Search results for: device energy consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11805

Search results for: device energy consumption

11565 Challenges and Opportunities in Modelling Energy Behavior of Household in Malaysia

Authors: Zuhaina Zakaria, Noraliza Hamzah, Siti Halijjah Shariff, Noor Aizah Abdul Karim

Abstract:

The residential sector in Malaysia has become the single largest energy sector accounting for 21% of the entire energy usage of the country. In the past 10 years, a number of energy efficiency initiatives in the residential sector had been undertaken by the government including. However, there is no clear evidence that the total residential energy consumption has been reduced substantially via these strategies. Household electrical appliances such as air conditioners, refrigerators, lighting and televisions are used depending on the consumers’ activities. The behavior of household occupants played an important role in energy consumption and influenced the operation of the physical devices. Therefore, in order to ensure success in energy efficiency program, it requires not only the technological aspect but also the consumers’ behaviors component. This paper focuses on the challenges and opportunities in modelling residential consumer behavior in Malaysia. A field survey to residential consumers was carried out and responses from the survey were analyzed to determine the consumers’ level of knowledge and awareness on energy efficiency. The analyses will be used in determining a right framework to explain household energy use intentions and behavior. These findings will be beneficial to power utility company and energy regulator in addressing energy efficiency related issues.

Keywords: consumer behavior theories, energy efficiency, household occupants, residential consumer

Procedia PDF Downloads 333
11564 Energy Use, Emissions, Economic Growth and Trade: Evidence from Mauritius

Authors: B. Seetanah, H. Neeliah

Abstract:

This paper investigates the relationship among energy, emissions and economic growth in Mauritius in the presence of trade activities, with capital and labour as other control variables. Using annual data from 1960 to 2011, it is found that the variables are non-stationary and cointegrated. The relationship among the various variables are thus examined in a dynamic VECM framework. Our empirical results comply with the growth hypothesis. Output elasticities of 0.17, 0.25 and 0.43 show that increases in energy consumption cause increases in economic growth, capital accumulation and trade in the long run. We also found that CO2 negatively affects output, but has no significant effect on trade. Findings for the long-run generally tend to tally with those in the short-run. Interestingly we found that energy consumption has a significant impact on CO2 emissions. Our results tend to suggest that implementing energy conservation strategies to mitigate the negative impact of CO2 emissions can dent economic growth, and that promoting cleaner energy production could be a better alternative for Mauritius.

Keywords: energy, emissions, economic growth, export, VECM

Procedia PDF Downloads 479
11563 Passive Retrofitting Strategies for Windows in Hot and Humid Climate Vijayawada

Authors: Monica Anumula

Abstract:

Nowadays human beings attain comfort zone artificially for heating, cooling and lighting the spaces they live, and their main importance is given to aesthetics of building and they are not designed to protect themselves from climate. They depend on artificial sources of energy resulting in energy wastage. In order to reduce the amount of energy being spent in the construction industry and Energy Package goals by 2020, new ways of constructing houses is required. The larger part of energy consumption of a building is directly related to architectural aspects hence nature has to be integrated into the building design to attain comfort zone and reduce the dependency on artificial source of energy. The research is to develop bioclimatic design strategies and techniques for the walls and roofs of Vijayawada houses. Study and analysis of design strategies and techniques of various cases like Kerala, Mangalore etc. for similar kind of climate is examined in this paper. Understanding the vernacular architecture and modern techniques of that various cases and implementing in the housing of Vijayawada not only decreases energy consumption but also enhances socio cultural values of Vijayawada. This study focuses on the comparison of vernacular techniques and modern building bio climatic strategies to attain thermal comfort and energy reduction in hot and humid climate. This research provides further thinking of new strategies which include both vernacular and modern bioclimatic techniques.

Keywords: bioclimatic design, energy consumption, hot and humid climates, thermal comfort

Procedia PDF Downloads 179
11562 Implementation of ALD in Product Development: Study of ROPS to Improve Energy Absorption Performance Using Absorption Part

Authors: Zefry Darmawan, Shigeyuki Haruyama, Ken Kaminishi

Abstract:

Product development is a big issue in the industrial competition and takes a serious part in development of technology. Product development process could adapt high changes of market needs and transform into engineering concept in order to produce high-quality product. One of the latest methods in product development is Analysis-Led-Design (ALD). It utilizes digital engineering design tools with finite analysis to perform product robust analysis and valuable for product reliability assurance. Heavy machinery which operates under severe condition should maintain safety to the customer when faced with potential hazard. Cab frame should able to absorb the energy while collision. Through ALD, a series of improvement of cab frame to increase energy absorption was made and analyzed. Improvement was made by modifying shapes of frame and-or install absorption device in certain areas. Simulation result showed that install absorption device could increase absorption energy than modifying shape.

Keywords: ALD, ROPS, energy absorption, cab frame

Procedia PDF Downloads 371
11561 Membrane Bioreactor for Wastewater Treatment and Reuse

Authors: Sarra Kitanou

Abstract:

Water recycling and reuse is an effective measure to solve the water stress problem. The sustainable use of water resource has become a national development strategy in Morocco. A key aspect of improving overall sustainability is the potential for direct wastewater effluent reuse. However, the hybrid technology membrane bioreactors (MBR) have been identified as an attractive option for producing high quality and nutrient-rich effluents for wastewater treatment. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Currently, with the evolution of wastewater treatment projects in Morocco, the MBR technology can be used as a technology treating different types of wastewaters and to produce effluent with suitable quality for reuse. However, the energetic consumption of this process is a great concern, which can limit the development and implementation of this technology. In this investigation, the electric energy consumption of an ultrafiltration membrane bioreactor process in domestic wastewater treatment is evaluated and compared to some MBR installations based on literature review. Energy requirements of the MBR are linked to operational parameters and reactor performance. The analysis of energy consumption shows that the biological aeration and membrane filtration are more energy consuming than the other components listed as feed and recirculation pumps. Biological aeration needs 53% of the overall energetic consumption and the specific energy consumption for membrane filtration is about 25%. However, aeration is a major energy consumer, often exceeding 50% share of total energy consumption. The optimal results obtained on the MBR process (pressure p = 1.15 bar), hydraulic retention time (15 h) showed removal efficiencies up to 90% in terms of organic compounds removal, 100% in terms of suspended solids presence and up to 80% reduction of total nitrogen and total phosphorus. The effluent from this MBR system could be considered as qualified for irrigation reuse, showing its potential application in the future.

Keywords: hybrid process, membrane bioreactor, wastewater treatment, reuse

Procedia PDF Downloads 83
11560 Real-Time Optimisation and Minimal Energy Use for Water and Environment Efficient Irrigation

Authors: Kanya L. Khatri, Ashfaque A. Memon, Rod J. Smith, Shamas Bilal

Abstract:

The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed in this context are efficient water use and conversion of surface irrigation to pressurized systems. By replacing furrow irrigation with drip or centre pivot systems, the water efficiency can be improved by up to 30 to 45%. However, the installation and application of pumps and pipes, and the associated fuels needed for these alternatives increase energy consumption and cause significant greenhouse gas emissions. Hence, a balance between the improvement in water use and the potential increase in energy consumption is required keeping in view adverse impact of increased carbon emissions on the environment. When surface water is used, pressurized systems increase energy consumption substantially, by between 65% to 75%, and produce greenhouse gas emissions around 1.75 times higher than that of gravity based irrigation. With gravity based surface irrigation methods the energy consumption is assumed to be negligible. This study has shown that a novel real-time infiltration model REIP has enabled implementation of real-time optimization and control of surface irrigation and surface irrigation with real-time optimization has potential to bring significant improvements in irrigation performance along with substantial water savings of 2.92 ML/ha which is almost equivalent to that given by pressurized systems. Thus real-time optimization and control offers a modern, environment friendly and water efficient system with close to zero increase in energy consumption and minimal greenhouse gas emissions.

Keywords: pressurised irrigation, carbon emissions, real-time, environmentally-friendly, REIP

Procedia PDF Downloads 503
11559 Seismic Response Control of 20-Storey Benchmark Building Using True Negative Stiffness Device

Authors: Asim Qureshi, R. S. Jangid

Abstract:

Seismic response control of structures is generally achieved by using control devices which either dissipate the input energy or modify the dynamic properties of structure.In this paper, the response of a 20-storey benchmark building supplemented by viscous dampers and Negative Stiffness Device (NSD) is assessed by numerical simulations using the Newmark-beta method. True negative stiffness is an adaptive passive device which assists the motion unlike positive stiffness. The structure used in this study is subjected to four standard ground motions varying from moderate to severe, near fault to far-field earthquakes. The objective of the present study is to show the effectiveness of the adaptive negative stiffness device (NSD and passive dampers together) relative to passive dampers alone. This is done by comparing the responses of the above uncontrolled structure (i.e., without any device) with the structure having passive dampers only and also with the structure supplemented with adaptive negative stiffness device. Various performance indices, top floor displacement, top floor acceleration and inter-storey drifts are used as comparison parameters. It is found that NSD together with passive dampers is quite effective in reducing the response of aforementioned structure relative to structure without any device or passive dampers only. Base shear and acceleration is reduced significantly by incorporating NSD at the cost of increased inter-storey drifts which can be compensated using the passive dampers.

Keywords: adaptive negative stiffness device, apparent yielding, NSD, passive dampers

Procedia PDF Downloads 431
11558 Energy Saving as a Mean to Increase Energy Access in Sub-Saharan Africa

Authors: Joseph Levodo, Ndimbarafine Young Tobin, E. Messina, P. Edouma

Abstract:

Energy efficiency can contribute significantly towards increasing clean energy access to modern energy services. Many developing countries have largely focused on expanding energy access by increasing supply. This is due to the fact the links between energy efficiency and clean energy access are often unnoticed. Energy efficiency measures offer the promise of reducing energy use and saving money on electricity bills, as well as reducing negative environmental externalities associated with the production of electricity. This paper seeks to address the economic and effectiveness of reducing energy consumption by integrating energy efficiency as a priority to meet energy access examines the barriers to energy efficient in sub-Saharan African countries. The findings from this study reveal that an appropriate policy can promote the development of more energy-efficient buildings, products and strengthen incentives for consumers, businesses, and industrial customers to pursue cost-effective energy-efficiency measures and to make investments that will provide future energy-efficiency improvements.

Keywords: barriers, Sub-Saharan Africa, cost effective, energy savings, clean energy

Procedia PDF Downloads 48
11557 Optimizing Telehealth Internet of Things Integration: A Sustainable Approach through Fog and Cloud Computing Platforms for Energy Efficiency

Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo

Abstract:

The swift proliferation of telehealth Internet of Things (IoT) devices has sparked concerns regarding energy consumption and the need for streamlined data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices into a platform based on fog and cloud computing. This integrated system provides a sustainable and robust solution to address the challenges. Our model strategically utilizes fog computing as a localized data processing layer and leverages cloud computing for resource-intensive tasks, resulting in a significant reduction in overall energy consumption. The incorporation of adaptive energy-saving strategies further enhances the efficiency of our approach. Simulation analysis validates the effectiveness of our model in improving energy efficiency for telehealth IoT systems, particularly when integrated with localized fog nodes and both private and public cloud infrastructures. Subsequent research endeavors will concentrate on refining the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability across various healthcare and industry sectors.

Keywords: energy-efficient, fog computing, IoT, telehealth

Procedia PDF Downloads 76
11556 A Hybrid Simulation Approach to Evaluate Cooling Energy Consumption for Public Housings of Subtropics

Authors: Kwok W. Mui, Ling T. Wong, Chi T. Cheung

Abstract:

Cooling energy consumption in the residential sector, different from shopping mall, office or commercial buildings, is significantly subject to occupant decisions where in-depth investigations are found limited. It shows that energy consumptions could be associated with housing types. Surveys have been conducted in existing Hong Kong public housings to understand the housing characteristics, apartment electricity demands, occupant’s thermal expectations, and air–conditioning usage patterns for further cooling energy-saving assessments. The aim of this study is to develop a hybrid cooling energy prediction model, which integrated by EnergyPlus (EP) and artificial neural network (ANN) to estimate cooling energy consumption in public residential sector. Sensitivity tests are conducted to find out the energy impacts with changing building parameters regarding to external wall and window material selection, window size reduction, shading extension, building orientation and apartment size control respectively. Assessments are performed to investigate the relationships between cooling demands and occupant behavior on thermal environment criteria and air-conditioning operation patterns. The results are summarized into a cooling energy calculator for layman use to enhance the cooling energy saving awareness in their own living environment. The findings can be used as a directory framework for future cooling energy evaluation in residential buildings, especially focus on the occupant behavioral air–conditioning operation and criteria of energy-saving incentives.

Keywords: artificial neural network, cooling energy, occupant behavior, residential buildings, thermal environment

Procedia PDF Downloads 168
11555 A Review on the Re-Usage of Single-Use Medical Devices

Authors: Lucas B. Naves, Maria José Abreu

Abstract:

Reprocessing single-use device has attracted interesting on the medical environment over the last decades. The reprocessing technique was sought in order to reduce the cost of purchasing the new medical device, which can achieve almost double of the price of the reprocessed product. In this manuscript, we have done a literature review, aiming the reuse of medical device that was firstly designed for single use only, but has become, more and more, effective on its reprocessing procedure. We also show the regulation, the countries which allows this procedure, the classification of these device and also the most important issue concerning the re-utilization of medical device, how to minimizing the risk of gram positive and negative bacteria, avoid cross-contamination, hepatitis B (HBV), and C (HCV) virus, and also human immunodeficiency virus (HIV).

Keywords: reusing, reprocessing, single-use medical device, HIV, hepatitis B and C

Procedia PDF Downloads 392
11554 Renewable Energy and Energy Security in Malaysia: A Quantitative Analysis

Authors: Endang Jati Mat Sahid, Hussain Ali Bekhet

Abstract:

Robust economic growth, increasing population, and personal consumption are the main drivers for the rapid increase of energy demand in Malaysia. Increasing demand has compounded the issue of national energy security due to over-dependence on fossil fuel, depleting indigenous domestic conventional energy resources which in turns has increased the country’s energy import dependence. In order to improve its energy security, Malaysia has seriously embarked on a renewable energy journey. Many initiatives on renewable energy have been introduced in the past decade. These strategies have resulted in the exploding growth of renewable energy deployment in Malaysia. Therefore, this study investigated the impact of renewable energy deployment on energy security. Secondary data was used to calculate the energy security indicators. The study also compared the results of applying different energy security indicators namely availability, applicability, affordability and acceptability dimension of energy resources. The evaluation shows that Malaysia will experience slight improvement in availability and acceptability dimension of energy security. This study suggests that energy security level could be further enhanced by efficient utilization of energy, reducing carbon content of energy and facilitating low-carbon industries.

Keywords: energy policy, energy security, Malaysia, renewable energy

Procedia PDF Downloads 244
11553 Fuel Economy of Electrical Energy in the City Bus during Japanese Test Procedure

Authors: Piotr Kacejko, Lukasz Grabowski, Zdzislaw Kaminski

Abstract:

This paper discusses a model of fuel consumption and on-board electricity generation. Rapid changes in speed result in a constantly changing kinetic energy accumulated in a bus mass and an increased fuel consumption due to hardly recuperated kinetic energy. The model is based on the results achieved from chassis dynamometer, airport and city street researches. The verified model was applied to simulate the on-board electricity generation during the Japanese JE05 Emission Test Cycle. The simulations were performed for several values of vehicle mass and electrical load applied to on-board devices. The research results show that driving dynamics has an impact on a consumption of fuel to drive alternators.

Keywords: city bus, heavy duty vehicle, Japanese JE05 test cycle, power generation

Procedia PDF Downloads 210
11552 Analyzing the Results of Buildings Energy Audit by Using Grey Set Theory

Authors: Tooraj Karimi, Mohammadreza Sadeghi Moghadam

Abstract:

Grey set theory has the advantage of using fewer data to analyze many factors, and it is therefore more appropriate for system study rather than traditional statistical regression which require massive data, normal distribution in the data and few variant factors. So, in this paper grey clustering and entropy of coefficient vector of grey evaluations are used to analyze energy consumption in buildings of the Oil Ministry in Tehran. In fact, this article intends to analyze the results of energy audit reports and defines most favorable characteristics of system, which is energy consumption of buildings, and most favorable factors affecting these characteristics in order to modify and improve them. According to the results of the model, ‘the real Building Load Coefficient’ has been selected as the most important system characteristic and ‘uncontrolled area of the building’ has been diagnosed as the most favorable factor which has the greatest effect on energy consumption of building. Grey clustering in this study has been used for two purposes: First, all the variables of building relate to energy audit cluster in two main groups of indicators and the number of variables is reduced. Second, grey clustering with variable weights has been used to classify all buildings in three categories named ‘no standard deviation’, ‘low standard deviation’ and ‘non- standard’. Entropy of coefficient vector of Grey evaluations is calculated to investigate greyness of results. It shows that among the 38 buildings surveyed in terms of energy consumption, 3 cases are in standard group, 24 cases are in ‘low standard deviation’ group and 11 buildings are completely non-standard. In addition, clustering greyness of 13 buildings is less than 0.5 and average uncertainly of clustering results is 66%.

Keywords: energy audit, grey set theory, grey incidence matrixes, grey clustering, Iran oil ministry

Procedia PDF Downloads 373
11551 Optimization of Electrocoagulation Process Using Duelist Algorithm

Authors: Totok R. Biyanto, Arif T. Mardianto, M. Farid R. R., Luthfi Machmudi, kandi mulakasti

Abstract:

The main objective of this research is optimizing the electrocoagulation process design as a post-treatment for biologically vinasse effluent process. The first principle model with three independent variables that affect the energy consumption of electrocoagulation process i.e. current density, electrode distance, and time of treatment process are chosen as optimized variables. The process condition parameters were determined with the value of pH, electrical conductivity, and temperature of vinasse about 6.5, 28.5 mS/cm, 52 oC, respectively. Aluminum was chosen as the electrode material of electrocoagulation process. Duelist algorithm was used as optimization technique due to its capability to reach a global optimum. The optimization results show that the optimal process can be reached in the conditions of current density of 2.9976 A/m2, electrode distance of 1.5 cm and electrolysis time of 119 min. The optimized energy consumption during process is 34.02 Wh.

Keywords: optimization, vinasse effluent, electrocoagulation, energy consumption

Procedia PDF Downloads 469
11550 Impact of Legs Geometry on the Efficiency of Thermoelectric Devices

Authors: Angel Fabian Mijangos, Jaime Alvarez Quintana

Abstract:

Key concepts like waste heat recycling or waste heat recovery are the basic ideas in thermoelectricity so as to the design the newest solid state sources of energy for a stable supply of electricity and environmental protection. According to several theoretical predictions; at device level, the geometry and configuration of the thermoelectric legs are crucial in the thermoelectric performance of the thermoelectric modules. Thus, in this work, it has studied the geometry effect of legs on the thermoelectric figure of merit ZT of the device. First, asymmetrical legs are proposed in order to reduce the overall thermal conductance of the device so as to increase the temperature gradient in the legs, as well as by harnessing the Thomson effect, which is generally neglected in conventional symmetrical thermoelectric legs. It has been developed a novel design of a thermoelectric module having asymmetrical legs, and by first time it has been validated experimentally its thermoelectric performance by realizing a proof-of-concept device which shows to have almost twofold the thermoelectric figure of merit as compared to conventional one. Moreover, it has been also varied the length of thermoelectric legs in order to analyze its effect on the thermoelectric performance of the device. Along with this, it has studied the impact of contact resistance in these systems. Experimental results show that device architecture can improve up to twofold the thermoelectric performance of the device.

Keywords: asymmetrical legs, heat recovery, heat recycling, thermoelectric module, Thompson effect

Procedia PDF Downloads 241
11549 Alcohol and Soda Consumption of University Students in Manila

Authors: Alexi Colleen F. Lim, Inna Felicia I. Agoncillo, Quenniejoy T. Dizon, Jennifer Joyce T. Eti, Carlota Aileen H. Monares, Neil Roy B. Rosales, Joshua F. Santillan, Alyssa Francesca D. S. Tanchuling, Josefina A. Tuazon, Mary Joan Therese C. Valera-Kourdache

Abstract:

Majority of leading causes of mortality in the Philippines are NCDs, which are preventable through control of known risk factors such as smoking, obesity, physical inactivity, and alcohol. Sugar-sweetened beverages such as soda and energy drinks also contribute to NCD risk and are of concern particularly for youth. This study provides baseline data on beverage consumption of university students in Manila with the focus on alcohol and soda. It further aims to identify factors affecting consumption. Specific objectives include: (1) to describe beverage consumption practices of university students in Manila; and (2) to determine factors promoting excessive consumption of alcohol and soda including demographic characteristics, attitude, interpersonal and environmental variables. Methods: The study employed correlational design with randomly selected students from two universities in Manila. Students 18 years or older who agreed to participate were included after obtaining ethical clearance. The study had two instruments: (1) World Health Organization’s Alcohol Use Disorders Identification Test (AUDIT) was used with permission, to determine excessive alcohol consumption; and (2) a questionnaire to obtain information regarding soda and energy drink consumption. Results: Out of 400 students surveyed, 70% were female and 78.75% were 18-20 years old (mean=19.79; SD=3.76). Among them, 51.50% consumed alcohol, with 30.10% excessive drinkers. Soda consumption is 91.50% with 37.70% excessive consumers. For energy drinks, 36.75% consume this and only 4.76% drink excessively. Using logistic regression, students who were more likely to be excessive alcohol drinkers belonged to non-health courses (OR=2.21) and purchased alcohol from bars (OR=7.84). Less likely to drink excessively are students who do not drink due to stress (OR=0.05) and drink when it is accessible (OR=0.02). Excessive soda consumption was less likely for female students (OR=0.28), those who drink when it is accessible (OR=0.14), do not drink soda during stressful situations (OR=0.19), and do not use soda as hangover treatment (OR=0.15). Conclusion: Excessive alcohol consumption was greater among students in Manila (30.10%) than in US (20%). Drinking alcohol with friends was not related to excessive consumption but availability in bars was. It is expected that health sciences students are less likely to engage in excessive alcohol as they are more aware of its ill effects. Prevalence of soda consumption in Manila (91.50%) is markedly higher compared to 24.5% in the US. These findings can inform schools in developing appropriate health education interventions and policies. For greater understanding of these behaviors and factors, further studies are recommended to explore knowledge and other factors that may promote excessive consumption.

Keywords: alcohol consumption, beverage consumption, energy drinks consumption, soda consumption, university students

Procedia PDF Downloads 279
11548 Assessing the Contribution of Informal Buildings to Energy Inefficiency in Kenya: A Case of Mukuru Slums

Authors: Bessy Thuranira

Abstract:

Buildings, as they are designed and used, may contribute to serious environmental problems because of excessive consumption of energy and other natural resources. Buildings in the informal settlements particularly, due to their unplanned physical structure and design, have significantly contributed the global energy problematic scenario typified by high-level inefficiencies. Energy used in buildings in Africa is estimated to be the highest of the total national electricity consumption. Over the last decade, assessments of energy consumption and efficiency/inefficiency has focused on formal and modern buildings. This study seeks to go off the beaten path, by focusing on energy use in informal settlements. Operationally, it sought to establish the contribution of informal buildings in the overall energy consumption in the city and the country at large. This study was carried out in Mukuru kwa Reuben informal settlement where there is distinct manifestation of different settlement morphologies within a small locality. The research narrowed down to three villages (Mombasa, Kosovo and Railway villages) within the settlement, that were representative of the different slum housing typologies. Due to the unpredictability nature and informality in slums, this study takes a multi-methodology approach. Detailed energy audits and measurements are carried out to predict total building consumption, and document building design and envelope, typology, materials and occupancy levels. Moreover, the study uses semi-structured interviews and to access energy supply, cost, access and consumption patterns. Observations and photographs are also used to shed more light on these parameters. The study reveals the high energy inefficiencies in slum buildings mainly related to sub-standard equipment and appliances, building design and settlement layout, poor access and utilization/consumption patterns of energy. The impacts of this inefficiency are high economic burden to the poor, high levels of pollution, lack of thermal comfort and emissions to the environment. The study highlights a set of urban planning and building design principles that can be used to retrofit slums into more energy efficient settlements. The study explores principles of responsive settlement layouts/plans and appropriate building designs that use the beneficial elements of nature to achieve natural lighting, natural ventilation, and solar control to create thermally comfortable, energy efficient, and environmentally responsive buildings/settlements. As energy efficiency in informal settlements is a relatively less explored area of efficiency, it requires further research and policy recommendations, for which this paper will set a background.

Keywords: energy efficiency, informal settlements, renewable energy, settlement layout

Procedia PDF Downloads 131
11547 Feasibility of Implementing Zero Energy Buildings in Iran and Examining Its Economic and Technical Aspects

Authors: Maryam Siyami

Abstract:

Zero energy buildings refer to buildings that have zero annual energy consumption and do not produce carbon emissions. In today's world, considering the limited resources of fossil fuels, buildings, industries and other organizations have moved towards using other available energies. The idea and principle of net zero energy consumption has attracted a lot of attention because the use of renewable energy is a means and a solution to eliminate pollutants and greenhouse gases. Due to the increase in the cost of fossil fuels and their destructive effects on the environment and disrupting the ecological balance, today the plans related to zero energy principles have become very practical and have gained particular popularity. In this research, building modeling has been done in the Design Builder software environment. Based on the changes in the required energy throughout the year in different roof thickness conditions, it has been observed that with the increase in roof thickness, the amount of heating energy required has a downward trend, from 6730 kilowatt hours in the roof thickness of 10 cm to 6408 kilowatt hours in the roof thickness condition. 20 cm is reached, which represents a reduction of about 4.7% in energy if the roof thickness is doubled. Also, with the increase in the thickness of the roof throughout the year, the amount of cooling energy required has a gentle downward trend and has reached from 4964 kilowatt hours in the case of a roof thickness of 10 cm to 4859 kilowatt hours in the case of a roof thickness of 20 cm, which is a decrease equal to It displays 2%. It can be seen that the trend of changes in the energy required for cooling and heating is not much affected by the thickness of the roof (with an effect of 98%) and therefore there is no technical and economic recommendation to increase the thickness of the roof in this sector. Finally, based on the changes in the carbon dioxide produced in different states of the roof thickness, it has been observed that with the increase in the roof thickness, energy consumption and consequently the production of carbon dioxide has decreased. By increasing the thickness of the roof from 10 cm to 20 cm, the amount of carbon dioxide produced by heating the building has decreased by 27%. Also, this amount of reduction has been obtained based on the cooling system and for different amounts of roof thickness equal to 19%.

Keywords: energy consumption, green building, design builder, AHP

Procedia PDF Downloads 25
11546 Flow-Induced Vibration Marine Current Energy Harvesting Using a Symmetrical Balanced Pair of Pivoted Cylinders

Authors: Brad Stappenbelt

Abstract:

The phenomenon of vortex-induced vibration (VIV) for elastically restrained cylindrical structures in cross-flows is relatively well investigated. The utility of this mechanism in harvesting energy from marine current and tidal flows is however arguably still in its infancy. With relatively few moving components, a flow-induced vibration-based energy conversion device augers low complexity compared to the commonly employed turbine design. Despite the interest in this concept, a practical device has yet to emerge. It is desirable for optimal system performance to design for a very low mass or mass moment of inertia ratio. The device operating range, in particular, is maximized below the vortex-induced vibration critical point where an infinite resonant response region is realized. An unfortunate consequence of this requirement is large buoyancy forces that need to be mitigated by gravity-based, suction-caisson or anchor mooring systems. The focus of this paper is the testing of a novel VIV marine current energy harvesting configuration that utilizes a symmetrical and balanced pair of horizontal pivoted cylinders. The results of several years of experimental investigation, utilizing the University of Wollongong fluid mechanics laboratory towing tank, are analyzed and presented. A reduced velocity test range of 0 to 60 was covered across a large array of device configurations. In particular, power take-off damping ratios spanning from 0.044 to critical damping were examined in order to determine the optimal conditions and hence the maximum device energy conversion efficiency. The experiments conducted revealed acceptable energy conversion efficiencies of around 16% and desirable low flow-speed operating ranges when compared to traditional turbine technology. The potentially out-of-phase spanwise VIV cells on each arm of the device synchronized naturally as no decrease in amplitude response and comparable energy conversion efficiencies to the single cylinder arrangement were observed. In addition to the spatial design benefits related to the horizontal device orientation, the main advantage demonstrated by the current symmetrical horizontal configuration is to allow large velocity range resonant response conditions without the excessive buoyancy. The novel configuration proposed shows clear promise in overcoming many of the practical implementation issues related to flow-induced vibration marine current energy harvesting.

Keywords: flow-induced vibration, vortex-induced vibration, energy harvesting, tidal energy

Procedia PDF Downloads 146
11545 Influence of Roofing Material on Indoor Thermal Comfort of Bamboo House

Authors: Thet Su Hlaing, Shoichi Kojima

Abstract:

The growing desire for better indoor thermal performance with moderate energy consumption is becoming an issue for challenging today’s built environment. Studies related to the effective way of enhancing indoor thermal comfort had been done by approaching in numerous ways. Few studies have been focused on the correlation between building material and indoor thermal comfort of vernacular house. This paper analyzes the thermal comfort conditions of Bamboo House, mostly located in a hot and humid region. Depending on the roofing material, how the indoor environment varies will be observed through monitoring indoor and outdoor comfort measurement of Bamboo house as well as occupants’ preferable comfort condition. The result revealed that the indigenous roofing material mostly influences the indoor thermal environment by performing to have less effect from the outdoor temperature. It can keep the room cool with moderate thermal comfort, especially in the early morning and night, in the summertime without mechanical device assistance. After analyzing the performance of roofing material, which effect on indoor thermal comfort for 24 hours, it can be efficiently managed the time for availing mechanical cooling devices and make it supply only the necessary period of a day, which will lead to a partially reduce energy consumption.

Keywords: bamboo house, hot and humid climate, indoor thermal comfort, local indigenous roofing material

Procedia PDF Downloads 185
11544 Feasibility of Two Positive-Energy Schools in a Hot-Humid Tropical Climate: A Methodological Approach

Authors: Shashwat, Sandra G. L. Persiani, Yew Wah Wong, Pramod S. Kamath, Avinash H. Anantharam, Hui Ling Aw, Yann Grynberg

Abstract:

Achieving zero-energy targets in existing buildings is known to be a difficult task, hence targets are addressed at new buildings almost exclusively. Although these ultra-efficient case-studies remain essential to develop future technologies and drive the concepts of Zero-energy, the immediate need to cut the consumption of the existing building stock remains unaddressed. This work aims to present a reliable and straightforward methodology for assessing the potential of energy-efficient upgrading in existing buildings. Public Singaporean school buildings, characterized by low energy use intensity and large roof areas, were identified as potential objects for conversion to highly-efficient buildings with a positive energy balance. A first study phase included the development of a detailed energy model for two case studies (a primary and a secondary school), based on the architectural drawings provided, site-visits and calibrated using measured end-use power consumption of different spaces. The energy model was used to demonstrate compliances or predict energy consumption of proposed changes in the two buildings. As complete energy monitoring is difficult and substantially time-consuming, short-term energy data was collected in the schools by taking spot measurements of power, voltage, and current for all the blocks of school. The figures revealed that the bulk of the consumption is attributed in decreasing order of magnitude to air-conditioning, plug loads, and lighting. In a second study-phase, a number of energy-efficient technologies and strategies were evaluated through energy-modeling to identify the alternatives giving the highest energy saving potential, achieving a reduction in energy use intensity down to 19.71 kWh/m²/y and 28.46 kWh/m²/y for the primary and the secondary schools respectively. This exercise of field evaluation and computer simulation of energy saving potential aims at a preliminary assessment of the positive-energy feasibility enabling future implementation of the technologies on the buildings studied, in anticipation of a broader and more widespread adoption in Singaporean schools.

Keywords: energy simulation, school building, tropical climate, zero energy buildings, positive energy

Procedia PDF Downloads 148
11543 Environment Problems of Energy Exploitation and Utilization in Nigeria

Authors: Aliyu Mohammed Lawal

Abstract:

The problems placed on the environment as a result of energy generation and usage in Nigeria is: potential damage to the environment health by CO, CO2, SOx, and NOx, effluent gas emissions and global warming. For instance in the year 2004 in Nigeria energy consumption was 58% oil and 34% natural gas but about 94 million metric tons of CO2 was emitted out of which 64% came from fossil fuels while about 35% came from fuel wood. The findings from this research on how to alleviate these problems are that long term sustainable development solutions should be enhanced globally; energy should be used more rationally renewable energy resources should be exploited and the existing emissions should be controlled to tolerate limits because the increase in energy demand in Nigeria places enormous strain on current energy facilities.

Keywords: effluent gas, emissions, NOx, SOx

Procedia PDF Downloads 381
11542 Evaluating the Nexus between Energy Demand and Economic Growth Using the VECM Approach: Case Study of Nigeria, China, and the United States

Authors: Rita U. Onolemhemhen, Saheed L. Bello, Akin P. Iwayemi

Abstract:

The effectiveness of energy demand policy depends on identifying the key drivers of energy demand both in the short-run and the long-run. This paper examines the influence of regional differences on the link between energy demand and other explanatory variables for Nigeria, China and USA using the Vector Error Correction Model (VECM) approach. This study employed annual time series data on energy consumption (ED), real gross domestic product (GDP) per capita (RGDP), real energy prices (P) and urbanization (N) for a thirty-six-year sample period. The utilized time-series data are sourced from World Bank’s World Development Indicators (WDI, 2016) and US Energy Information Administration (EIA). Results from the study, shows that all the independent variables (income, urbanization, and price) substantially affect the long-run energy consumption in Nigeria, USA and China, whereas, income has no significant effect on short-run energy demand in USA and Nigeria. In addition, the long-run effect of urbanization is relatively stronger in China. Urbanization is a key factor in energy demand, it therefore recommended that more attention should be given to the development of rural communities to reduce the inflow of migrants into urban communities which causes the increase in energy demand and energy excesses should be penalized while energy management should be incentivized.

Keywords: economic growth, energy demand, income, real GDP, urbanization, VECM

Procedia PDF Downloads 312
11541 Energy Planning Analysis of an Agritourism Complex Based on Energy Demand Simulation: A Case Study of Wuxi Yangshan Agritourism Complex

Authors: Li Zhu, Binghua Wang, Yong Sun

Abstract:

China is experiencing the rural development process, with the agritourism complex becoming one of the significant modes. Therefore, it is imperative to understand the energy performance of agritourism complex. This study focuses on a typical case of the agritourism complex and simulates the energy consumption performance on condition of the regular energy system. It was found that HVAC took 90% of the whole energy demand range. In order to optimize the energy supply structure, the hierarchical analysis was carried out on the level of architecture with three main factors such as construction situation, building types and energy demand types. Finally, the energy planning suggestion of the agritourism complex was put forward and the relevant results were obtained.

Keywords: agritourism complex, energy planning, energy demand simulation, hierarchical structure model

Procedia PDF Downloads 193
11540 Nitrogen Doping Effect on Enhancement of Electrochemical Performance of a Carbon Nanotube Based Microsupercapacitor

Authors: Behnoush Dousti, Ye Choi, Gil S. Lee

Abstract:

Microsupercapacitors (MScs) are known as the future of miniaturized energy sources that can be coupled to a battery to deliver stable and constant energy to microelectronics. Among all their counterparts, electrochemical microsupercapacitor have drawn the most research attention due to their higher power density and long cycle life. Designing the microstructure and choosing the electroactive materials are two significant factors that greatly affect the performance of the device. Here, we report successful fabrication and characterization of a microsupercapacitor with interdigitated structure based on Carbon nanotube sheets (CNT sheet). Novel structure of highly aligned CNT sheet as the electrode materials which also offers excellent conductivity and large surface area along with doping with nitrogen, enabled us to develop a device with serval order of magnitude higher electrochemical performance than the pristine CNT in aqueous electrolyte including high specific capacitance and rate capabilities and excellent cycle life over 10000 cycles. Geometric parameters such as finger width and gap size were also studied and it was shown the device performance is much depended on them. Results of this study confirms the potential of CNT sheet for future energy storage devices.

Keywords: carbon nanotube, energy storage systems, microsupercapacitor, nitrogen doping

Procedia PDF Downloads 131
11539 Input Energy Requirements and Performance of Different Soil Tillage Systems on Yield of Maize Crop

Authors: Shafique Qadir Memon, Muhammad Safar Mirjat, Abdul Quadir Mughal, Nadeem Amjad

Abstract:

The aims of this study were to determine direct input energy and indirect energy in maize production, to evaluate the inputs energy consumption and outputs energy gained for maize production in Islamabad, Pakistan for spring 2013. Results showed that grain yield was maximum under deep tillage as compared to conventional and zero tillage. Total energy input/output were maximum in deep tillage as compared to conventional tillage while lowest in zero tillage, net energy gain were found maximum under deep tillage.

Keywords: tillage, energy, grain yield, net energy gain

Procedia PDF Downloads 459
11538 Adsorption Cooling Using Hybrid Energy Resources

Authors: R. Benelmir, M. El Kadri, A. Donnot, D. Descieux

Abstract:

HVAC represents a significant part of energy needs in buildings. Integrating renewable energy in cooling processes contributes to reducing primary energy consumption. Sorption refrigeration allows cold production through the use of solar/biomass/geothermal energy or even valuation of waste heat. This work presents an analysis of an experimental bench incorporating an adsorption chiller driven by hybrid energy resources associating solar thermal collectors with a cogeneration gas engine and a geothermal heat pump.

Keywords: solar cooling, cogeneration, geothermal heat pump, hybrid energy resources

Procedia PDF Downloads 360
11537 Living Wall Systems: An Approach for Reducing Energy Consumption in Curtain Wall Façades

Authors: Salma Maher, Ahmed Elseragy, Sally Eldeeb

Abstract:

Nowadays, Urbanism and climate change lead to the rapid growth in energy consumption and the increase of using air-conditioning for cooling. In a hot climate area, there is a need for a new sustainable alternative that is more convenient for an existing situation. The Building envelope controls the heat transfer between the outside and inside the building. While the building façade is the most critical part, types of façade material play a vital role in influences of the energy demand for heating and cooling due to exposure to direct solar radiation throughout the day. Since the beginning of the twentieth century, the use of curtain walls in office buildings façades started to increase rapidly, which lead to more cooling loads in energy consumption. Integrating the living wall system in urban areas as a sustainable renovation and energy-saving method for the built environment will reduce the energy demand of buildings and will also provide environmental benefits. Also, it will balance the urban ecology and enhance urban life quality. The results show that the living wall systems reduce the internal temperature up to 4.0 °C. This research carries on an analytical study by highlighting the different types of living wall systems and verifying their thermal performance, energy-saving, and life potential on the building. These assessing criteria include the reason for using the Living wall systems in the building façade as well as the effect it has upon the surrounding environment. Finally, the paper ends with concluding the effect of using living wall systems on building. And, it suggests a system as long-lasting, and energy-efficient solution to be applied in curtain wall façades in a hot climate area.

Keywords: living wall systems, energy consumption, curtain walls, energy-saving, sustainability, urban life quality

Procedia PDF Downloads 141
11536 Nexus between Energy, Environment and Economic Growth: Sectoral Analysis from Pakistan

Authors: Muhammad Afzal, Muhammad Sajjad

Abstract:

Climate change has become a global environmental challenge and it has affected the world’s economy. Its impact is widespread across all major sectors of the economy i.e. agriculture, industry, and services sectors. This study attempts to measure the long run as well as the short-run dynamic between energy; environment and economic growth by using Autoregressive Distributed Lag (ARDL) bound testing approach at aggregate as well as sectoral level. We measured the causal relationship between electricity consumption, fuel consumption, CO₂ emission, and real Gross Domestic Product (GDP) for the period of 1980 to 2016 for Pakistan. Our co-integration results reveal that all the variables are co-integrated at aggregate as well as at sectoral level. Electricity consumption shows two-way casual relation at for industry, services and aggregate level. The inverted U-Curve hypothesis tested the relationship between greenhouse gas emissions and per capita GDP and results supported the Environment Kuznet Curve (EKC) hypothesis. This study cannot ignore the importance of energy for economic growth but prefers to focus on renewable and green energy to pave on the trajectory of development.

Keywords: climate change, economic growth, energy, environment

Procedia PDF Downloads 164