Search results for: spatiotemporal features
3743 DWT-SATS Based Detection of Image Region Cloning
Authors: Michael Zimba
Abstract:
A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency sub-band of the DWT of the suspicious image thereby leaving valuable information in the other three sub-bands, the proposed algorithm simultaneously extracts features from all the four sub-bands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates.Keywords: affine transformation, discrete wavelet transform, radix sort, SATS
Procedia PDF Downloads 2303742 The Language of Fliptop among Filipino Youth: A Discourse Analysis
Authors: Bong Borero Lumabao
Abstract:
This qualitative research is a study on the lines of Fliptop talks performed by the Fliptop rappers employing Finnegan’s (2008) discourse analysis. This paper aimed to analyze the phonological, morphological, and semantic features of the fliptop talk, to explore the structures in the lines of Fliptop among Filipino youth, and to uncover the various insights that can be gained from it. The corpora of the study included all the 20 Fliptop Videos downloaded from the Youtube Channel of Fliptop. Results revealed that Fliptop contains phonological features such as assonance, consonance, deletion, lengthening, and rhyming. Morphological features include acronym, affixation, blending, borrowing, code-mixing and switching, compounding, conversion or functional shifts, and dysphemism. Semantics presented the lexical category, meaning, and words used in the fliptop talks. Structure of Fliptop revolves on the personal attack (physical attributes), attack on the bars (rapping skills), extension: family members and friends, antithesis, profane words, figurative languages, sexual undertones, anime characters, homosexuality, and famous celebrities involvement.Keywords: discourse analysis, fliptop talks, filipino youth, fliptop videos, Philippines
Procedia PDF Downloads 2453741 Automated Localization of Palpebral Conjunctiva and Hemoglobin Determination Using Smart Phone Camera
Authors: Faraz Tahir, M. Usman Akram, Albab Ahmad Khan, Mujahid Abbass, Ahmad Tariq, Nuzhat Qaiser
Abstract:
The objective of this study was to evaluate the Degree of anemia by taking the picture of the palpebral conjunctiva using Smartphone Camera. We have first localized the region of interest from the image and then extracted certain features from that Region of interest and trained SVM classifier on those features and then, as a result, our system classifies the image in real-time on their level of hemoglobin. The proposed system has given an accuracy of 70%. We have trained our classifier on a locally gathered dataset of 30 patients.Keywords: anemia, palpebral conjunctiva, SVM, smartphone
Procedia PDF Downloads 5073740 The Culture of Journal Writing among Manobo Senior High School Students
Authors: Jessevel Montes
Abstract:
This study explored on the culture of journal writing among the Senior High School Manobo students. The purpose of this qualitative morpho-semantic and syntactic study was to discover the morphological, semantic, and syntactic features of the written output through morphological, semantic, and syntactic categories present in their journal writings. Also, beliefs and practices embedded in the norms, values, and ideologies were identified. The study was conducted among the Manobo students in the Senior High Schools of Central Mindanao, particularly in the Division of North Cotabato. Findings revealed that morphologically, the features that flourished are the following: subject-verb concordance, tenses, pronouns, prepositions, articles, and the use of adjectives. Semantically, the features are the following: word choice, idiomatic expression, borrowing, and vernacular. Syntactically, the features are the types of sentences according to structure and function; and the dominance of code switching and run-on sentences. Lastly, as to the beliefs and practices embedded in the norms, values, and ideologies of their journal writing, the major themes are: valuing education, family, and friends as treasure, preservation of culture, and emancipation from the bondage of poverty. This study has shed light on the writing capabilities and weaknesses of the Manobo students when it comes to English language. Further, such an insight into language learning problems is useful to teachers because it provides information on common trouble-spots in language learning, which can be used in the preparation of effective teaching materials.Keywords: applied linguistics, culture, morpho-semantic and syntactic analysis, Manobo Senior High School, Philippines
Procedia PDF Downloads 1213739 Grammatical and Lexical Explorations on ‘Outer Circle’ Englishes and ‘Expanding Circle’ Englishes: A Corpus-Based Comparative Analysis
Authors: Orlyn Joyce D. Esquivel
Abstract:
This study analyzed 50 selected research papers from professional language and linguistic academic journals to portray the differences between Kachru’s (1994) outer circle and expanding circle Englishes. The selected outer circle Englishes include those of Bangladesh, Malaysia, the Philippines, India, and Singapore; and the selected expanding circle Englishes are those of China, Indonesia, Japan, Korea, and Thailand. The researcher built ten corpora (five research papers for each corpus) to represent each variety of Englishes. The corpora were examined under grammatical and lexical features using Modified English TreeTagger in Sketch Engine. Results revealed the distinct grammatical and lexical features through the table and textual analyses, illustrated from the most to least dominant linguistic elements. In addition, comparative analyses were done to distinguish the features of each of the selected Englishes. The Language Change Theory was used as a basis in the discussion. Hence, the findings suggest that the ‘outer circle’ Englishes and ‘expanding circle’ Englishes will continue to drift from International English.Keywords: applied linguistics, English as a global language, expanding circle Englishes, global Englishes, outer circle Englishes
Procedia PDF Downloads 1623738 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics
Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo
Abstract:
Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model
Procedia PDF Downloads 1573737 Indoor Fingerprint Localization Using 5G NR Multi-SSB Beam Features with GAN-Based Interpolation
Authors: LiRen Kang, LingXia Li, KaiKai Liu, Yue Jin, ZengShan Tian
Abstract:
With the widespread adoption of 5G technology in the Internet of Things (IoT), indoor localization methods based on 5G signals have gradually become a research hotspot. However, traditional methods often perform poorly in multipath interference and signal attenuation environments. To address these challenges, this paper proposes an innovative fingerprint localization method that utilizes the multiple synchronization signal block (SSB) beam features of 5G signals combined with generative adversarial networks (GANs) for interpolation. Our method incorporates a ray tracing model as an auxiliary, integrating signal propagation models to enhance the interpolation process. We precisely extract the multiple SSB beam features from 5G signals; in the localization stage, deep learning neural networks (DNN) are used for localization. Field tests show that localization errors of less than 1.5 meters can be achieved within about 200 square meters of indoor environment. Our method represents a 56.7% improvement compared to traditional methods that use received signal strength (RSS) as a single feature.Keywords: 5G NR, fingerprint localization, generative adversarial networks, Internet of Things, indoor localization systems
Procedia PDF Downloads 73736 Classifier for Liver Ultrasound Images
Authors: Soumya Sajjan
Abstract:
Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix
Procedia PDF Downloads 4133735 Artificial Intelligence and Canva App
Authors: Lamar Alhindi, Madhawi Alsharif
Abstract:
This report explores Canva, a user-friendly graphic design platform designed to empower individuals of all skill levels in creating diverse visual content. The study provides a comprehensive overview of Canva’s features, such as its drag-and-drop interface, AI tools, and extensive asset library. A survey was conducted to assess users’ perceptions of Canva’s AI-driven features, highlighting their utility in saving time and improving efficiency. Key insights include the popularity of design suggestions and accessibility for beginners. The report underscores Canva’s versatility for personal and professional applications, emphasizing its role as a go-to design tool for individuals and businesses alike.Keywords: Canva, Ai, Ai driven tools, beginner, editing
Procedia PDF Downloads 53734 Enhancing the Recruitment Process through Machine Learning: An Automated CV Screening System
Authors: Kaoutar Ben Azzou, Hanaa Talei
Abstract:
Human resources is an important department in each organization as it manages the life cycle of employees from recruitment training to retirement or termination of contracts. The recruitment process starts with a job opening, followed by a selection of the best-fit candidates from all applicants. Matching the best profile for a job position requires a manual way of looking at many CVs, which requires hours of work that can sometimes lead to choosing not the best profile. The work presented in this paper aims at reducing the workload of HR personnel by automating the preliminary stages of the candidate screening process, thereby fostering a more streamlined recruitment workflow. This tool introduces an automated system designed to help with the recruitment process by scanning candidates' CVs, extracting pertinent features, and employing machine learning algorithms to decide the most fitting job profile for each candidate. Our work employs natural language processing (NLP) techniques to identify and extract key features from unstructured text extracted from a CV, such as education, work experience, and skills. Subsequently, the system utilizes these features to match candidates with job profiles, leveraging the power of classification algorithms.Keywords: automated recruitment, candidate screening, machine learning, human resources management
Procedia PDF Downloads 573733 Underwater Image Enhancement and Reconstruction Using CNN and the MultiUNet Model
Authors: Snehal G. Teli, R. J. Shelke
Abstract:
CNN and MultiUNet models are the framework for the proposed method for enhancing and reconstructing underwater images. Multiscale merging of features and regeneration are both performed by the MultiUNet. CNN collects relevant features. Extensive tests on benchmark datasets show that the proposed strategy performs better than the latest methods. As a result of this work, underwater images can be represented and interpreted in a number of underwater applications with greater clarity. This strategy will advance underwater exploration and marine research by enhancing real-time underwater image processing systems, underwater robotic vision, and underwater surveillance.Keywords: convolutional neural network, image enhancement, machine learning, multiunet, underwater images
Procedia PDF Downloads 793732 TikTok: AI Driven Features and Participants' Reaction
Authors: Baylasan Al-Amoudi, Hala Abdulmajeed, Amjad Jilani
Abstract:
This project explores the role of artificial intelligence (AI) in enhancing user engagement on TikTok by examining the app’s AI-driven features. Through a structured survey of 4 main questions and experimental analysis, we tried to examine how TikTok’s recommendations, algorithms, search engine, and filter tools influence user interactions and satisfaction. A diverse cohort of 20 participants, including casual users and content creators, were involved to provide a broad perspective on user experiences. The examination highlights the recommendation algorithm’s ability to deliver highly personalized content, creating a seamless and engaging experience. TikTok’s search engine is shown to simplify content discovery by enabling users to find specific topics or trends related to their preferences. Meanwhile, the filter tools are found to encourage creativity, particularly for content creators, by offering versatile options to enhance video quality and visual appeal. By evaluating the unique roles of these AI features, the project underscores their significance in maintaining TikTok’s appeal and driving consistent user engagement.Keywords: TikTok, hashtags, filters, viral sounds, for you page
Procedia PDF Downloads 23731 Dentofacial-Targeted Bullying: A Review
Authors: Mai Ashraf Talaat
Abstract:
Bullying is an aggressive behavior and a serious issue that should be addressed by everyone and should be avoided at all costs. It is very common among adolescents and schoolchildren and the effects can be devastating and long-lasting. Students are most commonly bullied about physical appearance, race, gender, disability, ethnicity, religion, and sexual orientation. Appearance-targeted bullying is a form of bullying that targets an aspect of a person's appearance, which includes facial and dental features. Deviation from accepted dentofacial aesthetics leads to elevated incidences of bullying in schoolchildren. The aim of this review article is to assess the prevalence of bullying due to dentofacial characteristics and evaluate the importance of dentofacial appearance on perceived social attractiveness based on multiple studies.Keywords: dentofacial features, orthodontics, malocclusion, adolescents, bullying
Procedia PDF Downloads 803730 Visualization of Flow Behaviour in Micro-Cavities during Micro Injection Moulding
Authors: Reza Gheisari, Paulo J. Bartolo, Nicholas Goddard
Abstract:
Polymeric micro-cantilevers (Cs) are rapidly becoming popular for MEMS applications such as chemo- and bio-sensing as well as purely electromechanical applications such as microrelays. Polymer materials present suitable physical and chemical properties combined with low-cost mass production. Hence, micro-cantilevers made of polymers indicate much more biocompatibility and adaptability of rapid prototyping along with mechanical properties. This research studies the effects of three process and one size factors on the filling behaviour in micro cavity, and the role of each in the replication of micro parts using different polymer materials i.e. polypropylene (PP) SABIC 56M10 and acrylonitrile butadiene styrene (ABS) Magnum 8434. In particular, the following factors are considered: barrel temperature, mould temperature, injection speed and the thickness of micro features. The study revealed that the barrel temperature and the injection speed are the key factors affecting the flow length of micro features replicated in PP and ABS. For both materials, an increase of feature sizes improves the melt flow. However, the melt fill of micro features does not increase linearly with the increase of their thickness.Keywords: flow length, micro cantilevers, micro injection moulding, microfabrication
Procedia PDF Downloads 3983729 The Reflections of the K-12 English Language Teachers on the Implementation of the K-12 Basic Education Program in the Philippines
Authors: Dennis Infante
Abstract:
This paper examined the reflections of teachers on curriculum reforms, the implementation of the K-12 Basic Education Program in the Philippines. The results revealed that problems and concerns raised by teachers could be classified into curriculum materials and design; competence, readiness and motivation of the teachers; the learning environment, and support systems; readiness, competence and motivation of students; and other relevant factors. The best features of the K-12 curriculum reforms included (1) the components, curriculum materials; (2) the design, structure and delivery of the lessons; (3) the framework and theoretical approach; (3) the qualities of the teaching-learning activities; (4) and other relevant features. With the demanding task of implementing the new curriculum, the teachers expressed their needs which included (1) making the curriculum materials available to achieve the goals of the curriculum reforms; (2) enrichment of the learning environments; (3) motivating and encouraging the teachers to embrace change; (4) providing appropriate support systems; (5) re-tooling, and empowering teachers to implement the curriculum reforms; and (6) other relevant factors. The research concluded with a synthesis that provided a paradigm for implementing curriculum reforms which recognizes the needs of the teachers and the features of the new curriculum.Keywords: curriculum reforms, K-12, teachers' reflections, implementing curriculum change
Procedia PDF Downloads 2803728 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency
Authors: Rania Alshikhe, Vinita Jindal
Abstract:
Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from traveling vehicles, such as taxis through installed global positioning system (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE
Procedia PDF Downloads 1583727 Praetical and Theoretical Study on Characteristic Landscape Construction of Tujia Village in Xiaguping, Shennongjia Forestry Distric
Authors: Tingting Chen, Shouliang Zhao
Abstract:
Compared with other regions, the construction for villages and towns in regions inhabited by minority nationality shall be deeply rooted in natural and cultural endowment in locality, and more importance shall be attached to building of characteristics. In this kind of area, landscape design is very important for its character and tradition. By empirical study in Shennongjia Area, some findings could be summarized as below. There are unique natural and cultural resources in Shennongjia Forestry District; during transformation on style and features of Tujia Village, Xiaguping, special style and features have been successfully shaped through 4 strategies: (1) highlighting Tujia Culture and architectural style in west region of Hubei Province; (2) merging with local natural environment; (3) introducing system of rural coordination architect; and (4) making great efforts to design and construct environmental embellishments with village and town symbols.Keywords: rural coordination architect, special style and features, characteristic landscape, villages and towns in regions inhabited by minority nationality
Procedia PDF Downloads 2783726 The Analysis of Deceptive and Truthful Speech: A Computational Linguistic Based Method
Authors: Seham El Kareh, Miramar Etman
Abstract:
Recently, detecting liars and extracting features which distinguish them from truth-tellers have been the focus of a wide range of disciplines. To the author’s best knowledge, most of the work has been done on facial expressions and body gestures but only few works have been done on the language used by both liars and truth-tellers. This paper sheds light on four axes. The first axis copes with building an audio corpus for deceptive and truthful speech for Egyptian Arabic speakers. The second axis focuses on examining the human perception of lies and proving our need for computational linguistic-based methods to extract features which characterize truthful and deceptive speech. The third axis is concerned with building a linguistic analysis program that could extract from the corpus the inter- and intra-linguistic cues for deceptive and truthful speech. The program built here is based on selected categories from the Linguistic Inquiry and Word Count program. Our results demonstrated that Egyptian Arabic speakers on one hand preferred to use first-person pronouns and present tense compared to the past tense when lying and their lies lacked of second-person pronouns, and on the other hand, when telling the truth, they preferred to use the verbs related to motion and the nouns related to time. The results also showed that there is a need for bigger data to prove the significance of words related to emotions and numbers.Keywords: Egyptian Arabic corpus, computational analysis, deceptive features, forensic linguistics, human perception, truthful features
Procedia PDF Downloads 2063725 Polycystic Ovary Syndrome - Clinical Profile of Women Attending NPFDB Subfertility Clinic
Authors: Komathy Thiagarajan, Mohd. Azizuddin Mohd. Yussof, Hasnoorina Husin, Noor Azreena Abd Aziz, Faezah Shekh Abdullah, Abdul Wahaf Abdul Wahid
Abstract:
Polycystic Ovary Syndrome (PCOS) presents with a plethora of clinical features owing to the multifaceted underlying pathophysiology. This study was conducted to determine the clinical features unique to the sub fertile women attending the Sub fertility Clinic of the National Population and Family Development Board (NPFDB) so that a more holistic approach can be adopted to further enhance the pregnancy outcome in those women. This was a case-control study conducted over a span of three years (from January 2014 until December 2016), whereby women who fulfilled the Rotterdam Criteria 2004 were classified as PCOS (n=79) and women who did not fulfill the Rotterdam Criteria were classified as controls (n=88). The mean age of the women was 30.1 years and the mean duration of marriage was 3.93 years. The majority of women suffered from primary sub fertility (82.6%). The median age was lower among PCOS women (29.0 years) compared to the controls (30.0 years), p<0.05. The majority of PCOS women (43.0%) were obese (BMI > 30 kg/m2) compared to only 19.3% who were obese in the control group, p<0.05. Hypertension was present in 59.5% of PCOS women and only in 36.4% of the control group, p<0.05. There were significantly more women who presented with hirsutism in PCOS group (27.8%) as compared to the control group (5.7%), p<0.05. The findings of this study elucidate that the clinical features of significance among sub fertile women suffering from PCOS, if detected early, are amenable to lifestyle modifications and timely interventions can potentially improve the fertility outcomes in this group of women.Keywords: clinical features, fertility, lifestyle modification, PCOS
Procedia PDF Downloads 1433724 Unsupervised Reciter Recognition Using Gaussian Mixture Models
Authors: Ahmad Alwosheel, Ahmed Alqaraawi
Abstract:
This work proposes an unsupervised text-independent probabilistic approach to recognize Quran reciter voice. It is an accurate approach that works on real time applications. This approach does not require a prior information about reciter models. It has two phases, where in the training phase the reciters' acoustical features are modeled using Gaussian Mixture Models, while in the testing phase, unlabeled reciter's acoustical features are examined among GMM models. Using this approach, a high accuracy results are achieved with efficient computation time process.Keywords: Quran, speaker recognition, reciter recognition, Gaussian Mixture Model
Procedia PDF Downloads 3823723 Human Action Retrieval System Using Features Weight Updating Based Relevance Feedback Approach
Authors: Munaf Rashid
Abstract:
For content-based human action retrieval systems, search accuracy is often inferior because of the following two reasons 1) global information pertaining to videos is totally ignored, only low level motion descriptors are considered as a significant feature to match the similarity between query and database videos, and 2) the semantic gap between the high level user concept and low level visual features. Hence, in this paper, we propose a method that will address these two issues and in doing so, this paper contributes in two ways. Firstly, we introduce a method that uses both global and local information in one framework for an action retrieval task. Secondly, to minimize the semantic gap, a user concept is involved by incorporating features weight updating (FWU) Relevance Feedback (RF) approach. We use statistical characteristics to dynamically update weights of the feature descriptors so that after every RF iteration feature space is modified accordingly. For testing and validation purpose two human action recognition datasets have been utilized, namely Weizmann and UCF. Results show that even with a number of visual challenges the proposed approach performs well.Keywords: relevance feedback (RF), action retrieval, semantic gap, feature descriptor, codebook
Procedia PDF Downloads 4753722 Pilot-free Image Transmission System of Joint Source Channel Based on Multi-Level Semantic Information
Authors: Linyu Wang, Liguo Qiao, Jianhong Xiang, Hao Xu
Abstract:
In semantic communication, the existing joint Source Channel coding (JSCC) wireless communication system without pilot has unstable transmission performance and can not effectively capture the global information and location information of images. In this paper, a pilot-free image transmission system of joint source channel based on multi-level semantic information (Multi-level JSCC) is proposed. The transmitter of the system is composed of two networks. The feature extraction network is used to extract the high-level semantic features of the image, compress the information transmitted by the image, and improve the bandwidth utilization. Feature retention network is used to preserve low-level semantic features and image details to improve communication quality. The receiver also is composed of two networks. The received high-level semantic features are fused with the low-level semantic features after feature enhancement network in the same dimension, and then the image dimension is restored through feature recovery network, and the image location information is effectively used for image reconstruction. This paper verifies that the proposed multi-level JSCC algorithm can effectively transmit and recover image information in both AWGN channel and Rayleigh fading channel, and the peak signal-to-noise ratio (PSNR) is improved by 1~2dB compared with other algorithms under the same simulation conditions.Keywords: deep learning, JSCC, pilot-free picture transmission, multilevel semantic information, robustness
Procedia PDF Downloads 1213721 Innovativeness of the Furniture Enterprises in Bulgaria
Authors: Radostina Popova
Abstract:
The paper presents an analysis of the innovation performance of small and medium-sized furniture enterprises in Bulgaria, accounting for over 97% of the companies in the sector. It contains advanced features of innovation in enterprises, specific features of the furniture industry in Bulgaria and analysis of the results of studies on the topic. The results from studies of three successive periods - 2006-2008; 2008-2010; 2010-2012, during which were studied 594 small and medium-sized furniture enterprises. There are commonly used in the EU definitions and indicators (European Commission, OECD, Oslo Manual), which allows for the comparability of results.Keywords: innovation activity, competitiveness of innovation, furniture enterprises in Bulgaria
Procedia PDF Downloads 2723720 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection
Procedia PDF Downloads 1463719 Product Feature Modelling for Integrating Product Design and Assembly Process Planning
Authors: Baha Hasan, Jan Wikander
Abstract:
This paper describes a part of the integrating work between assembly design and assembly process planning domains (APP). The work is based, in its first stage, on modelling assembly features to support APP. A multi-layer architecture, based on feature-based modelling, is proposed to establish a dynamic and adaptable link between product design using CAD tools and APP. The proposed approach is based on deriving “specific function” features from the “generic” assembly and form features extracted from the CAD tools. A hierarchal structure from “generic” to “specific” and from “high level geometrical entities” to “low level geometrical entities” is proposed in order to integrate geometrical and assembly data extracted from geometrical and assembly modelers to the required processes and resources in APP. The feature concept, feature-based modelling, and feature recognition techniques are reviewed.Keywords: assembly feature, assembly process planning, feature, feature-based modelling, form feature, ontology
Procedia PDF Downloads 3123718 Is Presence of Psychotic Features Themselves Carry a Risk for Metabolic Syndrome?
Authors: Rady A., Elsheshai A., Elsawy M., Nagui R.
Abstract:
Background and Aim: Metabolic syndrome affect around 20% of general population , authors have incriminated antipsychotics as serious risk factor that may provoke such derangement. The aim of our study is to assess metabolic syndrome in patients presenting psychotic features (delusions and hallucinations) whether schizophrenia or mood disorder and compare results in terms of drug naïf, on medication and healthy control. Subjects and Methods: The study recruited 40 schizophrenic patients, half of them drug naïf and the other half on antipsychotics, 40 patients with mood disorder with psychotic features, half of them drug naïf and the other half on medication, 20 healthy control. Exclusion criteria were put in order to exclude patients having already endocrine or metabolic disorders that my interfere with results obtain to minimize confusion bias. Metabolic syndrome assessed by measuring parameters including weight, body mass index, waist circumference, triglyceride level, HDL, fasting glucose, fasting insulin and insulin resistance Results: No difference was found when comparing drug naïf to those on medication in both schizophrenic and psychotic mood disorder arms, schizophrenic patients whether on medication or drug naïf should difference with control group for fasting glucose, schizophrenic patients on medication also showed difference in insulin resistance compared to control group. On the other hand, patients with psychotic mood disorder whether drug naïf or on medication showed difference from control group for fasting insulin level. Those on medication also differed from control for insulin resistance Conclusion: Our study didn’t reveal difference in metabolic syndrome among patients with psychotic features whether on medication or drug naïf. Only patients with Psychotic features on medication showed insulin resistance. Schizophrenic patients drug naïf or on medication tend to show higher fasting glucose while psychotic mood disorder whether drug naïf or on medication tend to show higher fasting insulin. This study suggest that presence of psychotic features themselves regardless being on medication or not carries a risk for insulin resistance and metabolic syndrome. Limitation: This study is limited by number of participants and larger numbers in future studies should be included in order to extrapolate results. Cohort longitudinal studies are needed in order to evaluate such hypothesis.Keywords: schizophrenia, metabolic syndrome, psychosis, insulin, resistance
Procedia PDF Downloads 5353717 Identification of Spam Keywords Using Hierarchical Category in C2C E-Commerce
Authors: Shao Bo Cheng, Yong-Jin Han, Se Young Park, Seong-Bae Park
Abstract:
Consumer-to-Consumer (C2C) E-commerce has been growing at a very high speed in recent years. Since identical or nearly-same kinds of products compete one another by relying on keyword search in C2C E-commerce, some sellers describe their products with spam keywords that are popular but are not related to their products. Though such products get more chances to be retrieved and selected by consumers than those without spam keywords, the spam keywords mislead the consumers and waste their time. This problem has been reported in many commercial services like e-bay and taobao, but there have been little research to solve this problem. As a solution to this problem, this paper proposes a method to classify whether keywords of a product are spam or not. The proposed method assumes that a keyword for a given product is more reliable if the keyword is observed commonly in specifications of products which are the same or the same kind as the given product. This is because that a hierarchical category of a product in general determined precisely by a seller of the product and so is the specification of the product. Since higher layers of the hierarchical category represent more general kinds of products, a reliable degree is differently determined according to the layers. Hence, reliable degrees from different layers of a hierarchical category become features for keywords and they are used together with features only from specifications for classification of the keywords. Support Vector Machines are adopted as a basic classifier using the features, since it is powerful, and widely used in many classification tasks. In the experiments, the proposed method is evaluated with a golden standard dataset from Yi-han-wang, a Chinese C2C e-commerce, and is compared with a baseline method that does not consider the hierarchical category. The experimental results show that the proposed method outperforms the baseline in F1-measure, which proves that spam keywords are effectively identified by a hierarchical category in C2C e-commerce.Keywords: spam keyword, e-commerce, keyword features, spam filtering
Procedia PDF Downloads 2943716 Periodicity Analysis of Long-Term Waterquality Data Series of the Hungarian Section of the River Tisza Using Morlet Wavelet Spectrum Estimation
Authors: Péter Tanos, József Kovács, Angéla Anda, Gábor Várbíró, Sándor Molnár, István Gábor Hatvani
Abstract:
The River Tisza is the second largest river in Central Europe. In this study, Morlet wavelet spectrum (periodicity) analysis was used with chemical, biological and physical water quality data for the Hungarian section of the River Tisza. In the research 15, water quality parameters measured at 14 sampling sites in the River Tisza and 4 sampling sites in the main artificial changes were assessed for the time period 1993 - 2005. Results show that annual periodicity was not always to be found in the water quality parameters, at least at certain sampling sites. Periodicity was found to vary over space and time, but in general, an increase was observed in the company of higher trophic states of the river heading downstream.Keywords: annual periodicity water quality, spatiotemporal variability of periodic behavior, Morlet wavelet spectrum analysis, River Tisza
Procedia PDF Downloads 3453715 The Influence of Microscopic Features on the Self-Cleaning Ability of Developed 3D Printed Fabric-Like Structures Using Different Printing Parameters
Authors: Ayat Adnan Atwah, Muhammad A. Khan
Abstract:
Self-cleaning surfaces are getting significant attention in industrial fields. Especially for textile fabrics, it is observed that self-cleaning textile fabric surfaces are created by manipulating the surface features with the help of coatings and nanoparticles, which are considered costly and far more complicated. However, controlling the fabrication parameters of textile fabrics at the microscopic level by exploring the potential for self-cleaning has not been addressed. This study aimed to establish the context of self-cleaning textile fabrics by controlling the fabrication parameters of the textile fabric at the microscopic level. Therefore, 3D-printed textile fabrics were fabricated using the low-cost fused filament fabrication (FFF) technique. The printing parameters, such as orientation angle (O), layer height (LH), and extruder width (EW), were used to control the microscopic features of the printed fabrics. The combination of three printing parameters was created to provide the best self-cleaning textile fabric surface: (LH) (0.15, 0.13, 0.10 mm) and (EW) (0.5, 0.4, 0.3 mm) along with two different (O) of (45º and 90º). Three different thermoplastic flexible filament materials were used: (TPU 98A), (TPE felaflex), and (TPC flex45). The printing parameters were optimised to get the optimum self-cleaning ability of the printed specimens. Furthermore, the impact of these characteristics on mechanical strength at the fabric-woven structure level was investigated. The study revealed that the printing parameters significantly affect the self-cleaning properties after adjusting the selected combination of layer height, extruder width, and printing orientation. A linear regression model was effectively developed to demonstrate the association between 3D printing parameters (layer height, extruder width, and orientation). According to the experimental results, (TPE felaflex) has a better self-cleaning ability than the other two materials.Keywords: 3D printing, self-cleaning fabric, microscopic features, printing parameters, fabrication
Procedia PDF Downloads 913714 A New Approach to Predicting Physical Biometrics from Behavioural Biometrics
Authors: Raid R. O. Al-Nima, S. S. Dlay, W. L. Woo
Abstract:
A relationship between face and signature biometrics is established in this paper. A new approach is developed to predict faces from signatures by using artificial intelligence. A multilayer perceptron (MLP) neural network is used to generate face details from features extracted from signatures, here face is the physical biometric and signatures is the behavioural biometric. The new method establishes a relationship between the two biometrics and regenerates a visible face image from the signature features. Furthermore, the performance efficiencies of our new technique are demonstrated in terms of minimum error rates compared to published work.Keywords: behavioural biometric, face biometric, neural network, physical biometric, signature biometric
Procedia PDF Downloads 477