Search results for: mode prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4178

Search results for: mode prediction

1538 Prediction of Malawi Rainfall from Global Sea Surface Temperature Using a Simple Multiple Regression Model

Authors: Chisomo Patrick Kumbuyo, Katsuyuki Shimizu, Hiroshi Yasuda, Yoshinobu Kitamura

Abstract:

This study deals with a way of predicting Malawi rainfall from global sea surface temperature (SST) using a simple multiple regression model. Monthly rainfall data from nine stations in Malawi grouped into two zones on the basis of inter-station rainfall correlations were used in the study. Zone 1 consisted of Karonga and Nkhatabay stations, located in northern Malawi; and Zone 2 consisted of Bolero, located in northern Malawi; Kasungu, Dedza, Salima, located in central Malawi; Mangochi, Makoka and Ngabu stations located in southern Malawi. Links between Malawi rainfall and SST based on statistical correlations were evaluated and significant results selected as predictors for the regression models. The predictors for Zone 1 model were identified from the Atlantic, Indian and Pacific oceans while those for Zone 2 were identified from the Pacific Ocean. The correlation between the fit of predicted and observed rainfall values of the models were satisfactory with r=0.81 and 0.54 for Zone 1 and 2 respectively (significant at less than 99.99%). The results of the models are in agreement with other findings that suggest that SST anomalies in the Atlantic, Indian and Pacific oceans have an influence on the rainfall patterns of Southern Africa.

Keywords: Malawi rainfall, forecast model, predictors, SST

Procedia PDF Downloads 389
1537 Predictive Functional Control with Disturbance Observer for Tendon-Driven Balloon Actuator

Authors: Jun-ya Nagase, Toshiyuki Satoh, Norihiko Saga, Koichi Suzumori

Abstract:

In recent years, Japanese society has been aging, engendering a labour shortage of young workers. Robots are therefore expected to perform tasks such as rehabilitation, nursing elderly people, and day-to-day work support for elderly people. The pneumatic balloon actuator is a rubber artificial muscle developed for use in a robot hand in such environments. This actuator has a long stroke, and a high power-to-weight ratio compared with the present pneumatic artificial muscle. Moreover, the dynamic characteristics of this actuator resemble those of human muscle. This study evaluated characteristics of force control of balloon actuator using a predictive functional control (PFC) system with disturbance observer. The predictive functional control is a model-based predictive control (MPC) scheme that predicts the future outputs of the actual plants over the prediction horizon and computes the control effort over the control horizon at every sampling instance. For this study, a 1-link finger system using a pneumatic balloon actuator is developed. Then experiments of PFC control with disturbance observer are performed. These experiments demonstrate the feasibility of its control of a pneumatic balloon actuator for a robot hand.

Keywords: disturbance observer, pneumatic balloon, predictive functional control, rubber artificial muscle

Procedia PDF Downloads 453
1536 A Case Study of Control of Blast-Induced Ground Vibration on Adjacent Structures

Authors: H. Mahdavinezhad, M. Labbaf, H. R. Tavakoli

Abstract:

In recent decades, the study and control of the destructive effects of explosive vibration in construction projects has received more attention, and several experimental equations in the field of vibration prediction as well as allowable vibration limit for various structures are presented. Researchers have developed a number of experimental equations to estimate the peak particle velocity (PPV), in which the experimental constants must be obtained at the site of the explosion by fitting the data from experimental explosions. In this study, the most important of these equations was evaluated for strong massive conglomerates around Dez Dam by collecting data on explosions, including 30 particle velocities, 27 displacements, 27 vibration frequencies and 27 acceleration of earth vibration at different distances; they were recorded in the form of two types of detonation systems, NUNEL and electric. Analysis showed that the data from the explosion had the best correlation with the cube root of the explosive, R2=0.8636, but overall the correlation coefficients are not much different. To estimate the vibration in this project, data regression was performed in the other formats, which resulted in the presentation of new equation with R2=0.904 correlation coefficient. Finally according to the importance of the studied structures in order to ensure maximum non damage to adjacent structures for each diagram, a range of application was defined so that for distances 0 to 70 meters from blast site, exponent n=0.33 and for distances more than 70 m, n =0.66 was suggested.

Keywords: blasting, blast-induced vibration, empirical equations, PPV, tunnel

Procedia PDF Downloads 131
1535 Analytical Model to Predict the Shear Capacity of Reinforced Concrete Beams Externally Strengthened with CFRP Composites Conditions

Authors: Rajai Al-Rousan

Abstract:

This paper presents a proposed analytical model for predicting the shear strength of reinforced concrete beams strengthened with CFRP composites as external reinforcement. The proposed analytical model can predict the shear contribution of CFRP composites of RC beams with an acceptable coefficient of correlation with the tested results. Based on the comparison of the proposed model with the published well-known models (ACI model, Triantafillou model, and Colotti model), the ACI model had a wider range of 0.16 to 10.08 for the ratio between tested and predicted ultimate shears at failure. Also, an acceptable range of 0.27 to 2.78 for the ratio between tested and predicted ultimate shears by the Triantafillou model. Finally, the best prediction (the ratio between the tested and predicted ones) of the ultimate shear capacity is observed by using Colotti model with a range of 0.20 to 1.78. Thus, the contribution of the CFRP composites as external reinforcement can be predicted with high accuracy by using the proposed analytical model.

Keywords: predicting, shear capacity, reinforced concrete, beams, strengthened, externally, CFRP composites

Procedia PDF Downloads 229
1534 Numerical Verification of a Backfill-Rectangular Tank-Fluid System

Authors: Ramazan Livaoğlu, Tufan Çakır

Abstract:

The performance of rectangular tanks during earthquakes has been observed to depend significantly on the existence of water in the container and the presence of the backfill acting on tank wall. Therefore, in design of rectangular tanks, the topics of fluid-structure-backfill interactions and determination of modal characteristics of the interaction system have traditionally been one of the great theoretical and practical controversy. Although finite element method has been and will continue to be used to a significant extent in treating the response of the system, experimental verification of numerical models remains prerequisite for their adoption and reliable application in practice. Thus, in this study, the numerical and experimental investigations were performed on the backfill-exterior wall-fluid interaction system. Firstly, three dimensional finite element model (3D-FEM) was developed to acquire modal frequencies and mode shapes of the system by means of ANSYS. Secondly, a series of in-situ tests were fulfilled to define modal characteristics of same system to determine the applicability of the FEM to a real physical situation under field conditions. Finally, comparing the theoretical predictions from the model to results from experimental measurement, a close agreement was found between theory and experiment. Thus, it can be easily stated that experimental verification provides strong support for the use of proposed model in further investigations.

Keywords: fluid-structure interaction, modal analysis, rectangular tank, soil structure interaction

Procedia PDF Downloads 392
1533 Predicting Long-Term Meat Productivity for the Kingdom of Saudi Arabia

Authors: Ahsan Abdullah, Ahmed A. S. Bakshwain

Abstract:

Livestock is one of the fastest-growing sectors in agriculture. If carefully managed, have potential opportunities for economic growth, food sovereignty and food security. In this study we mainly analyse and compare long-term i.e. for year 2030 climate variability impact on predicted productivity of meat i.e. beef, mutton and poultry for the Kingdom of Saudi Arabia w.r.t three factors i.e. i) climatic-change vulnerability ii) CO2 fertilization and iii) water scarcity and compare the results with two countries of the region i.e. Iraq and Yemen. We do the analysis using data from diverse sources, which was extracted, transformed and integrated before usage. The collective impact of the three factors had an overall negative effect on the production of meat for all the three countries, with adverse impact on Iraq. High similarity was found between CO2 fertilization (effecting animal fodder) and water scarcity i.e. higher than that between production of beef and mutton for the three countries considered. Overall, the three factors do not seem to be favorable for the three Middle-East countries considered. This points to possibility of a vegetarian year 2030 based on dependency on indigenous live-stock population.

Keywords: prediction, animal-source foods, pastures, CO2 fertilization, climatic-change vulnerability, water scarcity

Procedia PDF Downloads 321
1532 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network

Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin

Abstract:

In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network. The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters. Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output. This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc. From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.

Keywords: project profitability, multi-objective optimization, genetic algorithm, Pareto set, neural networks

Procedia PDF Downloads 445
1531 Linguistic Features for Sentence Difficulty Prediction in Aspect-Based Sentiment Analysis

Authors: Adrian-Gabriel Chifu, Sebastien Fournier

Abstract:

One of the challenges of natural language understanding is to deal with the subjectivity of sentences, which may express opinions and emotions that add layers of complexity and nuance. Sentiment analysis is a field that aims to extract and analyze these subjective elements from text, and it can be applied at different levels of granularity, such as document, paragraph, sentence, or aspect. Aspect-based sentiment analysis is a well-studied topic with many available data sets and models. However, there is no clear definition of what makes a sentence difficult for aspect-based sentiment analysis. In this paper, we explore this question by conducting an experiment with three data sets: ”Laptops”, ”Restaurants”, and ”MTSC” (Multi-Target-dependent Sentiment Classification), and a merged version of these three datasets. We study the impact of domain diversity and syntactic diversity on difficulty. We use a combination of classifiers to identify the most difficult sentences and analyze their characteristics. We employ two ways of defining sentence difficulty. The first one is binary and labels a sentence as difficult if the classifiers fail to correctly predict the sentiment polarity. The second one is a six-level scale based on how many of the top five best-performing classifiers can correctly predict the sentiment polarity. We also define 9 linguistic features that, combined, aim at estimating the difficulty at sentence level.

Keywords: sentiment analysis, difficulty, classification, machine learning

Procedia PDF Downloads 89
1530 Frequency Analysis Using Multiple Parameter Probability Distributions for Rainfall to Determine Suitable Probability Distribution in Pakistan

Authors: Tasir Khan, Yejuan Wang

Abstract:

The study of extreme rainfall events is very important for flood management in river basins and the design of water conservancy infrastructure. Evaluation of quantiles of annual maximum rainfall (AMRF) is required in different environmental fields, agriculture operations, renewable energy sources, climatology, and the design of different structures. Therefore, the annual maximum rainfall (AMRF) was performed at different stations in Pakistan. Multiple probability distributions, log normal (LN), generalized extreme value (GEV), Gumbel (max), and Pearson type3 (P3) were used to find out the most appropriate distributions in different stations. The L moments method was used to evaluate the distribution parameters. Anderson darling test, Kolmogorov- Smirnov test, and chi-square test showed that two distributions, namely GUM (max) and LN, were the best appropriate distributions. The quantile estimate of a multi-parameter PD offers extreme rainfall through a specific location and is therefore important for decision-makers and planners who design and construct different structures. This result provides an indication of these multi-parameter distribution consequences for the study of sites and peak flow prediction and the design of hydrological maps. Therefore, this discovery can support hydraulic structure and flood management.

Keywords: RAMSE, multiple frequency analysis, annual maximum rainfall, L-moments

Procedia PDF Downloads 81
1529 Narrative Point of View in Nature Documentary Films: A Study of The Cove (2009), Tale of a Forest (2012), and Before the Flood (2016)

Authors: Sakshi Yadav, Sushila Shekhawat

Abstract:

This study addresses different types of points of view as seen in nature documentary films with the help of three eco documentaries, and it would be significant in understanding the role of the narrative point of view as a tool for showing and telling in documentaries. Narrative analysis of a film forms an essential aspect of the discourse of scholarship in film studies. Narration is the chain of events occurring in time and space. The notion of narrative provides the idea of coherence and wholeness to the story. There are various components that the narration carries, one of which is the perspective or point of view. The narrator plays the role of a mediator between the film and the audience; thus, his perspective influences the way the audience interprets the film. Feature films have been analyzed through narrative points of view; however, this research intends to conduct it from the angle of a nature documentary film. The study will examine narrative viewpoints unique to nature documentary films using three ecological documentary films-The Cove (2009), Tale of a forest (2012), and Before the flood (2016). This research will apply the framework of narrative theory and will investigate the impact of the different types of narrative points of view, as each portrays the human-nature relationship from a different standpoint, and it will also study the effect that the narrative point of view has on the mode of these eco documentaries.

Keywords: ecodocumentary, narrative, human-nature relationship, point of view

Procedia PDF Downloads 89
1528 Discovery of Two-dimensional Hexagonal MBene HfBO

Authors: Nanxi Miao, Junjie Wang

Abstract:

The discovery of 2D materials with distinct compositions and properties has been a research aim since the report of graphene. One of the latest members of the 2D material family is MXene, which is produced from the topochemical deintercalation of the A layer from a laminate MAX phase. Recently, analogous 2D MBenes (transitional metal borides) have been predicted by theoretical calculations as excellent alternatives in applications such as metal-ion batteries, magnetic devices, and catalysts. However, the practical applications of two-dimensional (2D) transition-metal borides (MBenes) have been severely hindered by the lack of accessible MBenes because of the difficulties in the selective etching of traditional ternary MAB phases with orthorhombic symmetry (ort-MAB). Here, we discover a family of ternary hexagonal MAB (h-MAB) phases and 2D hexagonal MBenes (h-MBenes) by ab initio predictions and experiments. Calculations suggest that the ternary h-MAB phases are more suitable precursors for MBenes than the ort-MAB phases. Based on the prediction, we report the experimental synthesis of h-MBene HfBO by selective removal of in from h-MAB Hf2InB2. The synthesized 2D HfBO delivered a specific capacity of 420 mAh g-1 as an anode material in lithium-ion batteries, demonstrating the potential for energy-storage applications. The discovery of this h-MBene HfBO added a new member to the growing family of 2D materials and provided opportunities for a wide range of novel applications.

Keywords: 2D materials, DFT calculations, high-throughput screening, lithium-ion batteries

Procedia PDF Downloads 73
1527 Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel

Authors: Rouaz Idriss, Bourahla Nour-Eddine, Kahlouche Farah, Rafa Sid Ali

Abstract:

The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.

Keywords: cold formed steel 'CFS', shear wall panel, strip method, finite elements

Procedia PDF Downloads 309
1526 Prediction of Changes in Optical Quality by Tissue Redness after Pterygium Surgery

Authors: Mohd Radzi Hilmi, Mohd Zulfaezal Che Azemin, Khairidzan Mohd Kamal, Azrin Esmady Ariffin, Mohd Izzuddin Mohd Tamrin, Norfazrina Abdul Gaffur, Tengku Mohd Tengku Sembok

Abstract:

Purpose: The purpose of this study is to predict optical quality changes after pterygium surgery using tissue redness grading. Methods: Sixty-eight primary pterygium participants were selected from patients who visited an ophthalmology clinic. We developed a semi-automated computer program to measure the pterygium fibrovascular redness from digital pterygium images. The outcome of this software is a continuous scale grading of 1 (minimum redness) to 3 (maximum redness). The region of interest (ROI) was selected manually using the software. Reliability was determined by repeat grading of all 68 images and its association with contrast sensitivity function (CSF) and visual acuity (VA) was examined. Results: The mean and standard deviation of redness of the pterygium fibrovascular images was 1.88 ± 0.55. Intra- and inter-grader reliability estimates were high with intraclass correlation ranging from 0.97 to 0.98. The new grading was positively associated with CSF (p<0.01) and VA (p<0.01). The redness grading was able to predict 25% and 23% of the variance in the CSF and the VA respectively. Conclusions: The new grading of pterygium fibrovascular redness can be reliably measured from digital images and show a good correlation with CSF and VA. The redness grading can be used in addition to the existing pterygium grading.

Keywords: contrast sensitivity, pterygium, redness, visual acuity

Procedia PDF Downloads 515
1525 Fear of Negative Evaluation, Social Support and Wellbeing in People with Vitiligo

Authors: Rafia Rafique, Mutmina Zainab

Abstract:

The present study investigated the relationship between fear of negative evaluation (FNE), social support and well-being in people with Vitiligo. It was hypothesized that low level of FNE and greater social support is likely to predict well-being. It was also hypothesized that social support is likely to moderate the relationship between FNE and well-being. Correlational research design was used for the present study. Non-probability purposive sampling technique was used to collect a sample (N=122) of people with Vitiligo. Hierarchical Moderated Regression analysis was used to test prediction and moderation. Brief Fear of Negative Evaluation Scale, Multidimensional Scale of Perceived Social Support (MSPSS) and Mental Health Continuum-Short form (MHC-SF) were used to evaluate the study variables. Fear of negative evaluation negatively predicted well-being (emotional and psychological). Social support from significant others and friends predicted social well-being. Social Support from family predicted emotional and psychological well-being. It was found that social support from significant others moderated the relationship between FNE and emotional well-being and social support from family moderated the relationship between FNE and social well-being. Dermatologists treating people with Vitiligo need to educate them and their families about the buffering role of social support (family and significant others). Future studies need to focus on other important mediating factors that can possibly explain the relationship between fear of negative evaluation and wellbeing.

Keywords: fear of negative evaluation, hierarchical moderated regression, vitiligo, well-being

Procedia PDF Downloads 302
1524 Cationic Surfactants Influence on the Fouling Phenomenon Control in Ultrafiltration of Latex Contaminated Water and Wastewater

Authors: Amira Abdelrasoul, Huu Doan, Ali Lohi

Abstract:

The goal of the present study was to minimize the ultrafiltration fouling of latex effluent using Cetyltrimethyl ammonium bromide (CTAB) as a cationic surfactant. Hydrophilic Polysulfone and Ultrafilic flat heterogeneous membranes, with MWCO of 60,000 and 100,000, respectively, as well as hydrophobic Polyvinylidene Difluoride with MWCO of 100,000, were used under a constant flow rate and cross-flow mode in ultrafiltration of latex solution. In addition, a Polycarbonate flat membrane with uniform pore size of 0.05 µm was also used. The effect of CTAB on the latex particle size distribution was investigated at different concentrations, various treatment times, and diverse agitation duration. The effects of CTAB on the zeta potential of latex particles and membrane surfaces were also investigated. The results obtained indicated that the particle size distribution of treated latex effluent showed noticeable shifts in the peaks toward a larger size range due to the aggregation of particles. As a consequence, the mass of fouling contributing to pore blocking and the irreversible fouling were significantly reduced. The optimum results occurred with the addition of CTAB at the critical micelle concentration of 0.36 g/L for 10 minutes with minimal agitation. Higher stirring rate had a negative effect on membrane fouling minimization.

Keywords: cationic surfactant, latex particles, membrane fouling, ultrafiltration, zeta potential

Procedia PDF Downloads 528
1523 Energy Detection Based Sensing and Primary User Traffic Classification for Cognitive Radio

Authors: Urvee B. Trivedi, U. D. Dalal

Abstract:

As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.

Keywords: cognitive radio (CR), probability of detection (PD), probability of false alarm (PF), primary user (PU), secondary user (SU), fast Fourier transform (FFT), signal to noise ratio (SNR)

Procedia PDF Downloads 345
1522 A Study on Reliability of Gender and Stature Determination by Odontometric and Craniofacial Anthropometric Parameters

Authors: Churamani Pokhrel, C. B. Jha, S. R. Niraula, P. R. Pokharel

Abstract:

Human identification is one of the most challenging subjects that man has confronted. The determination of adult sex and stature are two of the four key factors (sex, stature, age, and race) in identification of an individual. Craniofacial and odontometric parameters are important tools for forensic anthropologists when it is not possible to apply advanced techniques for identification purposes. The present study provides anthropometric correlation of the parameters with stature and gender and also devises regression formulae for reconstruction of stature. A total of 312 Nepalese students with equal distribution of sex i.e., 156 male and 156 female students of age 18-35 years were taken for the study. Total of 10 parameters were measured (age, sex, stature, head circumference, head length, head breadth, facial height, bi-zygomatic width, mesio-distal canine width and inter-canine distance of both maxilla and mandible). Co-relation and regression analysis was done to find the association between the parameters. All parameters were found to be greater in males than females and each was found to be statistically significant. Out of total 312 samples, the best regressor for the determination of stature was head circumference and mandibular inter-canine width and that for gender was head circumference and right mandibular teeth. The accuracy of prediction was 83%. Regression equations and analysis generated from craniofacial and odontometric parameters can be a supplementary approach for the estimation of stature and gender when extremities are not available.

Keywords: craniofacial, gender, odontometric, stature

Procedia PDF Downloads 191
1521 A Study of Customer Aggression towards Frontline Employees in Some Hotels in Imo State, Nigeria

Authors: Polycarp A. Igbojekwe, Chizoba Amajuoyi, Peterson Nwokorie

Abstract:

The main purpose of this study was to carry out a survey of customer’s aggression towards hotel workers and make contributions on the prevalence and rationale behind customer’s aggression. Data for the study were gathered with a four-point Likert type rating scale. Samples were drawn from frontline hotel employees, managers and customers of twelve (12) hotels selected from three zones of Imo State. Data analyses were conducted using simple percentage, descriptive statistics; and Z-test statistical technique was used to test hypotheses. Among other factors, service failure and verbal abuse by service providers and poor quality product compared to price were identified by customers as the three major factors that can lead to customer aggression. Frontline employees indentified verbal abuse as the most common mode of aggression and that customer aggression causes emotional disturbance in them. The study also revealed that customer aggression is more prevalent in the 1&2 star hotels than it is in 3-5 star hotels. Most of the hotels have not institutionalized systematic approaches needed to effectively face the challenges of customer aggression, thus, customer aggression has become a common feature in the industry. Frontline jobs demand high emotional input. Therefore, we recommend that frontline employees should be given emotional support by their managers and also trained on how to cope with emotional disturbance.

Keywords: customer aggression, emotional disturbance, employee well-being, service failure, verbal abuse

Procedia PDF Downloads 277
1520 Effect of Shrinkage on Heat and Mass Transfer Parameters of Solar Dried Potato Samples of Variable Diameter

Authors: Kshanaprava Dhalsamant, Punyadarshini P. Tripathy, Shanker L. Shrivastava

Abstract:

Potato is chosen as the food product for carrying out the natural convection mixed-mode solar drying experiments since they are easily available and globally consumed. The convective heat and mass transfer coefficients along with effective diffusivity were calculated considering both shrinkage and without shrinkage for the potato cylinders of different geometry (8, 10 and 13 mm diameters and a constant length of 50 mm). The convective heat transfer coefficient (hc) without considering shrinkage effect were 24.28, 18.69, 15.89 W/m2˚C and hc considering shrinkage effect were 37.81, 29.21, 25.72 W/m2˚C for 8, 10 and 13 mm diameter samples respectively. Similarly, the effective diffusivity (Deff) without considering shrinkage effect were 3.20×10-9, 4.82×10-9, 2.48×10-8 m2/s and Deff considering shrinkage effect were 1.68×10-9, 2.56×10-9, 1.34×10-8 m2/s for 8, 10 and 13 mm diameter samples respectively and the mass transfer coefficient (hm) without considering the shrinkage effect were 5.16×10-7, 2.93×10-7, 2.59×10-7 m/s and hm considering shrinkage effect were 3.71×10-7, 2.04×10-7, 1.80×10-7 m/s for 8, 10 and 13 mm diameter samples respectively. Increased values of hc were obtained by considering shrinkage effect in all diameter samples because shrinkage results in decreasing diameter with time achieving in enhanced rate of water loss. The average values of Deff determined without considering the shrinkage effect were found to be almost double that with shrinkage effect. The reduction in hm values is due to the fact that with increasing sample diameter, the exposed surface area per unit mass decreases, resulting in a slower moisture removal. It is worth noting that considering shrinkage effect led to overestimation of hc values in the range of 55.72-61.86% and neglecting the shrinkage effect in the mass transfer analysis, the values of Deff and hm are overestimated in the range of 85.02-90.27% and 39.11-45.11%, respectively, for the range of sample diameter investigated in the present study.

Keywords: shrinkage, convective heat transfer coefficient, effectivive diffusivity, convective mass transfer coefficient

Procedia PDF Downloads 258
1519 Predictive Analytics of Student Performance Determinants

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: student performance, supervised machine learning, classification, cross-validation, prediction

Procedia PDF Downloads 126
1518 Prediction of Phonon Thermal Conductivity of F.C.C. Al by Molecular Dynamics Simulation

Authors: Leila Momenzadeh, Alexander V. Evteev, Elena V. Levchenko, Tanvir Ahmed, Irina Belova, Graeme Murch

Abstract:

In this work, the phonon thermal conductivity of f.c.c. Al is investigated in detail in the temperature range 100 – 900 K within the framework of equilibrium molecular dynamics simulations making use of the Green-Kubo formalism and one of the most reliable embedded-atom method potentials. It is found that the heat current auto-correlation function of the f.c.c. Al model demonstrates a two-stage temporal decay similar to the previously observed for f.c.c Cu model. After the first stage of decay, the heat current auto-correlation function of the f.c.c. Al model demonstrates a peak in the temperature range 100-800 K. The intensity of the peak decreases as the temperature increases. At 900 K, it transforms to a shoulder. To describe the observed two-stage decay of the heat current auto-correlation function of the f.c.c. Al model, we employ decomposition model recently developed for phonon-mediated thermal transport in a monoatomic lattice. We found that the electronic contribution to the total thermal conductivity of f.c.c. Al dominates over the whole studied temperature range. However, the phonon contribution to the total thermal conductivity of f.c.c. Al increases as temperature decreases. It is about 1.05% at 900 K and about 12.5% at 100 K.

Keywords: aluminum, gGreen-Kubo formalism, molecular dynamics, phonon thermal conductivity

Procedia PDF Downloads 413
1517 Fraud Detection in Credit Cards with Machine Learning

Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf

Abstract:

Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.

Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine

Procedia PDF Downloads 148
1516 Obioma's 'The Fishermen' and the Redefinition of African Postcolonial Narrative Tragedy

Authors: Ezechi Onyerionwu

Abstract:

If there is a modern world literary culture that has so tremendously patronized the tragic mode, it has to be that of Africa, and this has been largely true to the extent that the African socio-historical process has been given strong projection by its literature and other art forms. From the three-century-long transatlantic slave trade which brutally translocated millions of Africans to the ‘outermost parts of the earth’, to the vicious partitioning of Africa among European powers and the subsequent imposition of colonial authority on a pulverized people, Africa has really been at the receiving end of the big negatives of global transactions. The African tale has largely been one long tragic narrative. However, the postcolonial African tragic saga has presented an interesting variety of forms and approaches, which have seen to the production of some of the most thought-provoking and acclaimed African novels of the late 20th and early 21st century. Some of the defining characteristics of the African tragic prose has been: the exploration of the many neocolonial implications of the African contemporary existence; the significance of the robust interplay between the essentially foreign, and the originally indigenous elements of the modern African society; and the implosive aftermaths of the individual modern African’s attempt to rationalize his position at the centre of a very complex society. Obioma’s incredible novel, The Fishermen, is in many ways, a classic of the African postcolonial narrative tragedy. The reasons for this bold categorization would occupy the present paper.

Keywords: African narrative tragedy, neocolonialism, postcolonial literature, twenty first century African literature

Procedia PDF Downloads 251
1515 A Computational Study on Flow Separation Control of Humpback Whale Inspired Sinusoidal Hydrofoils

Authors: J. Joy, T. H. New, I. H. Ibrahim

Abstract:

A computational study on bio-inspired NACA634-021 hydrofoils with leading-edge protuberances has been carried out to investigate their hydrodynamic flow control characteristics at a Reynolds number of 14,000 and different angles-of-attack. The numerical simulations were performed using ANSYS FLUENT and based on Reynolds-Averaged Navier-Stokes (RANS) solver mode incorporated with k-ω Shear Stress Transport (SST) turbulence model. The results obtained indicate varying flow phenomenon along the peaks and troughs over the span of the hydrofoils. Compared to the baseline hydrofoil with no leading-edge protuberances, the leading-edge modified hydrofoils tend to reduce flow separation extents along the peak regions. In contrast, there are increased flow separations in the trough regions of the hydrofoil with leading-edge protuberances. Interestingly, it was observed that dissimilar flow separation behaviour is produced along different peak- or trough-planes along the hydrofoil span, even though the troughs or peaks are physically similar at each interval for a particular hydrofoil. Significant interactions between adjacent flow structures produced by the leading-edge protuberances have also been observed. These flow interactions are believed to be responsible for the dissimilar flow separation behaviour along physically similar peak- or trough-planes.

Keywords: computational fluid dynamics, flow separation control, hydrofoils, leading-edge protuberances

Procedia PDF Downloads 328
1514 Analysis of Cardiovascular Diseases Using Artificial Neural Network

Authors: Jyotismita Talukdar

Abstract:

In this paper, a study has been made on the possibility and accuracy of early prediction of several Heart Disease using Artificial Neural Network. (ANN). The study has been made in both noise free environment and noisy environment. The data collected for this analysis are from five Hospitals. Around 1500 heart patient’s data has been collected and studied. The data is analysed and the results have been compared with the Doctor’s diagnosis. It is found that, in noise free environment, the accuracy varies from 74% to 92%and in noisy environment (2dB), the results of accuracy varies from 62% to 82%. In the present study, four basic attributes considered are Blood Pressure (BP), Fasting Blood Sugar (FBS), Thalach (THAL) and Cholesterol (CHOL.). It has been found that highest accuracy(93%), has been achieved in case of PPI( Post-Permanent-Pacemaker Implementation ), around 79% in case of CAD(Coronary Artery disease), 87% in DCM (Dilated Cardiomyopathy), 89% in case of RHD&MS(Rheumatic heart disease with Mitral Stenosis), 75 % in case of RBBB +LAFB (Right Bundle Branch Block + Left Anterior Fascicular Block), 72% for CHB(Complete Heart Block) etc. The lowest accuracy has been obtained in case of ICMP (Ischemic Cardiomyopathy), about 38% and AF( Atrial Fibrillation), about 60 to 62%.

Keywords: coronary heart disease, chronic stable angina, sick sinus syndrome, cardiovascular disease, cholesterol, Thalach

Procedia PDF Downloads 174
1513 Modal Analysis of FGM Plates Using Finite Element Method

Authors: S. J. Shahidzadeh Tabatabaei, A. M. Fattahi

Abstract:

Modal analysis of an FGM plate containing the ceramic phase of Al2O3 and metal phase of stainless steel 304 was performed using ABAQUS, with the assumptions that the material has an elastic mechanical behavior and its Young modulus and density are varying in thickness direction. For this purpose, a subroutine was written in FORTRAN and linked with ABAQUS. First, a simulation was performed in accordance to other researcher’s model, and then after comparing the obtained results, the accuracy of the present study was verified. The obtained results for natural frequency and mode shapes indicate good performance of user-written subroutine as well as FEM model used in present study. After verification of obtained results, the effect of clamping condition and the material type (i.e. the parameter n) was investigated. In this respect, finite element analysis was carried out in fully clamped condition for different values of n. The results indicate that the natural frequency decreases with increase of n, since with increase of n, the amount of ceramic phase in FGM plate decreases, while the amount of metal phase increases, leading to decrease of the plate stiffness and hence, natural frequency, as the Young modulus of Al2O3 is equal to 380 GPa and the Young modulus of stainless steel 304 is equal to 207 GPa.

Keywords: FGM plates, modal analysis, natural frequency, finite element method

Procedia PDF Downloads 342
1512 Analysis of the Lung Microbiome in Cystic Fibrosis Patients Using 16S Sequencing

Authors: Manasvi Pinnaka, Brianna Chrisman

Abstract:

Cystic fibrosis patients often develop lung infections that range anywhere in severity from mild to life-threatening due to the presence of thick and sticky mucus that fills their airways. Since many of these infections are chronic, they not only affect a patient’s ability to breathe but also increase the chances of mortality by respiratory failure. With a publicly available dataset of DNA sequences from bacterial species in the lung microbiome of cystic fibrosis patients, the correlations between different microbial species in the lung and the extent of deterioration of lung function were investigated. 16S sequencing technologies were used to determine the microbiome composition of the samples in the dataset. For the statistical analyses, referencing helped distinguish between taxonomies, and the proportions of certain taxa relative to another were determined. It was found that the Fusobacterium, Actinomyces, and Leptotrichia microbial types all had a positive correlation with the FEV1 score, indicating the potential displacement of these species by pathogens as the disease progresses. However, the dominant pathogens themselves, including Pseudomonas aeruginosa and Staphylococcus aureus, did not have statistically significant negative correlations with the FEV1 score as described by past literature. Examining the lung microbiology of cystic fibrosis patients can help with the prediction of the current condition of lung function, with the potential to guide doctors when designing personalized treatment plans for patients.

Keywords: bacterial infections, cystic fibrosis, lung microbiome, 16S sequencing

Procedia PDF Downloads 99
1511 Study of the Efficiency of a Synthetic Wax for Corrosion Protection of Steel in Aggressive Environments

Authors: Laidi Babouri

Abstract:

The remarkable properties of steel, such as hardness and impact resistance, motivate their use in the automotive manufacturing industry. However, due to the very vulnerable environmental conditions of use, the steel that makes up the car body can corrode. This situation is motivating more and more automobile manufacturers to develop research to develop processes minimizing the rate of degradation of the physicomechanical properties of these materials. The present work falls within this perspective; it presents the results of a research study focused on the use of synthetic wax for the protection of steel, type XES (DC04), against corrosion in aggressive environments. The media used in this study are an acid medium with a pH=5.6, a 3% chloride medium, and a dry medium. Evaluation of the protective power of synthetic wax in different environments was carried out using mass loss techniques (immersion), completed by electrochemical techniques (stationary and transient). The results of the immersion of the steel samples, with a surface area of (1.44 cm²), in the various media, for a period of 30 days, using the immersion technique, showed high protective efficiency of synthetic wax in acidic and saline environments, with a lesser degree in a dry environment. Moreover, the study of the protective power, using electrochemical techniques, confirmed the results obtained in static mode (loss of mass), the protective efficiency of synthetic wax, against the corrosion of steel, in different environments, which reaches a maximum rate of 99.87% in a saline environment.

Keywords: corrosion, steel, industrial wax, environment, mass loss, electrochemical techniques

Procedia PDF Downloads 75
1510 Development of a Novel Score for Early Detection of Hepatocellular Carcinoma in Patients with Hepatitis C Virus

Authors: Hatem A. El-Mezayen, Hossam Darwesh

Abstract:

Background/Aim: Hepatocellular carcinoma (HCC) is often diagnosed at advanced stage where effective therapies are lacking. Identification of new scoring system is needed to discriminate HCC patients from those with chronic liver disease. Based on the link between vascular endothelial growth factor (VEGF) and HCC progression, we aimed to develop a novel score based on combination of VEGF and routine laboratory tests for early prediction of HCC. Methods: VEGF was assayed for HCC group (123), liver cirrhosis group (210) and control group (50) by Enzyme Linked Immunosorbent Assay (ELISA). Data from all groups were retrospectively analyzed including α feto protein (AFP), international normalized ratio (INR), albumin and platelet count, transaminases, and age. Areas under ROC curve were used to develop the score. Results: A novel index named hepatocellular carcinoma-vascular endothelial growth factor score (HCC-VEGF score)=1.26 (numerical constant) + 0.05 ×AFP (U L-1)+0.038 × VEGF(ng ml-1)+0.004× INR –1.02 × Albumin (g l-1)–0.002 × Platelet count × 109 l-1 was developed. HCC-VEGF score produce area under ROC curve of 0.98 for discriminating HCC patients from liver cirrhosis with sensitivity of 91% and specificity of 82% at cut-off 4.4 (ie less than 4.4 considered cirrhosis and greater than 4.4 considered HCC). Conclusion: Hepatocellular carcinoma-VEGF score could replace AFP in HCC screening and follow up of cirrhotic patients.

Keywords: Hepatocellular carcinoma, cirrhosis, HCV, diagnosis, tumor markers

Procedia PDF Downloads 321
1509 Development of Time Series Forecasting Model for Dengue Cases in Nakhon Si Thammarat, Southern Thailand

Authors: Manit Pollar

Abstract:

Identifying the dengue epidemic periods early would be helpful to take necessary actions to prevent the dengue outbreaks. Providing an accurate prediction on dengue epidemic seasons will allow sufficient time to take the necessary decisions and actions to safeguard the situation for local authorities. This study aimed to develop a forecasting model on number of dengue incidences in Nakhon Si Thammarat Province, Southern Thailand using time series analysis. We develop Seasonal Autoregressive Moving Average (SARIMA) models on the monthly data collected between 2003-2011 and validated the models using data collected between January-September 2012. The result of this study revealed that the SARIMA(1,1,0)(1,2,1)12 model closely described the trends and seasons of dengue incidence and confirmed the existence of dengue fever cases in Nakhon Si Thammarat for the years between 2003-2011. The study showed that the one-step approach for predicting dengue incidences provided significantly more accurate predictions than the twelve-step approach. The model, even if based purely on statistical data analysis, can provide a useful basis for allocation of resources for disease prevention.

Keywords: SARIMA, time series model, dengue cases, Thailand

Procedia PDF Downloads 358