Search results for: conventional organic solar cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9871

Search results for: conventional organic solar cells

7171 Assessment of Bioaerosol and Microbial Volatile Organic Compounds in Different Sections of Library

Authors: Himanshu Lal, Bipasha Ghosh, Arun Srivastava

Abstract:

A pilot study of indoor air quality in terms of bioaerosol (fungus and bacteria) and few selective microbial volatile organic compounds (MVOCs) was carried out in different indoor sections of a library for two seasons, namely monsoon and post monsoon. Bioaerosol sampling was carried out using Anderson six stage viable sampler at a flow rate of 28.3 L/min while MVOCs were collected on activated charcoal tubes ORBOTM 90 Carboxen 564.Collected MVOCs were desorbed using carbon disulphide (CS2) and analysed by GC-FID. Microscopic identification for fungus was only carried out. Surface dust was collected by sterilised buds and cultured to identify fungal contaminants. Unlike bacterial size distribution, fungal bioaerosol concentration was found to be highest in the fourth stage in different sections of the library. In post monsoon season both fungal bioaerosol (710 to 3292cfu/m3) and bacterial bioaerosol (298 to 1475cfu/m3) were fund at much greater concentration than in monsoon. In monsoon season unlike post monsoon, I/O ratio for both the bioaerosol fractions was more than one. Rain washout could be the reason of lower outdoor concentration in monsoon season. On the contrary most of the MVOCs namely 1-hexene, 1-pentanol and 1-octen-3-ol were found in the monsoon season instead of post monsoon season with the highest being 1-hexene with 7.09µg/m3 concentration. Among the six identified fungal bioaerosol Aspergillus, Cladosporium and Penicillium were found in maximum concentration while Aspergillus niger, Curvuleria lunata, Cladosporium cladosporioides and Penicillium sp., was indentified in surface dust samples. According to regression analysis apart from environmental factors other factors also played an important role. Thus apart from outdoor infiltration and human sources, accumulated surface dust mostly on organic materials like books, wooden furniture and racks can be attributed to being one of the major sources of both fungal bioaerosols as well as MVOCs found in the library.

Keywords: bacteria, Fungi, indoor air, MVOCs

Procedia PDF Downloads 323
7170 Effects of Tramadol Administration on the Ovary of Adult Rats and the Possible Recovery after Tramadol Withdrawal: A Light and Electron Microscopic Study

Authors: Heba Kamal Mohamed

Abstract:

Introduction: Tramadol is a weak -opioid receptor agonist with an analgesic effect because of the inhibition of uptake of norepinephrine and serotonin. Nowadays, tramadol hydrochloride is frequently used as a pain reliever. Tramadol is recommended for the management of acute and chronic pain of moderate to severe intensity associated with a variety of diseases or problems, including osteoarthritis, diabetic neuropathy, neuropathic pain, and even perioperative pain in human patients. In obstetrics and gynecology, tramadol is used extensively to treat postoperative pain. Aim of the study: This study was undertaken to investigate the histological (light and electron microscopic) and immunohistochemical effects of long term tramadol treatment on the ovary of adult rats and the possible recovery after tramadol withdrawal. Design: Experimental study. Materials and methods: Thirty adult female albino rats were used in this study. They were classified into three main groups (10 rats each). Group I served as the control group. Group II, rats were subcutaneously injected with tramadol 40 mg/kg three times per week for 8 weeks. Group III, rats were subcutaneously injected with tramadol 40 mg/kg three times per week for 8 weeks then were kept for another 8 weeks without treatment for recovery. At the end of the experiment rats were sacrificed and bilateral oophorectomy was carried out; the ovaries were processed for histological study (light and electron microscopic) and immunohistochemical reaction for caspase-3 (apoptotic protein). Results: Examination of the ovary of tramadol-treated rats (group II) revealed many atretic ovarian follicles, some follicles showed detachment of the oocyte from surrounding granulosa cells and others showed loss of the oocyte. Many follicles revealed degenerated vacuolated oocytes and vacuolated theca folliculi cells. Granulosa cells appeared shrunken, disrupted and loosely attached with vacuolated cytoplasm and pyknotic nuclei. Some follicles showed separation of granulosa cells from the theca folliculi layer. The ultrastructural study revealed the presence of granulosa cells with electron dense indented nuclei, damaged mitochondria and granular vacuolated cytoplasm. Other cells showed accumulation of large amount of lipid droplets in their cytoplasm. Some follicles revealed rarifaction of the cytoplasm of oocytes and absent zona pellucida. Moreover, apoptotic changes were detected by immunohistochemical staining in the form of increased staining intensity to caspase-3 (apoptotic protein). With Masson's Trichrome stain, there was an increased collagen fibre deposition in the ovarian cortical stroma. The wall of blood vessels appeared thickened. In the withdrawal group (group III), there was a little improvement in the histological and immunohistochemical changes. Conclusion: Tramadol had serious deleterious effects on ovarian structure. Thus, it should be used with caution, especially when a long term treatment is indicated. Withdrawal of tramadol led to a little improvement in the structural impairment of the ovary.

Keywords: tramadol, ovary, withdrawal, rats

Procedia PDF Downloads 293
7169 Feasibility Study of a Solar Solid Desiccant Cooling System in Algerian Areas

Authors: N. Hatraf, l. Merabeti, M. Abbas

Abstract:

The interest in air conditioning using renewable energies is increasing. The Thermal energy produced from the solar energy can be transformed to useful cooling and heating through the thermo chemical or thermo physical processes by using thermally activated energy conversion system. Solid desiccant conditioning systems can represent a reliable alternative solution compared with other thermal cooling technologies. Their basic characteristics refer to the capability to regulate both temperature and humidity of the conditioned space in one side and to its potential in electrical energy saving in the other side. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). Basically, solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: absorption process and the regeneration process; The silica gel in the desiccant wheel which is the most important device in the system absorbs the moisture from the incoming air to the desiccant material in this case the silica gel, then it changes the heat with an rotary heat exchanger, after that the air passes through an humidifier to have the humidity required before entering to the local. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software.

Keywords: desiccation, dehumidification, TRNSYS, efficiency

Procedia PDF Downloads 422
7168 Value of FOXP3 Expression in Prediction of Neoadjuvant Chemotherapy Effect in Triple Negative Breast Cancer

Authors: Badawia Ibrahim, Iman Hussein, Samar El Sheikh, Fatma Abou Elkasem, Hazem Abo Ismael

Abstract:

Background: Response of breast carcinoma to neoadjuvant chemotherapy (NAC) varies regarding many factors including hormonal receptor status. Breast cancer is a heterogenous disease with different outcomes, hence a need arises for new markers predicting the outcome of NAC especially for the triple negative group when estrogen, progesterone receptors and Her2/neu are negative. FOXP3 is a promising target with unclear role. Aim: To examine the value of FOXP3 expression in locally advanced triple negative breast cancer tumoral cells as well as tumor infiltrating lymphocytes (TILs) and to elucidate its relation to the extent of NAC response. Material and Methods: Forty five cases of immunohistochemically confirmed to be triple negative breast carcinoma were evaluated for NAC (Doxorubicin, Cyclophosphamide AC x 4 cycles + Paclitaxel x 12 weeks, patients with ejection fraction less than 60% received Taxotere or Cyclophosphamide, Methotrexate, Fluorouracil CMF) response in both tumour and lymph nodes status according to Miller & Payne's and Sataloff's systems. FOXP3 expression in tumor as well as TILs evaluated in the pretherapy biopsies was correlated with NAC response in breast tumor and lymph nodes as well as other clinicopathological factors. Results: Breast tumour cells showed FOXP3 positive cytoplasmic expression in (42%) of cases. High FOXP3 expression percentage was detected in (47%) of cases. High infiltration by FOXP3+TILs was detected in (49%) of cases. Positive FOXP3 expression was associated with negative lymph node metastasis. High FOXP3 expression percentage and high infiltration by FOXP3+TILs were significantly associated with complete therapy response in axillary lymph nodes. High FOXP3 expression in tumour cells was associated with high infiltration by FOXP3+TILs. Conclusion: This result may provide evidence that FOXP3 marker is a good prognostic and predictive marker for triple negative breast cancer (TNBC) indicated for neoadjuvant chemotherapy and can be used for stratifications of TNBC cases indicated for NAC. As well, this study confirmed the fact that the tumour cells and the surrounding microenvironment interact with each other and the tumour microenvironment can influence the treatment outcomes of TNBC.

Keywords: breast cancer, FOXP3 expression, prediction of neoadjuvant chemotherapy effect, triple negative

Procedia PDF Downloads 279
7167 Application of a Submerged Anaerobic Osmotic Membrane Bioreactor Hybrid System for High-Strength Wastewater Treatment and Phosphorus Recovery

Authors: Ming-Yeh Lu, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu

Abstract:

Recently, anaerobic membrane bioreactors (AnMBRs) has been widely utilized, which combines anaerobic biological treatment process and membrane filtration, that can be present an attractive option for wastewater treatment and water reuse. Conventional AnMBR is having several advantages, such as improving effluent quality, compact space usage, lower sludge yield, without aeration and production of energy. However, the removal of nitrogen and phosphorus in the AnMBR permeate was negligible which become the biggest disadvantage. In recent years, forward osmosis (FO) is an emerging technology that utilizes osmotic pressure as driving force to extract clean water without additional external pressure. The pore size of FO membrane is kindly mentioned the pore size, so nitrogen or phosphorus could effectively improve removal of nitrogen or phosphorus. Anaerobic bioreactor with FO membrane (AnOMBR) can retain the concentrate organic matters and nutrients. However, phosphorus is a non-renewable resource. Due to the high rejection property of FO membrane, the high amount of phosphorus could be recovered from the combination of AnMBR and FO. In this study, development of novel submerged anaerobic osmotic membrane bioreactor integrated with periodic microfiltration (MF) extraction for simultaneous phosphorus and clean water recovery from wastewater was evaluated. A laboratory-scale AnOMBR utilizes cellulose triacetate (CTA) membranes with effective membrane area of 130 cm² was fully submerged into a 5.5 L bioreactor at 30-35℃. Active layer-facing feed stream orientation was utilized, for minimizing fouling and scaling. Additionally, a peristaltic pump was used to circulate draw solution (DS) at a cross flow velocity of 0.7 cm/s. Magnesium sulphate (MgSO₄) solution was used as DS. Microfiltration membrane periodically extracted about 1 L solution when the TDS reaches to 5 g/L to recover phosphorus and simultaneous control the salt accumulation in the bioreactor. During experiment progressed, the average water flux was achieved around 1.6 LMH. The AnOMBR process show greater than 95% removal of soluble chemical oxygen demand (sCOD), nearly 100% of total phosphorous whereas only partial removal of ammonia, and finally average methane production of 0.22 L/g sCOD was obtained. Therefore, AnOMBR system periodically utilizes MF membrane extracted for phosphorus recovery with simultaneous pH adjustment. The overall performance demonstrates that a novel submerged AnOMBR system is having potential for simultaneous wastewater treatment and resource recovery from wastewater, and hence, the new concept of this system can be used to replace for conventional AnMBR in the future.

Keywords: anaerobic treatment, forward osmosis, phosphorus recovery, membrane bioreactor

Procedia PDF Downloads 275
7166 Numerical Investigation of Heat Transfer in Laser Irradiated Biological Samplebased on Dual-Phase-Lag Heat Conduction Model Using Lattice Boltzmann Method

Authors: Shashank Patidar, Sumit Kumar, Atul Srivastava, Suneet Singh

Abstract:

Present work is concerned with the numerical investigation of thermal response of biological tissues during laser-based photo-thermal therapy for destroying cancerous/abnormal cells with minimal damage to the surrounding normal cells. Light propagation through the biological sample is mathematically modelled by transient radiative transfer equation. In the present work, application of the Lattice Boltzmann Method is extended to analyze transport of short-pulse radiation in a participating medium.In order to determine the two-dimensional temperature distribution inside the tissue medium, the RTE has been coupled with Penne’s bio-heat transfer equation based on Fourier’s law by several researchers in last few years.

Keywords: lattice Boltzmann method, transient radiation transfer equation, dual phase lag model

Procedia PDF Downloads 355
7165 Impact of Helicobacter pylori Infection on Colorectal Adenoma-Colorectal Carcinoma Sequence

Authors: Jannis Kountouras, Nikolaos Kapetanakis, Stergios A. Polyzos, Apostolis Papaeftymiou, Panagiotis Katsinelos, Ioannis Venizelos, Christina Nikolaidou, Christos Zavos, Iordanis Romiopoulos, Elena Tsiaousi, Evangelos Kazakos, Michael Doulberis

Abstract:

Background & Aims: Helicobacter pylori infection (Hp-I) has been recognized as a substantial risk agent involved in gastrointestinal (GI) tract oncogenesis by stimulating cancer stem cells (CSCs), oncogenes, immune surveillance processes, and triggering GI microbiota dysbiosis. We aimed to investigate the possible involvement of active Hp-I in the sequence: chronic inflammation–adenoma–colorectal cancer (CRC) development. Methods: Four pillars were investigated: (i) endoscopic and conventional histological examinations of patients with CRC, colorectal adenomas (CRA) versus controls to detect the presence of active Hp-I; (ii) immunohistochemical determination of the presence of Hp; expression of CD44, an indicator of CSCs and/or bone marrow-derived stem cells (BMDSCs); expressions of oncogene Ki67 and anti-apoptotic Bcl-2 protein; (iii) expression of CD45, indicator of immune surveillance locally (assessing mainly T and B lymphocytes locally); and (iv) correlation of the studied parameters with the presence or absence of Hp-I. Results: Among 50 patients with CRC, 25 with CRA, and 10 controls, a significantly higher presence of Hp-I in the CRA (68%) and CRC group (84%) were found compared with controls (30%). The presence of Hp-I with accompanying immunohistochemical expression of CD44 in biopsy specimens was revealed in a high proportion of patients with CRA associated with moderate/severe dysplasia (88%) and CRC patients with moderate/severe degree of malignancy (91%). Comparable results were also obtained for Ki67, Bcl-2, and CD45 immunohistochemical expressions. Concluding Remarks: Hp-I seems to be involved in the sequence: CRA – dysplasia – CRC, similarly to the upper GI tract oncogenesis, by several pathways such as the following: Beyond Hp-I associated insulin resistance, the major underlying mechanism responsible for the metabolic syndrome (MetS) that increase the risk of colorectal neoplasms, as implied by other Hp-I related MetS pathologies, such as non-alcoholic fatty liver disease and upper GI cancer, the disturbance of the normal GI microbiota (i.e., dysbiosis) and the formation of an irritative biofilm could contribute to a perpetual inflammatory upper GIT and colon mucosal damage, stimulating CSCs or recruiting BMDSCs and affecting oncogenes and immune surveillance processes. Further large-scale relative studies with a pathophysiological perspective are necessary to demonstrate in-depth this relationship.

Keywords: Helicobacter pylori, colorectal cancer, colorectal adenomas, gastrointestinal oncogenesis

Procedia PDF Downloads 149
7164 Polymer Impregnated Sulfonated Carbon Composite as a Solid Acid Catalyst for the Dehydration of Xylose to Furfural

Authors: Praveen K. Khatri, Neha Karanwal, Savita Kaul, Suman L. Jain

Abstract:

Conversion of biomass through green chemical routes is of great industrial importance as biomass is considered to be most widely available inexpensive renewable resource that can be used as a raw material for the production of bio fuel and value-added organic products. In this regard, acid catalyzed dehydration of biomass derived pentose sugar (mainly D-xylose) to furfural is a process of tremendous research interest in current scenario due to the wider industrial applications of furfural. Furfural is an excellent organic solvent for refinement of lubricants and separation of butadiene from butene mixture in synthetic rubber fabrication. In addition it also serve as a promising solvent for many organic materials, such as resins, polymers and also used as a building block for synthesis of various valuable chemicals such as furfuryl alcohol, furan, pharmaceutical, agrochemicals and THF. Here in a sulfonated polymer impregnated carbon composite solid acid catalyst (P-C-SO3H) was prepared by the pyrolysis of a polymer matrix impregnated with glucose followed by its sulfonation and used for the dehydration of xylose to furfural. The developed catalyst exhibited excellent activity and provided almost quantitative conversion of xylose with the selective synthesis of furfural. The higher catalytic activity of P-C-SO3H may be due to the more even distribution of polycyclic aromatic hydrocarbons generated from incomplete carbonization of glucose along the polymer matrix network, leading to more available sites for sulfonation which resulted in greater sulfonic acid density in P-C-SO3H as compared to sulfonated carbon catalyst (C-SO3H). In conclusion, we have demonstrated sulfonated polymer impregnated carbon composite (P-C-SO3H) as an efficient and selective solid acid catalyst for the dehydration of xylose to furfural. After completion of the reaction, the catalyst was easily recovered and reused for several runs without noticeable loss in its activity and selectivity.

Keywords: Solid acid , Biomass conversion, Xylose Dehydration, Heterogeneous catalyst

Procedia PDF Downloads 414
7163 Deciphering the Action of Neuraminidase in Glioblastoma Models

Authors: Nathalie Baeza-Kallee, Raphaël Bergès, Victoria Hein, Stéphanie Cabaret, Jeremy Garcia, Abigaëlle Gros, Emeline Tabouret, Aurélie Tchoghandjian, Carole Colin, Dominique Figarella-Branger

Abstract:

Glioblastoma (GBM) contains cancer stem cells that are resistant to treatment. GBM cancer stem cell expresses glycolipids recognized by the A2B5 antibody. A2B5, induced by the enzyme ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyl transferase 3 (ST8Sia3), plays a crucial role in the proliferation, migration, clonogenicity, and tumorigenesis of GBM cancer stem cells. Our aim was to characterize the resulting effects of neuraminidase that remove A2B5 in order to target GBM cancer stem cells. To this end, we set up a GBM organotypic slice model; quantified A2B5 expression by flow cytometry in U87-MG, U87-ST8Sia3, and GBM cancer stem cell lines, treated or not by neuraminidase; performed RNAseq and DNA methylation profiling; and analyzed the ganglioside expression by liquid chromatography-mass spectrometry in these cell lines, treated or not with neuraminidase. Results demonstrated that neuraminidase decreased A2B5 expression, tumor size, and regrowth after surgical removal in the organotypic slice model but did not induce a distinct transcriptomic or epigenetic signature in GBM CSC lines. RNAseq analysis revealed that OLIG2, CHI3L1, TIMP3, TNFAIP2, and TNFAIP6 transcripts were significantly overexpressed in U87-ST8Sia3 compared to U87-MG. RT-qPCR confirmed these results and demonstrated that neuraminidase decreased gene expression in GBM cancer stem cell lines. Moreover, neuraminidase drastically reduced ganglioside expression in GBM cancer stem cell lines. Neuraminidase, by its pleiotropic action, is an attractive local treatment against GBM.

Keywords: cancer stem cell, ganglioside, glioblastoma, targeted treatment

Procedia PDF Downloads 80
7162 A Web-Based Systems Immunology Toolkit Allowing the Visualization and Comparative Analysis of Publically Available Collective Data to Decipher Immune Regulation in Early Life

Authors: Mahbuba Rahman, Sabri Boughorbel, Scott Presnell, Charlie Quinn, Darawan Rinchai, Damien Chaussabel, Nico Marr

Abstract:

Collections of large-scale datasets made available in public repositories can be used to identify and fill gaps in biomedical knowledge. But first, these data need to be made readily accessible to researchers for analysis and interpretation. Here a collection of transcriptome datasets was made available to investigate the functional programming of human hematopoietic cells in early life. Thirty two datasets were retrieved from the NCBI Gene Expression Omnibus (GEO) and loaded in a custom, interactive web application called the Gene Expression browser (GXB), designed for visualization and query of integrated large-scale data. Multiple sample groupings and gene rank lists were created based on the study design and variables in each dataset. Web links to customized graphical views can be generated by users and subsequently be used to graphically present data in manuscripts for publication. The GXB tool also enables browsing of a single gene across datasets, which can provide information on the role of a given molecule across biological systems. The dataset collection is available online. As a proof-of-principle, one of the datasets (GSE25087) was re-analyzed to identify genes that are differentially expressed by regulatory T cells in early life. Re-analysis of this dataset and a cross-study comparison using multiple other datasets in the above mentioned collection revealed that PMCH, a gene encoding a precursor of melanin-concentrating hormone (MCH), a cyclic neuropeptide, is highly expressed in a variety of other hematopoietic cell types, including neonatal erythroid cells as well as plasmacytoid dendritic cells upon viral infection. Our findings suggest an as yet unrecognized role of MCH in immune regulation, thereby highlighting the unique potential of the curated dataset collection and systems biology approach to generate new hypotheses which can be tested in future mechanistic studies.

Keywords: early-life, GEO datasets, PMCH, interactive query, systems biology

Procedia PDF Downloads 299
7161 The Antimicrobial Activity of Marjoram Essential Oil Against Some Antibiotic Resistant Microbes Isolated from Hospitals

Authors: R. A. Abdel Rahman, A. E. Abdel Wahab, E. A. Goghneimy, H. F. Mohamed, E. M. Salama

Abstract:

Infectious diseases are a major cause of death worldwide. The treatment of infections continues to be problematic in modern time because of the severe side effects of some drugs and the growing resistance to antimicrobial agents. Hence, the search for newer, safer and more potent antimicrobials is a pressing need. Herbal medicines have received much attention as a source of new antibacterial drugs since they are considered time-tested and comparatively safe both for human use and the environment. In the present study, the antimicrobial activity of marjoram (Origanum majorana L.) essential oil on some gram positive and gram negative reference bacteria, as well as some hospital resistant microbes, was tested. Marjoram oil was extracted and the oil chemical constituents were identified using GC/MS analysis. Staphylococcus aureas ATCC 6923, Pseudomonus auregonosa ATCC 9027, Bacillus subtilis ATCC 6633, E. coli ATCC 8736 and two hospital resistant microbes isolates 16 and 21 were used. The two isolates were identified by biochemical tests and 16s rRNA as proteus spp. and Enterococcus facielus. The effect of different concentrations of essential oils on bacterial growth was tested using agar disk diffusion assay method to determine the minimum inhibitory concentrations and using micro dilution method to determine the minimum bactericidal concentrations. Marjoram oil was found to be effective against both reference and hospital resistance strains. Hospital strains were more resistant to marjoram oil than reference strains. P. auregonosa growth was completely inhibited at a low concentration of oil (4µl/ml). The other reference strains showed sensitivity to marjoram oil at concentrations ranged from 5 to 7µl/ml. The two hospital strains showed sensitivity at media containing 10 and 15µl/ml oil. The major components of oil were terpineol, cis-beta (23.5%), 1,6 – octadien –3-ol,3,7-dimethyl, 2 aminobenzoate (10.9%), alpha terpieol (8.6%) and linalool (6.3%). Scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis were used to determine the difference between treated and untreated hospital strains. SEM results showed that treated cells were smaller in size than control cells. TEM data showed that cell lysis has occurred to treated cells. Treated cells have ruptured cell wall and appeared empty of cytoplasm compared to control cells which shown to be intact with normal volume of cytoplasm. The results indicated that marjoram oil has a positive antimicrobial effect on hospital resistance microbes. Natural crude extracts can be perfect resources for new antimicrobial drugs.

Keywords: antimicrobial activity, essential oil, hospital resistance microbes, marjoram

Procedia PDF Downloads 449
7160 Synthesis and Characterization of Un-Doped and Velvet Tamarind Doped ZnS Crystals, Using Sol Gel Method

Authors: Uchechukwu Vincent Okpala

Abstract:

Under the Sun, energy is a key factor for the sustenance of life and its environment. The need to protect the environment as energy is generated and consumed has called for renewable and green energy sources. To be part of this green revolution, we synthesized and characterized undoped and velvet tamarind doped zinc sulfide (ZnS) crystals using sol-gel methods. Velvet tamarind was whittled down using the top-down approach of nanotechnology. Sodium silicate, tartaric acid, zinc nitrate, and thiourea were used as precursors. The grown samples were annealed at 105°C. Structural, optical, and compositional analyses of the grown samples revealed crystalline structures with varied crystallite sizes influenced by doping. Energy-dispersive X-ray spectroscopy confirmed elemental compositions of Zn, S, C and O in the films. Atomic percentages of the elements varied with VT doping. FT-IR analysis indicated the presence of functional groups like O-H stretching (alcohol), C=C=C stretching (alkene group), C=C bending, C-H stretching (alkane), N-H stretching (aliphatic primary amine) and N=C=S stretching (isothiocyanate) constituent in the film. The transmittance of the samples increased from the visible region to the infrared region making the samples good for poultry and solar energy applications. The bandgap energy of the films decreased as the number of VT drops increased, from 2.4 to 2.2. They were wide band gap materials and were good for optoelectronic, photo-thermal, high temperature, high power and solar cell applications.

Keywords: doping, sol-gel, velvet tamarind, ZnS.

Procedia PDF Downloads 50
7159 Design of 3D Bioprinted Scaffolds for Cartilage Regeneration

Authors: Gloria Pinilla, Jose Manuel Baena, Patricia Gálvez-Martín, Juan Antonio Marchad

Abstract:

Cartilage is a dense connective tissue with limited self-repair properties. Currently, the therapeutic use of autologous or allogenic chondrocytes makes up an alternative therapy to the pharmacological treatment. The design of a bioprinted 3D cartilage with chondrocytes and biodegradable biomaterials offers a new therapeutic alternative able of bridging the limitations of current therapies in the field. We have developed an enhanced printing processes-Injection Volume Filling (IVF) to increase the viability and survival of the cells when working with high-temperature thermoplastics without the limitation of the scaffold geometry in contact with cells. We have demonstrated the viability of the printing process using chondrocytes for cartilage regeneration. This development will accelerate the clinical uptake of the technology and overcomes the current limitation when using thermoplastics as scaffolds. An alginate-based hydrogel combined with human chondrocytes (isolated from osteoarthritis patients) was formulated as bioink-A and the polylactic acid as bioink-B. The bioprinting process was carried out with the REGEMAT V1 bioprinter (Regemat 3D, Granada-Spain) through a IVF. The printing capacity of the bioprinting plus the viability and cell proliferation of bioprinted chondrociytes was evaluated after five weeks by confocal microscopy and Alamar Blue Assay (Biorad). Results showed that the IVF process does not decrease the cell viability of the chondrocytes during the printing process as the cells do not have contact with the thermoplastic at elevated temperatures. The viability and cellular proliferation of the bioprinted artificial 3D cartilage increased after 5 weeks. In conclusion, this study demonstrates the potential use of Regemat V1 for 3D bioprinting of cartilage and the viability of bioprinted chondrocytes in the scaffolds for application in regenerative medicine.

Keywords: cartilage regeneration, bioprinting, bioink, scaffold, chondrocyte

Procedia PDF Downloads 318
7158 Development of 3D Printed, Conductive, Biodegradable Nerve Conduits for Neural Regeneration

Authors: Wei-Chia Huang, Jane Wang

Abstract:

Damage to nerves is considered one of the most irreversible injuries. The regeneration of nerves has always been an important topic in regenerative medicine. In general, damage to human tissue will naturally repair overtime. However, when the nerves are damaged, healed flesh wound cannot guarantee full restoration to its original function, as truncated nerves are often irreversible. Therefore, the development of treatment methods to successfully guide and accelerate the regeneration of nerves has been highly sought after. In order to induce nerve tissue growth, nerve conduits are commonly used to help reconnect broken nerve bundles to provide protection to the location of the fracture while guiding the growth of the nerve bundles. To prevent the protected tissue from becoming necrotic and to ensure the growth rate, the conduits used are often modified with microstructures or blended with neuron growth factors that may facilitate nerve regeneration. Electrical stimulation is another attempted treatment for medical rehabilitation. With appropriate range of voltages and stimulation frequencies, it has been demonstrated to promote cell proliferation and migration. Biodegradability are critical for medical devices like nerve conduits, while conductive polymers pose great potential toward the differentiation and growth of nerve cells. In this work, biodegradability and conductivity were combined into a novel biodegradable, photocurable, conductive polymer composite materials by embedding conductive nanoparticles in poly(glycerol sebacate) acrylate (PGSA) and 3D-printed into nerve conduits. Rat pheochromocytoma cells and rat neuronal Schwann cells were chosen for the in vitro tests of the conduits and had demonstrate selective growth upon culture in the conductive conduits with built-in microchannels and electrical stimulation.

Keywords: biodegradable polymer, 3d printing, neural regeneration, electrical stimulation

Procedia PDF Downloads 108
7157 Cryotopic Macroporous Polymeric Matrices for Regenerative Medicine and Tissue Engineering Applications

Authors: Archana Sharma, Vijayashree Nayak, Ashok Kumar

Abstract:

Three-dimensional matrices were fabricated from blend of natural-natural polymers like carrageenan-gelatin and synthetic -natural polymers such as PEG- gelatin (PEG of different molecular weights (2,000 and 6,000) using two different crosslinkers; glutaraldehyde and EDC-NHS by cryogelation technique. Blends represented a feasible approach to design 3-D scaffolds with controllable mechanical, physical and biochemical properties without compromising biocompatibility and biodegradability. These matrices possessed interconnected porous structure, good mechanical strength, biodegradable nature, constant swelling kinetics, ability to withstand high temperature and visco-elastic behavior. Hemocompatibility of cryogel matrices was determined by coagulation assays and hemolytic activity assay which demonstrated that these cryogels have negligible effects on coagulation time and have excellent blood compatibility. In vitro biocompatibility (cell-matrix interaction) inferred good cell adhesion, proliferation, and secretion of ECM on matrices. These matrices provide a microenvironment for the growth, proliferation, differentiation and secretion of ECM of different cell types such as IMR-32, C2C12, Cos-7, rat bone marrow derived MSCs and human bone marrow MSCs. Hoechst 33342 and PI staining also confirmed that the cells were uniformly distributed, adhered and proliferated properly on the cryogel matrix. An ideal scaffold used for tissue engineering application should allow the cells to adhere, proliferate and maintain their functionality. Neurotransmitter analysis has been done which indicated that IMR-32 cells adhered, proliferated and secreted neurotransmitters when they interacted with these matrices which showed restoration of their functionality. The cell-matrix interaction up to molecular level was also evaluated so to check genotoxicity and protein expression profile which indicated that these cryogel matrices are non-genotoxic and maintained biofunctionality of cells growing on these matrices. All these cryogels, when implanted subcutaneously in balb/c mice, showed no adverse systemic or local toxicity effects at implantation site. There was no significant increase in inflammatory cell count has otherwise been observed after scaffold implantation. These cryogels are supermacroporous and this porous structure allows cell infiltration and proliferation of host cells. This showed the integration and presence of infiltrated cells into the cryogel implants. Histological analysis confirmed that the implanted cryogels do not have any adverse effect in spite of host immune system recognition at the site of implantation, on its surrounding tissues and other vital host organs. In vivo biocompatibility study after in vitro biocompatibility analysis has also concluded that these synthesized cryogels act as important biological substitutes, more adaptable and appropriate for transplantation. Thus, these cryogels showed their potential for soft tissue engineering applications.

Keywords: cryogelation, hemocompatibility, in vitro biocompatibility, in vivo biocompatibility, soft tissue engineering applications

Procedia PDF Downloads 228
7156 Curcumin Nanomedicine: A Breakthrough Approach for Enhanced Lung Cancer Therapy

Authors: Shiva Shakori Poshteh

Abstract:

Lung cancer is a highly prevalent and devastating disease, representing a significant global health concern with profound implications for healthcare systems and society. Its high incidence, mortality rates, and late-stage diagnosis contribute to its formidable nature. To address these challenges, nanoparticle-based drug delivery has emerged as a promising therapeutic strategy. Curcumin (CUR), a natural compound derived from turmeric, has garnered attention as a potential nanomedicine for lung cancer treatment. Nanoparticle formulations of CUR offer several advantages, including improved drug delivery efficiency, enhanced stability, controlled release kinetics, and targeted delivery to lung cancer cells. CUR exhibits a diverse array of effects on cancer cells. It induces apoptosis by upregulating pro-apoptotic proteins, such as Bax and Bak, and downregulating anti-apoptotic proteins, such as Bcl-2. Additionally, CUR inhibits cell proliferation by modulating key signaling pathways involved in cancer progression. It suppresses the PI3K/Akt pathway, crucial for cell survival and growth, and attenuates the mTOR pathway, which regulates protein synthesis and cell proliferation. CUR also interferes with the MAPK pathway, which controls cell proliferation and survival, and modulates the Wnt/β-catenin pathway, which plays a role in cell proliferation and tumor development. Moreover, CUR exhibits potent antioxidant activity, reducing oxidative stress and protecting cells from DNA damage. Utilizing CUR as a standalone treatment is limited by poor bioavailability, lack of targeting, and degradation susceptibility. Nanoparticle-based delivery systems can overcome these challenges. They enhance CUR’s bioavailability, protect it from degradation, and improve absorption. Further, Nanoparticles enable targeted delivery to lung cancer cells through surface modifications or ligand-based targeting, ensuring sustained release of CUR to prolong therapeutic effects, reduce administration frequency, and facilitate penetration through the tumor microenvironment, thereby enhancing CUR’s access to cancer cells. Thus, nanoparticle-based CUR delivery systems promise to improve lung cancer treatment outcomes. This article provides an overview of lung cancer, explores CUR nanoparticles as a treatment approach, discusses the benefits and challenges of nanoparticle-based drug delivery, and highlights prospects for CUR nanoparticles in lung cancer treatment. Future research aims to optimize these delivery systems for improved efficacy and patient prognosis in lung cancer.

Keywords: lung cancer, curcumin, nanomedicine, nanoparticle-based drug delivery

Procedia PDF Downloads 74
7155 Constraining Bank Risk: International Evidence on the Role of Bank Capital and Charter Value

Authors: Mamiza Haq

Abstract:

This paper examines the relevance of bank capital and charter value on bank insolvency and liquidity risks. Using an unbalanced panel of 2,111 unique local banks across 22 countries over 1998-2012, we find that both bank capital and charter value lower insolvency and liquidity risks, but this effect varies among conventional, Islamic, and Islamic-window banks. The risk constraining effect of bank capital becomes more prominent in the post 2007-2008 global financial crisis. Moreover, the relationships vary when conditioned upon other key bank-specific characteristics. For instance, the effect of capital on risk-reduction diminishes in the presence of high charter value for conventional-G7 and Islamic-window banks, during-GFC and pre-GFC period; respectively. Our findings have important policy implications related to bank safety. The results are robust to a range of robustness tests.

Keywords: bank capital, charter value, risk, financial crisis

Procedia PDF Downloads 277
7154 Neuroprotective Effect of Germinated Dolichos lablab on 6-Hydroxy Dopamine (6-OHDA) Induced Toxicity in SH-SY5Y Neuroblastoma Cell

Authors: Taek Hwan Lee, Moon Ho Do, Lalita Subedi, Young Un Park, Sun Yeou Kim

Abstract:

Natural and artificial toxic substances namely neurotoxins induce the bitter effect in the nervous system termed as neurotoxicity. It can modulate the normal functioning of the nervous system either hyperactivate it or damage homeostasis of neuronal system. Neurotoxins induced toxicity ultimately kills the neuron. The present study investigated the neuroprotective effects of germinated Dolichos lablab on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity using SH-SY5Y neuroblastoma cells. Germination is a process of plant growth from a seed. Sprouting of a seedling from a seed induced many molecular changes in the seed in order to prepare it for further growth. Because of these molecular and chemical changes, the neuroprotective effect of Dolichos lablab is higher in the germinated form than in the normal condition. SH-SY5Y cells were treated with Dolichos lablab extract (50, 100 g/ml) followed by 6-OHDA (25M) induced toxicity. Cell Viability was measured to check the cell survival against 6-OHDA induced toxicity using MTT assay. Dolichos lablab showed a neuroprotective effect against 6-OHDA induced neuronal cell death in neuroblastoma cell at a higher concentration of 100g/ml however the effect is much better even at the lower concentration after germination 50g/ml. Cell survival was increased dramatically after 15 h of germination and increased with time of germination in concentration dependent manner. Trigonelline as a representative compound was validated in germinated Dolichos lablab by HPLC analysis that might enhance the neuroprotective effect of Dolichos lablab. This result suggests that Dolichos lablab possess neuroprotective effect in neuroblastoma cells against 6-OHDA however its activity was more potent in the germinated form.

Keywords: dolichos lablab, germination, neuroprotection, trigonelline

Procedia PDF Downloads 326
7153 Metal-Organic Frameworks for Innovative Functional Textiles

Authors: Hossam E. Emam

Abstract:

Metal–organic frameworks (MOFs) are new hybrid materials investigated from 15 years ago; they synthesized from metals as inorganic center joined with multidentate organic linkers to form a 1D, 2D or 3D network structure. MOFs have unique properties such as pore crystalline structure, large surface area, chemical tenability and luminescent characters. These significant properties enable MOFs to be applied in many fields such like gas storage, adsorption/separation, drug delivery/biomedicine, catalysis, polymerization, magnetism and luminescence applications. Recently, many of published reports interested in superiority of MOFs for functionalization of textiles to exploit the unique properties of MOFs. Incorporation of MOFs is found to acquire the textiles some additional formidable functions to be used in considerable fields such like water treatment and fuel purification. Modification of textiles with MOFs could be easily performed by two main techniques; Ex-situ (preparation of MOFs then applied onto textiles) and in-situ (ingrowth of MOFs within textiles networks). Uniqueness of MOFs could be assimilated in acquirement of decorative color, antimicrobial character, anti-mosquitos character, ultraviolet radiation protective, self-clean, photo-luminescent and sensor character. Additionally, textiles treatment with MOFs make it applicable as filter in the adsorption of toxic gases, hazardous materials (such as pesticides, dyes and aromatics molecules) and fuel purification (such as removal of oxygenated, nitrogenated and sulfur compounds). Also, the porous structure of MOFs make it mostly utilized in control release of insecticides from the surface of the textile. Moreover, MOF@textiles as recyclable materials lead it applicable as photo-catalyst composites for photo-degradation of different dyes in the day light. Therefore, MOFs is extensively considered for imparting textiles with formidable properties as ingeniousness way for textile functionalization.

Keywords: MOF, functional textiles, water treatment, fuel purification, environmental applications

Procedia PDF Downloads 151
7152 In Vitro Evaluation of the Antimitotic and Genotoxic Effect by the Allium cepa L. Test of the Aqueous Extract of Peganum harmala L. Leaves (Laghouat, Algeria)

Authors: Ouzid Yasmina, Aiche-Iratni Ghenima, Harchaoui Lina, Saadoun Noria, Houali Karim

Abstract:

Medicinal plants are an important source of bioactive molecules with biological activities such as anticancer, antioxidant, anti-inflammatory, antibacterial, antimitotic.... These molecules include alkaloids, polyphenols and terpenes. The latter can be extracted by different solvents, namely: water, ethanol, methanol, butanol, acetone... This is why it seemed interesting to us to evaluate in vitro the antimitotic and genotoxic effect of these secondary metabolites contained in the aqueous extract of the leaves of Peganum harmala L. by the Allium cepa L. test on meristematic cells by calculating the mitotic parameters (The mitotic index, the aberration index and the limit value of cytotoxicity).A spectrophotometric determination of secondary metabolites, namely alkaloids and flavonoids in the aqueous extract of this essence, was performed. As a result, the alkaloid content is estimated to be 28.42 μg EC/mg extract, and the flavonoid content is 12.52 μg EQ/mg extract. The determination of the mitotic index revealed disturbances in cell division with a highly significant difference between the negative control (distilled water) and the different samples (aqueous extracts, colchicine and quecetin). The exposure of meristematic cells to our samples resulted in a large number of chromosomal, nuclear and cellular aberrations with an aberration index reaching 16.21±1.28% for the 4mg/ml aqueous extract and 11.71±3.32% for the 10mg/ml aqueous extract. The limit value of cytotoxicity revealed that our samples are sublethal on Allium cepa L. meristematic cells.

Keywords: allium cepa l., antimitotic and genotoxic effect, aqueous leaf extract, laghouat (algeria), peganum harmala l., secondary metabolites

Procedia PDF Downloads 101
7151 Effect of Green Roofs to Prevent the Dissipation of Energy in Mountainous Areas

Authors: Mina Ganji Morad, Maziar Azadisoleimanieh, Sina Ganji Morad

Abstract:

A green roof is formed by green plants alive and has many positive impacts in the regional climatic, as well as indoor. Green roof system to prevent solar radiation plays a role in the cooling space. The cooling is done by reducing thermal fluctuations on the exterior of the roof and by increasing the roof heat capacity which cause to keep the space under the roof cool in the summer and heating rate increases during the winter. A roof garden is one of the recommended ways to reduce energy consumption in large cities. Despite the scale of the city green roofs have effective functions, such as beautiful view of city and decontaminating the urban landscape and reduce mental stress, and in an exchange of energy and heat from outside to inside spaces. This article is based on a review of 20 articles and 10 books and valid survey results on the positive effects of green roofs to prevent energy waste in the building. According to these publications, three of the conventional roof, green roof typical and green roof with certain administrative details (layers of glass) and the use of resistant plants and shrubs have been analyzed and compared their heat transfer. The results of these studies showed that one of the best green roof systems for mountainous climate is tree and shrub system that in addition to being resistant to climate change in mountainous regions, will benefit from the other advantages of green roof. Due to the severity of climate change in mountainous areas it is essential to prevent the waste of buildings heating and cooling energy. Proper climate design can greatly help to reduce energy.

Keywords: green roof, heat transfer, reducing energy consumption, mountainous areas, sustainable architecture

Procedia PDF Downloads 403
7150 Design of Wide-Range Variable Fractional-Delay FIR Digital Filters

Authors: Jong-Jy Shyu, Soo-Chang Pei, Yun-Da Huang

Abstract:

In this paper, design of wide-range variable fractional-delay (WR-VFD) finite impulse response (FIR) digital filters is proposed. With respect to the conventional VFD filter which is designed such that its delay is adjustable within one unit, the proposed VFD FIR filter is designed such that its delay can be tunable within a wider range. By the traces of coefficients of the fractional-delay FIR filter, it is found that the conventional method of polynomial substitution for filter coefficients no longer satisfies the design demand, and the circuits perform the sinc function (sinc converter) are added to overcome this problem. In this paper, least-squares method is adopted to design WR-VFD FIR filter. Throughout this paper, several examples will be proposed to demonstrate the effectiveness of the presented methods.

Keywords: digital filter, FIR filter, variable fractional-delay (VFD) filter, least-squares approximation

Procedia PDF Downloads 496
7149 An Investigation on the Effect of Window Tinting on Thermal Comfort inside Office Buildings

Authors: S. El-Azzeh, A. Al-Aqqad, M. Salem, H. Al-Khaldi, S. Thaher

Abstract:

Thermal comfort studies are very important during the early stages of the building’s design. If this study was ignored, problems will start to occur for the occupants in the future. In hot climates, where solar radiations are entering buildings all year long, occupant’s thermal comfort in office buildings needs to be examined. This study aims to investigate the thermal comfort at an existing office building at the Australian College of Kuwait and test its validity and improve occupant’s thermal satisfaction by covering windows with a heat rejection tint material that enables sunlight to pass through the office while reflecting solar heat outside. Environmental variables were measured using thermal comfort data logger INNOVA 1221 to find the predicted mean vote (PMV) in the selected location. Also, subjective variables were measured to find the actual mean vote (AMV) through surveys distributed among occupants in the selected case study office. All the variables collected were analyzed and classified according to international standards ISO 7730 and ASHRAE55. The results of this study showed improvement in both PMV and AMV. The mean value of PMV based on the original design was 0.691 which dropped to 0.32 after installation and it still at comfort zone. Also, the mean value of the AMV has improved for the first occupant, where before it was -0.46 and it became -1 which is cooler. For the other occupant, it was slightly warm with a mean value of 0.9 and it was improved and became cooler with a -0.25 mean value based on American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) seven-point scale.

Keywords: thermal comfort, office buildings, indoor environments, predicted mean vote

Procedia PDF Downloads 201
7148 Synthesis and Preparation of Carbon Ferromagnetic Nanocontainers for Cancer Therapy

Authors: L. Szymanski, Z. Kolacinski, Z. Kamiński, G. Raniszewski, J. Fraczyk, L. Pietrzak

Abstract:

In the article the development and demonstration of method and the model device for hyperthermic selective destruction of cancer cells are presented. This method was based on the synthesis and functionalization of carbon nanotubes serving as ferromagnetic material nano containers. Methodology of the production carbon - ferromagnetic nanocontainers includes: the synthesis of carbon nanotubes, chemical and physical characterization, increasing the content of ferromagnetic material and biochemical functionalization involving the attachment of the key addresses. Biochemical functionalization of ferromagnetic nanocontainers is necessary in order to increase the binding selectively with receptors presented on the surface of tumour cells. Multi-step modification procedure was finally used to attach folic acid on the surface of ferromagnetic nanocontainers. Folic acid is ligand of folate receptors which is overexpresion in tumor cells. The presence of ligand should ensure the specificity of the interaction between ferromagnetic nanocontainers and tumor cells. The chemical functionalization contains several step: oxidation reaction, transformation of carboxyl groups into more reactive ester or amide groups, incorporation of spacer molecule (linker), attaching folic acid. Activation of carboxylic groups was prepared with triazine coupling reagent (preparation of superactive ester attached on the nanocontainers). The spacer molecules were designed and synthesized. In order to ensure biocompatibillity of linkers they were built from amino acids or peptides. Spacer molecules were synthesized using the SPPS method. Synthesis was performed on 2-Chlorotrityl resin. The linker important feature is its length. Due to that fact synthesis of peptide linkers containing from 2 to 4 -Ala- residues was carried out. Independent synthesis of the conjugate of foilic acid with 6-aminocaproic acid was made. Final step of synthesis was connecting conjugat with spacer molecules and attaching it on the ferromagnetic nanocontainer surface. This article contains also information about special CVD and microvave plasma system to produce nanotubes and ferromagnetic nanocontainers. The first tests in the device for hyperthermal RF generator will be presented. The frequency of RF generator was in the ranges from 10 to 14Mhz and from 265 to 621kHz.

Keywords: synthesis of carbon nanotubes, hyperthermia, ligands, carbon nanotubes

Procedia PDF Downloads 289
7147 The Effects of Bisphosphonates on Osteonecrosis of Jaw Bone: A Stem Cell Perspective

Authors: Huseyin Apdik, Aysegul Dogan, Selami Demirci, Ezgi Avsar Apdik, Fikrettin Sahin

Abstract:

Mesenchymal stem cells (MSCs) are crucial cell types for bone maintenance and growth along with resident bone progenitor cells providing bone tissue integrity during osteogenesis and skeletal growth. Any deficiency in this regulation would result in vital bone diseases. Of those, osteoporosis, characterized by a reduction in bone mass and mineral density, is a critical skeletal disease for especially elderly people. The commonly used drugs for the osteoporosis treatment are bisphosphonates (BPs). The most prominent role of BPs is to prevent bone resorption arisen from high osteoclast activity. However, administrations of bisphosphonates may also cause bisphosphonate-induced osteonecrosis of the jaw (BIONJ). Up to the present, the researchers have proposed several circumstances for BIONJ. However, effects of long-term and/or high dose usage of BPs on stem cell’s proliferation, survival, differentiation or maintenance capacity have not been evaluated yet. The present study will be held to; figure out BPs’ effects on MSCs in vitro in the aspect of cell proliferation and toxicity, migration, angiogenic activity, lineage specific gene and protein expression levels, mesenchymal stem cell properties and potential signaling pathways affected by BP treatment. Firstly, mesenchymal stem cell characteristics of Dental Pulp Stem Cells (DPSCs) and Periodontal Ligament Stem Cells (PDLSCs) were proved using flow cytometry analysis. Cell viability analysis was completed to determine the cytotoxic effects of BPs (Zoledronate (Zol), Alendronate (Ale) and Risedronate (Ris)) on DPSCs and PDLSCs by the 3-(4,5-di-methyl-thiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium (MTS) assay. Non-toxic concentrations of BPs were determined at 24 h under growth condition, and at 21 days under osteogenic differentiation condition for both cells. The scratch assay was performed to evaluate their migration capacity under the usage of determined of BPs concentrations at 24 h. The results revealed that while the scratch closure is 70% in the control group for DPSCs, it was 57%, 66% and 66% in Zol, Ale and Ris groups, respectively. For PDLSs, while wound closure is 71% in control group, it was 65%, 66% and 66% in Zol, Ale and Ris groups, respectively. As future experiments, tube formation assay and aortic ring assay will be done to determinate angiogenesis abilities of DPSCs and PDLSCs treated with BPs. Expression levels of osteogenic differentiation marker genes involved in bone development will be determined using real time-polymerase change reaction (RT-PCR) assay and expression profiles of important proteins involved in osteogenesis will be evaluated using western blotting assay for osteogenically differentiated MSCs treated with or without BPs. In addition to these, von Kossa staining will be performed to measure calcium mineralization status of MSCs.

Keywords: bisphosphonates, bisphosphonate-induced osteonecrosis of the jaw, mesenchymal stem cells, osteogenesis

Procedia PDF Downloads 265
7146 Treatment of Pharmaceutical Industrial Effluent by Catalytic Ozonation in a Semi-Batch Reactor: Kinetics, Mass Transfer and Improved Biodegradability Studies

Authors: Sameena Malik, Ghosh Prakash, Sandeep Mudliar, Vishal Waindeskar, Atul Vaidya

Abstract:

In this study, the biodegradability enhancement along with COD color and toxicity removal of pharmaceutical effluent by O₃, O₃/Fe²⁺, O₃/nZVI processes has been evaluated. The nZVI particles were synthesized and characterized by XRD and SEM analysis. Kinetic model was reasonably developed to select the ozone doses to be applied based on the ozonation kinetic and mass transfer coefficient values. Nano catalytic ozonation process (O₃/nZVI) effectively enhanced the biodegradability (BI=BOD₅/COD) of pharmaceutical effluent up to 0.63 from 0.18 of control with a COD, color and toxicity removal of 62.3%, 93%, and 75% respectively compared to O₃, O₃/Fe²⁺ pretreatment processes. From the GC-MS analysis, 8 foremost organic compounds were predominantly detected in the pharmaceutical effluent. The disappearance of the corresponding GC-MS spectral peaks during catalyzed ozonation process indicated the degradation of the effluent. The changes in the FTIR spectra confirms the transformation/destruction of the organic compounds present in the effluent to new compounds. Subsequent aerobic biodegradation of pretreated effluent resulted in biodegradation rate enhancement by 5.31, 2.97, and 1.22 times for O₃, O₃/Fe²⁺ and O₃/nZVI processes respectively.

Keywords: iron nanoparticles, pharmaceutical effluent, ozonation, kinetics, mass transfer

Procedia PDF Downloads 272
7145 Nitrogen/Platinum Co-Doped TiO₂ for Enhanced Visible Light Photocatalytic Degradation of Brilliant Black

Authors: Sarre Nzaba, Bulelwa Ntsendwana, Bekkie Mamba, Alex Kuvarega

Abstract:

Elimination of toxic organic compounds from wastewater is currently one of the most important subjects in water pollution control. The discharge of azo dyes such as Brilliant black (BB) into the water bodies has carcinogenic and mutagenic effects on humankind and the ecosystem. Conventional water treatment techniques fail to degrade these dyes completely thereby posing more problems. Advanced oxidation processes (AOPs) are promising technologies in solving the problem. Anatase type nitrogen-platinum (N,Pt) co-doped TiO₂ photocatalyts were prepared by a modified sol-gel method using amine terminated polyamidoamine generation 1 (PG1) as a template and source of nitrogen. SEM/ EDX, TEM, XRD, XPS, TGA, FTIR, RS, PL and UV-Vis were used to characterize the prepared nanomaterials. The synthesized photocatalysts exhibited lower band gap energies as compared to the commercial TiO₂ revealing a shift in band gap towards the visible light absorption region. Photocatalytic activity of N,Pt co-doped TiO₂ was measured by the reaction of photocatalytic degradation of BB dye. Enhanced photodegradation efficiency of BB was achieved after 180 min reaction time with initial concentration of 50 ppm BB solution. This was attributed to the rod-like shape of the materials, larger surface area, and enhanced absorption of visible light induced by N,Pt co-doping. The co-doped N,Pt also exhibited pseudo-first order kinetic behaviour with half-life and rate constant of 0.37 min 0.1984 min⁻¹ and respectively. N doped TiO₂ and N,Pt co-doped TiO₂ exhibited enhanced photocatalytic performances for the removal of BB from water.

Keywords: N, Pt co-doped TiO₂, dendrimer, photodegradation, visible-light

Procedia PDF Downloads 173
7144 A High Content Screening Platform for the Accurate Prediction of Nephrotoxicity

Authors: Sijing Xiong, Ran Su, Lit-Hsin Loo, Daniele Zink

Abstract:

The kidney is a major target for toxic effects of drugs, industrial and environmental chemicals and other compounds. Typically, nephrotoxicity is detected late during drug development, and regulatory animal models could not solve this problem. Validated or accepted in silico or in vitro methods for the prediction of nephrotoxicity are not available. We have established the first and currently only pre-validated in vitro models for the accurate prediction of nephrotoxicity in humans and the first predictive platforms based on renal cells derived from human pluripotent stem cells. In order to further improve the efficiency of our predictive models, we recently developed a high content screening (HCS) platform. This platform employed automated imaging in combination with automated quantitative phenotypic profiling and machine learning methods. 129 image-based phenotypic features were analyzed with respect to their predictive performance in combination with 44 compounds with different chemical structures that included drugs, environmental and industrial chemicals and herbal and fungal compounds. The nephrotoxicity of these compounds in humans is well characterized. A combination of chromatin and cytoskeletal features resulted in high predictivity with respect to nephrotoxicity in humans. Test balanced accuracies of 82% or 89% were obtained with human primary or immortalized renal proximal tubular cells, respectively. Furthermore, our results revealed that a DNA damage response is commonly induced by different PTC-toxicants with diverse chemical structures and injury mechanisms. Together, the results show that the automated HCS platform allows efficient and accurate nephrotoxicity prediction for compounds with diverse chemical structures.

Keywords: high content screening, in vitro models, nephrotoxicity, toxicity prediction

Procedia PDF Downloads 316
7143 Management of Pressure Ulcer with a Locally Constructed Negative Pressure Device (NPD) in Traumatic Paraplegia Patients: A Randomized Controlled Clinical Trial

Authors: Mukesh K. Dwivedi, Rajeshwar N. Srivastava, Amit K. Bhagat, Saloni Raj

Abstract:

Introduction: Management of Pressure Ulcer (PU) is an ongoing clinical challenge particularly in traumatic paraplegia patients in developing countries where socio economic conditions often dictate treatment modalities. When negative pressure wound therapy (NPWT) was introduced, there were a series of devices (V.A.C., KCI, San Antonio, TX) manufactured. These devices for NPWT are costly and hard to afford by patients in developing countries like India. Considering this limitation, this study was planned to design an RCT to compare NPWT by an indigenized locally constructed NPD and conventional gauze dressing for the treatment of PU. Material and Methods: This RCT (CTRI/2014/09/0050) was conducted in the Department of Orthopaedic Surgery at King George’s Medical University (KGMU), India. Thirty-four (34) subjects of traumatic paraplegia having PU of stage 3 or 4, were enrolled and randomized in two treatment groups (NPWT Group & Conventional dressing group). The outcome measures of this study were surface area and depth of PU, exudates, microorganisms and matrix metalloproteinase-8 (MMP-8) during 0 to 9 weeks follow-ups. Levels of MMP-8 were analyzed in the tissues of PU at week 0, 3, 6 and week 9 by Enzyme Linked Immuno Sorbent Assay (ELISA). Results: Significantly reduced length of PU in NPWT group was observed at week 6 (p=0.04) which further reduced at week 9 (p=0.001) as compared to conventionally treated group. Similarly significant reduction of width and depth of PU was observed in NPWT at week 9 (p<0.05). The exudate became significantly (p=0.001) lower in NPWT group as compared with conventionally treated group from 6th to 9th week. Clearance and conversion of slough into red granulation tissue was significantly higher in NPWT group (p=0.001). At week 9, the wound culture was negative in all the subjects of NPWT group, while it was positive in 10 (41⋅6%) subjects of conventional group. Significantly lower level of MMP-8 was observed in subjects of NPWT group at week 6 (0.006**), and continually more reduction was observed at week 9 (<0.0001**) as compared to the conventional group. Conclusion: NPWT by locally constructed NPD is better wound care procedure for management of PU. Our device gave similar results as commercially available devices. Reduction of level of MMP-8 and increased rate of healing was achieved by negative pressure wound therapy (NPWT) as compared to conventional dressing.

Keywords: NPWT, NPD, MMP8, ELISA

Procedia PDF Downloads 254
7142 Optimization of Maintenance of PV Module Arrays Based on Asset Management Strategies: Case of Study

Authors: L. Alejandro Cárdenas, Fernando Herrera, David Nova, Juan Ballesteros

Abstract:

This paper presents a methodology to optimize the maintenance of grid-connected photovoltaic systems, considering the cleaning and module replacement periods based on an asset management strategy. The methodology is based on the analysis of the energy production of the PV plant, the energy feed-in tariff, and the cost of cleaning and replacement of the PV modules, with the overall revenue received being the optimization variable. The methodology is evaluated as a case study of a 5.6 kWp solar PV plant located on the Bogotá campus of the Universidad Nacional de Colombia. The asset management strategy implemented consists of assessing the PV modules through visual inspection, energy performance analysis, pollution, and degradation. Within the visual inspection of the plant, the general condition of the modules and the structure is assessed, identifying dust deposition, visible fractures, and water accumulation on the bottom. The energy performance analysis is performed with the energy production reported by the monitoring systems and compared with the values estimated in the simulation. The pollution analysis is performed using the soiling rate due to dust accumulation, which can be modelled by a black box with an exponential function dependent on historical pollution values. The pollution rate is calculated with data collected from the energy generated during two years in a photovoltaic plant on the campus of the National University of Colombia. Additionally, the alternative of assessing the temperature degradation of the PV modules is evaluated by estimating the cell temperature with parameters such as ambient temperature and wind speed. The medium-term energy decrease of the PV modules is assessed with the asset management strategy by calculating the health index to determine the replacement period of the modules due to degradation. This study proposes a tool for decision making related to the maintenance of photovoltaic systems. The above, projecting the increase in the installation of solar photovoltaic systems in power systems associated with the commitments made in the Paris Agreement for the reduction of CO2 emissions. In the Colombian context, it is estimated that by 2030, 12% of the installed power capacity will be solar PV.

Keywords: asset management, PV module, optimization, maintenance

Procedia PDF Downloads 57