recruited for this study. Their motivations for exercise were measured by the Behavioral Regulation in Exercise Questionnaire-2 (BREQ-2). Physical activity was assessed using the 7-day physical activity recall questionnaire. Duration and energy expenditure of moderate to vigorous physical activity (MVPA) were used in data analysis. All outcome measures were assessed at baseline and 12 months follow up. Data were analyzed using Pearson correlation analysis and regression analysis. Results: The results of the 45 participants (mean age 60.24 yr; 90.2% male) revealed that there were significant negative correlations between amotivation at baseline and duration (r=-.295, p=.049) and energy expenditure (r=-.300, p=.045) of MVPA at 12 months. In contrast, there were significant positive correlations between calculated relative autonomy index (RAI) at baseline and duration (r=.377, p=.011) and energy expenditure (r=.382, p=.010) of MVPA at 12 months. There was no significant correlation between other subscales of the BREQ-2 and duration or energy expenditure of MVPA. Regression analyses revealed that RAI was a significant predictor of duration (p=.011) and energy expenditure (p=.010) of MVPA at 12 months follow-up. Conclusions: These results suggest that the relative degree of self-determined motivation could predict long-term MVPA behaviors in CHD patients. Physical activity interventions are recommended to target enhancing one’s identified and intrinsic motivation to increase the likelihood of physical activity participation in this population.

Keywords: self-determined motivation, physical activity, coronary heart disease, relative autonomy index (RAI)

Procedia PDF Downloads 428
14613 Uplift Segmentation Approach for Targeting Customers in a Churn Prediction Model

Authors: Shivahari Revathi Venkateswaran

Abstract:

Segmenting customers plays a significant role in churn prediction. It helps the marketing team with proactive and reactive customer retention. For the reactive retention, the retention team reaches out to customers who already showed intent to disconnect by giving some special offers. When coming to proactive retention, the marketing team uses churn prediction model, which ranks each customer from rank 1 to 100, where 1 being more risk to churn/disconnect (high ranks have high propensity to churn). The churn prediction model is built by using XGBoost model. However, with the churn rank, the marketing team can only reach out to the customers based on their individual ranks. To profile different groups of customers and to frame different marketing strategies for targeted groups of customers are not possible with the churn ranks. For this, the customers must be grouped in different segments based on their profiles, like demographics and other non-controllable attributes. This helps the marketing team to frame different offer groups for the targeted audience and prevent them from disconnecting (proactive retention). For segmentation, machine learning approaches like k-mean clustering will not form unique customer segments that have customers with same attributes. This paper finds an alternate approach to find all the combination of unique segments that can be formed from the user attributes and then finds the segments who have uplift (churn rate higher than the baseline churn rate). For this, search algorithms like fast search and recursive search are used. Further, for each segment, all customers can be targeted using individual churn ranks from the churn prediction model. Finally, a UI (User Interface) is developed for the marketing team to interactively search for the meaningful segments that are formed and target the right set of audience for future marketing campaigns and prevent them from disconnecting.

Keywords: churn prediction modeling, XGBoost model, uplift segments, proactive marketing, search algorithms, retention, k-mean clustering

Procedia PDF Downloads 71
14612 Agriculture and Global Economy vis-à-vis the Climate Change

Authors: Assaad Ghazouani, Ati Abdessatar

Abstract:

In the world, agriculture maintains a social and economic importance in the national economy. Its importance is distinguished by its ripple effects not only downstream but also upstream vis-à-vis the non-agricultural sector. However, the situation is relatively fragile because of weather conditions. In this work, we propose a model to highlight the impacts of climate change (CC) on economic growth in the world where agriculture is considered as a strategic sector. The CC is supposed to directly and indirectly affect economic growth by reducing the performance of the agricultural sector. The model is tested for Tunisia. The results validate the hypothesis that the potential economic damage of the CC is important. Indeed, an increase in CO2 concentration (temperatures and disruption of rainfall patterns) will have an impact on global economic growth particularly by reducing the performance of the agricultural sector. Analysis from a vector error correction model also highlights the magnitude of climate impact on the performance of the agricultural sector and its repercussions on economic growth

Keywords: Climate Change, Agriculture, Economic Growth, World, VECM, Cointegration.

Procedia PDF Downloads 619