Search results for: ulna length
68 Hydrodynamics in Wetlands of Brazilian Savanna: Electrical Tomography and Geoprocessing
Authors: Lucas M. Furlan, Cesar A. Moreira, Jepherson F. Sales, Guilherme T. Bueno, Manuel E. Ferreira, Carla V. S. Coelho, Vania Rosolen
Abstract:
Located in the western part of the State of Minas Gerais, Brazil, the study area consists of a savanna environment, represented by sedimentary plateau and a soil cover composed by lateritic and hydromorphic soils - in the latter, occurring the deferruginization and concentration of high-alumina clays, exploited as refractory material. In the hydromorphic topographic depressions (wetlands) the hydropedogical relationships are little known, but it is observed that in times of rainfall, the depressed region behaves like a natural seasonal reservoir - which suggests that the wetlands on the surface of the plateau are places of recharge of the aquifer. The aquifer recharge areas are extremely important for the sustainable social, economic and environmental development of societies. The understanding of hydrodynamics in relation to the functioning of the ferruginous and hydromorphic lateritic soils system in the savanna environment is a subject rarely explored in the literature, especially its understanding through the joint application of geoprocessing by UAV (Unmanned Aerial Vehicle) and electrical tomography. The objective of this work is to understand the hydrogeological dynamics in a wetland (with an area of 426.064 m²), in the Brazilian savanna,as well as the understanding of the subsurface architecture of hydromorphic depressions in relation to the recharge of aquifers. The wetland was compartmentalized in three different regions, according to the geoprocessing. Hydraulic conductivity studies were performed in each of these three portions. Electrical tomography was performed on 9 lines of 80 meters in length and spaced 10 meters apart (direction N45), and a line with 80 meters perpendicular to all others. With the data, it was possible to generate a 3D cube. The integrated analysis showed that the area behaves like a natural seasonal reservoir in the months of greater precipitation (December – 289mm; January – 277,9mm; February – 213,2mm), because the hydraulic conductivity is very low in all areas. In the aerial images, geotag correction of the images was performed, that is, the correction of the coordinates of the images by means of the corrected coordinates of the Positioning by Precision Point of the Brazilian Institute of Geography and Statistics (IBGE-PPP). Later, the orthomosaic and the digital surface model (DSM) were generated, which with specific geoprocessing generated the volume of water that the wetland can contain - 780,922m³ in total, 265,205m³ in the region with intermediate flooding and 49,140m³ in the central region, where a greater accumulation of water was observed. Through the electrical tomography it was possible to identify that up to the depth of 6 meters the water infiltrates vertically in the central region. From the 8 meters depth, the water encounters a more resistive layer and the infiltration begins to occur horizontally - tending to concentrate the recharge of the aquifer to the northeast and southwest of the wetland. The hydrodynamics of the area is complex and has many challenges in its understanding. The next step is to relate hydrodynamics to the evolution of the landscape, with the enrichment of high-alumina clays, and to propose a management model for the seasonal reservoir.Keywords: electrical tomography, hydropedology, unmanned aerial vehicle, water resources management
Procedia PDF Downloads 14667 Hydrodynamic Characterisation of a Hydraulic Flume with Sheared Flow
Authors: Daniel Rowe, Christopher R. Vogel, Richard H. J. Willden
Abstract:
The University of Oxford’s recirculating water flume is a combined wave and current test tank with a 1 m depth, 1.1 m width, and 10 m long working section, and is capable of flow speeds up to 1 ms−1 . This study documents the hydrodynamic characteristics of the facility in preparation for experimental testing of horizontal axis tidal stream turbine models. The turbine to be tested has a rotor diameter of 0.6 m and is a modified version of one of two model-scale turbines tested in previous experimental campaigns. An Acoustic Doppler Velocimeter (ADV) was used to measure the flow at high temporal resolution at various locations throughout the flume, enabling the spatial uniformity and turbulence flow parameters to be investigated. The mean velocity profiles exhibited high levels of spatial uniformity at the design speed of the flume, 0.6 ms−1 , with variations in the three-dimensional velocity components on the order of ±1% at the 95% confidence level, along with a modest streamwise acceleration through the measurement domain, a target 5 m working section of the flume. A high degree of uniformity was also apparent for the turbulence intensity, with values ranging between 1-2% across the intended swept area of the turbine rotor. The integral scales of turbulence exhibited a far higher degree of variation throughout the water column, particularly in the streamwise and vertical scales. This behaviour is believed to be due to the high signal noise content leading to decorrelation in the sampling records. To achieve more realistic levels of vertical velocity shear in the flume, a simple procedure to practically generate target vertical shear profiles in open-channel flows is described. Here, the authors arranged a series of non-uniformly spaced parallel bars placed across the width of the flume and normal to the onset flow. By adjusting the resistance grading across the height of the working section, the downstream profiles could be modified accordingly, characterised by changes in the velocity profile power law exponent, 1/n. Considering the significant temporal variation in a tidal channel, the choice of the exponent denominator, n = 6 and n = 9, effectively provides an achievable range around the much-cited value of n = 7 observed at many tidal sites. The resulting flow profiles, which we intend to use in future turbine tests, have been characterised in detail. The results indicate non-uniform vertical shear across the survey area and reveal substantial corner flows, arising from the differential shear between the target vertical and cross-stream shear profiles throughout the measurement domain. In vertically sheared flow, the rotor-equivalent turbulence intensity ranges between 3.0-3.8% throughout the measurement domain for both bar arrangements, while the streamwise integral length scale grows from a characteristic dimension on the order of the bar width, similar to the flow downstream of a turbulence-generating grid. The experimental tests are well-defined and repeatable and serve as a reference for other researchers who wish to undertake similar investigations.Keywords: acoustic doppler Velocimeter, experimental hydrodynamics, open-channel flow, shear profiles, tidal stream turbines
Procedia PDF Downloads 8666 Climate Indices: A Key Element for Climate Change Adaptation and Ecosystem Forecasting - A Case Study for Alberta, Canada
Authors: Stefan W. Kienzle
Abstract:
The increasing number of occurrences of extreme weather and climate events have significant impacts on society and are the cause of continued and increasing loss of human and animal lives, loss or damage to property (houses, cars), and associated stresses to the public in coping with a changing climate. A climate index breaks down daily climate time series into meaningful derivatives, such as the annual number of frost days. Climate indices allow for the spatially consistent analysis of a wide range of climate-dependent variables, which enables the quantification and mapping of historical and future climate change across regions. As trends of phenomena such as the length of the growing season change differently in different hydro-climatological regions, mapping needs to be carried out at a high spatial resolution, such as the 10km by 10km Canadian Climate Grid, which has interpolated daily values from 1950 to 2017 for minimum and maximum temperature and precipitation. Climate indices form the basis for the analysis and comparison of means, extremes, trends, the quantification of changes, and their respective confidence levels. A total of 39 temperature indices and 16 precipitation indices were computed for the period 1951 to 2017 for the Province of Alberta. Temperature indices include the annual number of days with temperatures above or below certain threshold temperatures (0, +-10, +-20, +25, +30ºC), frost days, and timing of frost days, freeze-thaw days, growing or degree days, and energy demands for air conditioning and heating. Precipitation indices include daily and accumulated 3- and 5-day extremes, days with precipitation, period of days without precipitation, and snow and potential evapotranspiration. The rank-based nonparametric Mann-Kendall statistical test was used to determine the existence and significant levels of all associated trends. The slope of the trends was determined using the non-parametric Sen’s slope test. The Google mapping interface was developed to create the website albertaclimaterecords.com, from which beach of the 55 climate indices can be queried for any of the 6833 grid cells that make up Alberta. In addition to the climate indices, climate normals were calculated and mapped for four historical 30-year periods and one future period (1951-1980, 1961-1990, 1971-2000, 1981-2017, 2041-2070). While winters have warmed since the 1950s by between 4 - 5°C in the South and 6 - 7°C in the North, summers are showing the weakest warming during the same period, ranging from about 0.5 - 1.5°C. New agricultural opportunities exist in central regions where the number of heat units and growing degree days are increasing, and the number of frost days is decreasing. While the number of days below -20ºC has about halved across Alberta, the growing season has expanded by between two and five weeks since the 1950s. Interestingly, both the number of days with heat waves and cold spells have doubled to four-folded during the same period. This research demonstrates the enormous potential of using climate indices at the best regional spatial resolution possible to enable society to understand historical and future climate changes of their region.Keywords: climate change, climate indices, habitat risk, regional, mapping, extremes
Procedia PDF Downloads 9265 Prostheticly Oriented Approach for Determination of Fixture Position for Facial Prostheses Retention in Cases with Atypical and Combined Facial Defects
Authors: K. A.Veselova, N. V.Gromova, I. N.Antonova, I. N. Kalakutskii
Abstract:
There are many diseases and incidents that may result facial defects and deformities: cancer, trauma, burns, congenital anomalies, and autoimmune diseases. In some cases, patient may acquire atypically extensive facial defect, including more than one anatomical region or, by contrast, atypically small defect (e.g. partial auricular defect). The anaplastology gives us opportunity to help patient with facial disfigurement in cases when plastic surgery is contraindicated. Using of implant retention for facial prosthesis is strongly recommended because improves both aesthetic and functional results and makes using of the prosthesis more comfortable. Prostheticly oriented fixture position is extremely important for aesthetic and functional long-term result; however, the optimal site for fixture placement is not clear in cases with atypical configuration of facial defect. The objective of this report is to demonstrate challenges in fixture position determination we have faced with and offer the solution. In this report, four cases of implant-supported facial prosthesis are described. Extra-oral implants with four millimeter length were used in all cases. The decision regarding the quantity of surgical stages was based on anamnesis of disease. Facial prostheses were manufactured according to conventional technique. Clinical and technological difficulties and mistakes are described, and prostheticly oriented approach for determination of fixture position is demonstrated. The case with atypically large combined orbital and nasal defect resulting after arteriovenous malformation is described: the correct positioning of artificial eye was impossible due to wrong position of the fixture (with suprastructure) located in medial aspect of supraorbital rim. The suprastructure was unfixed and this fixture wasn`t used for retention in order to achieve appropriate artificial eye placement and better aesthetic result. In other case with small partial auricular defect (only helix and antihelix were absent) caused by squamoized cell carcinoma T1N0M0 surgical template was used to avoid the difficulties. To achieve the prostheticly oriented fixture position in case of extremely small defect the template was made on preliminary cast using vacuum thermoforming method. Two radiopaque markers were incorporated into template in preferable for fixture placement positions taking into account future prosthesis configuration. The template was put on remaining ear and cone-beam CT was performed to insure, that the amount of bone is enough for implant insertion in preferable position. Before the surgery radiopaque markers were extracted and template was holed for guide drill. Fabrication of implant-retained facial prostheses gives us opportunity to improve aesthetics, retention and patients’ quality of life. But every inaccuracy in planning leads to challenges on surgery and prosthetic stages. Moreover, in cases with atypically small or extended facial defects prostheticly oriented approach for determination of fixture position is strongly required. The approach including surgical template fabrication is effective, easy and cheap way to avoid mistakes and unpredictable result.Keywords: anaplastology, facial prosthesis, implant-retained facial prosthesis., maxillofacil prosthese
Procedia PDF Downloads 11464 Tunable Graphene Metasurface Modeling Using the Method of Moment Combined with Generalised Equivalent Circuit
Authors: Imen Soltani, Takoua Soltani, Taoufik Aguili
Abstract:
Metamaterials crossover classic physical boundaries and gives rise to new phenomena and applications in the domain of beam steering and shaping. Where electromagnetic near and far field manipulations were achieved in an accurate manner. In this sense, 3D imaging is one of the beneficiaries and in particular Denis Gabor’s invention: holography. But, the major difficulty here is the lack of a suitable recording medium. So some enhancements were essential, where the 2D version of bulk metamaterials have been introduced the so-called metasurface. This new class of interfaces simplifies the problem of recording medium with the capability of tuning the phase, amplitude, and polarization at a given frequency. In order to achieve an intelligible wavefront control, the electromagnetic properties of the metasurface should be optimized by means of solving Maxwell’s equations. In this context, integral methods are emerging as an important method to study electromagnetic from microwave to optical frequencies. The method of moment presents an accurate solution to reduce the problem of dimensions by writing its boundary conditions in the form of integral equations. But solving this kind of equations tends to be more complicated and time-consuming as the structural complexity increases. Here, the use of equivalent circuit’s method exhibits the most scalable experience to develop an integral method formulation. In fact, for allaying the resolution of Maxwell’s equations, the method of Generalised Equivalent Circuit was proposed to convey the resolution from the domain of integral equations to the domain of equivalent circuits. In point of fact, this technique consists in creating an electric image of the studied structure using discontinuity plan paradigm and taken into account its environment. So that, the electromagnetic state of the discontinuity plan is described by generalised test functions which are modelled by virtual sources not storing energy. The environmental effects are included by the use of an impedance or admittance operator. Here, we propose a tunable metasurface composed of graphene-based elements which combine the advantages of reflectarrays concept and graphene as a pillar constituent element at Terahertz frequencies. The metasurface’s building block consists of a thin gold film, a dielectric spacer SiO₂ and graphene patch antenna. Our electromagnetic analysis is based on the method of moment combined with generalised equivalent circuit (MoM-GEC). We begin by restricting our attention to study the effects of varying graphene’s chemical potential on the unit cell input impedance. So, it was found that the variation of complex conductivity of graphene allows controlling the phase and amplitude of the reflection coefficient at each element of the array. From the results obtained here, we were able to determine that the phase modulation is realized by adjusting graphene’s complex conductivity. This modulation is a viable solution compared to tunning the phase by varying the antenna length because it offers a full 2π reflection phase control.Keywords: graphene, method of moment combined with generalised equivalent circuit, reconfigurable metasurface, reflectarray, terahertz domain
Procedia PDF Downloads 17663 A Study of Interleukin-1β Genetic Polymorphisms in Gastric Carcinoma and Colorectal Carcinoma in Egyptian Patients
Authors: Mariam Khaled, Noha Farag, Ghada Mohamed Abdel Salam, Khaled Abu-Aisha, Mohamed El-Azizi
Abstract:
Gastric and colorectal cancers are among the most frequent causes of cancer-associated mortalities in Africa. They have been considered as a global public health concern, as nearly one million new cases are reported per year. IL-1β is a pro-inflammatory cytokine-produced by activated macrophages and monocytes- and a member of the IL-1 family. The inactive IL-1β precursor is cleaved and activated by caspase-1 enzyme, which itself is activated by the assembly of intracellular structures defined as NLRP3 (Nod Like receptor P3) inflammasomes. Activated IL-1β stimulates the Interleukin-1 receptor type-1 (IL-1R1), which is responsible for the initiation of a signal transduction pathway leading to cell proliferation. It has been proven that the IL-1β gene is a highly polymorphic gene in which single nucleotide polymorphisms (SNPs) may affect its expression. It has been previously reported that SNPs including base transitions between C and T at positions, -511 (C-T; dbSNP: rs16944) and -31 (C-T; dbSNP: rs1143627), from the transcriptional start site, contribute to the pathogenesis of gastric and colorectal cancers by affecting IL-1β levels. Altered production of IL-1β due to such polymorphisms is suspected to stimulate an amplified inflammatory response and promote Epithelial Mesenchymal Transition leading to malignancy. Allele frequency distribution of the IL-1β-31 and -511 SNPs, in different populations, and their correlation to the incidence of gastric and colorectal cancers, has been intriguing to researchers worldwide. The current study aims to investigate allele distributions of the IL-1β SNPs among gastric and colorectal cancers Egyptian patients. In order to achieve to that, 89 Biopsy and surgical specimens from the antrum and corpus mucosa of chronic gastritis subjects and gastric and colorectal carcinoma patients was collected for DNA extraction followed by restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR). The amplified PCR products of IL-1β-31C > T and IL-1β-511T > C were digested by incubation with the restriction endonuclease enzymes ALu1 and Ava1. Statistical analysis was carried out to determine the allele frequency distribution in the three studied groups. Also, the effect of the IL-1β -31 and -511 SNPs on nuclear factor binding was analyzed using Fluorescence Electrophoretic Mobility Shift Assay (EMSA), preceded by nuclear factor extraction from gastric and colorectal tissue samples and LPS stimulated monocytes. The results of this study showed that a significantly higher percentage of Egyptian gastric cancer patients have a homozygous CC genotype at the IL-1β-31 position and a heterozygous TC genotype at the IL-1β-511 position. Moreover, a significantly higher percentage of the colorectal cancer patients have a homozygous CC genotype at the IL-1β-31 and -511 positions as compared to the control group. In addition, the EMSA results showed that IL-1β-31C/T and IL-1β-511T/C SNPs do not affect nuclear factor binding. Results of this study suggest that the IL-1β-31 C/T and IL-1β-511 T/C may be correlated to the incidence of gastric cancer in Egyptian patients; however, similar findings couldn’t be proven in the colorectal cancer patients group for the IL-1β-511 T/C SNP. This is the first study to investigate IL-1β -31 and -511 SNPs in the Egyptian population.Keywords: colorectal cancer, Egyptian patients, gastric cancer, interleukin-1β, single nucleotide polymorphisms
Procedia PDF Downloads 14062 Impact of Anthropogenic Stresses on Plankton Biodiversity in Indian Sundarban Megadelta: An Approach towards Ecosystem Conservation and Sustainability
Authors: Dibyendu Rakshit, Santosh K. Sarkar
Abstract:
The study illustrates a comprehensive account of large-scale changes plankton community structure in relevance to water quality characteristics due to anthropogenic stresses, mainly concerned for Annual Gangasagar Festival (AGF) at the southern tip of Sagar Island of Indian Sundarban wetland for 3-year duration (2012-2014; n=36). This prograding, vulnerable and tide-dominated megadelta has been formed in the estuarine phase of the Hooghly Estuary infested by largest continuous tract of luxurious mangrove forest, enriched with high native flora and fauna. The sampling strategy was designed to characterize the changes in plankton community and water quality considering three diverse phases, namely during festival period (January) and its pre - (December) as well as post (February) events. Surface water samples were collected for estimation of different environmental variables as well as for phytoplankton and microzooplankton biodiversity measurement. The preservation and identification techniques of both biotic and abiotic parameters were carried out by standard chemical and biological methods. The intensive human activities lead to sharp ecological changes in the context of poor water quality index (WQI) due to high turbidity (14.02±2.34 NTU) coupled with low chlorophyll a (1.02±0.21 mg m-3) and dissolved oxygen (3.94±1.1 mg l-1), comparing to pre- and post-festival periods. Sharp reduction in abundance (4140 to 2997 cells l-1) and diversity (H′=2.72 to 1.33) of phytoplankton and microzooplankton tintinnids (450 to 328 ind l-1; H′=4.31 to 2.21) was very much pronounced. The small size tintinnid (average lorica length=29.4 µm; average LOD=10.5 µm) composed of Tintinnopsis minuta, T. lobiancoi, T. nucula, T. gracilis are predominant and reached some of the greatest abundances during the festival period. Results of ANOVA revealed a significant variation in different festival periods with phytoplankton (F= 1.77; p=0.006) and tintinnid abundance (F= 2.41; P=0.022). RELATE analyses revealed a significant correlation between the variations of planktonic communities with the environmental data (R= 0.107; p= 0.005). Three distinct groups were delineated from principal component analysis, in which a set of hydrological parameters acted as the causative factor(s) for maintaining diversity and distribution of the planktonic organisms. The pronounced adverse impact of anthropogenic stresses on plankton community could lead to environmental deterioration, disrupting the productivity of benthic and pelagic ecosystems as well as fishery potentialities which directly related to livelihood services. The festival can be considered as multiple drivers of changes in relevance to beach erosion, shoreline changes, pollution from discarded plastic and electronic wastes and destruction of natural habitats resulting loss of biodiversity. In addition, deterioration in water quality was also evident from immersion of idols, causing detrimental effects on aquatic biota. The authors strongly recommend for adopting integrated scientific and administrative strategies for resilience, sustainability and conservation of this megadelta.Keywords: Gangasagar festival, phytoplankton, Sundarban megadelta, tintinnid
Procedia PDF Downloads 23461 Comparing Community Health Agents, Physicians and Nurses in Brazil's Family Health Strategy
Authors: Rahbel Rahman, Rogério Meireles Pinto, Margareth Santos Zanchetta
Abstract:
Background: Existing shortcomings of current health-service delivery include poor teamwork, competencies that do not address consumer needs, and episodic rather than continuous care. Brazil’s Sistema Único de Saúde (Unified Health System, UHS) is acknowledged worldwide as a model for delivering community-based care through Estratégia Saúde da Família (FHS; Family Health Strategy) interdisciplinary teams, comprised of Community Health Agents (in Portuguese, Agentes Comunitário de Saude, ACS), nurses, and physicians. FHS teams are mandated to collectively offer clinical care, disease prevention services, vector control, health surveillance and social services. Our study compares medical providers (nurses and physicians) and community-based providers (ACS) on their perceptions of work environment, professional skills, cognitive capacities and job context. Global health administrators and policy makers can leverage on similarities and differences across care providers to develop interprofessional training for community-based primary care. Methods: Cross-sectional data were collected from 168 ACS, 62 nurses and 32 physicians in Brazil. We compared providers’ demographic characteristics (age, race, and gender) and job context variables (caseload, work experience, work proximity to community, the length of commute, and familiarity with the community). Providers perceptions were compared to their work environment (work conditions and work resources), professional skills (consumer-input, interdisciplinary collaboration, efficacy of FHS teams, work-methods and decision-making autonomy), and cognitive capacities (knowledge and skills, skill variety, confidence and perseverance). Descriptive and bi-variate analysis, such as Pearson Chi-square and Analysis of Variance (ANOVA) F-tests, were performed to draw comparisons across providers. Results: Majority of participants were ACS (64%); 24% nurses; and 12% physicians. Majority of nurses and ACS identified as mixed races (ACS, n=85; nurses, n=27); most physicians identified as males (n=16; 52%), and white (n=18; 58%). Physicians were less likely to incorporate consumer-input and demonstrated greater decision-making autonomy than nurses and ACS. ACS reported the highest levels of knowledge and skills but the least confidence compared to nurses and physicians. ACS, nurses, and physicians were efficacious that FHS teams improved the quality of health in their catchment areas, though nurses tend to disagree that interdisciplinary collaboration facilitated their work. Conclusion: To our knowledge, there has been no study comparing key demographic and cognitive variables across ACS, nurses and physicians in the context of their work environment and professional training. We suggest that global health systems can leverage upon the diverse perspectives of providers to implement a community-based primary care model grounded in interprofessional training. Our study underscores the need for in-service trainings to instill reflective skills of providers, improve communication skills of medical providers and curative skills of ACS. Greater autonomy needs to be extended to community based providers to offer care integral to addressing consumer and community needs.Keywords: global health systems, interdisciplinary health teams, community health agents, community-based care
Procedia PDF Downloads 22960 Regional Hydrological Extremes Frequency Analysis Based on Statistical and Hydrological Models
Authors: Hadush Kidane Meresa
Abstract:
The hydrological extremes frequency analysis is the foundation for the hydraulic engineering design, flood protection, drought management and water resources management and planning to utilize the available water resource to meet the desired objectives of different organizations and sectors in a country. This spatial variation of the statistical characteristics of the extreme flood and drought events are key practice for regional flood and drought analysis and mitigation management. For different hydro-climate of the regions, where the data set is short, scarcity, poor quality and insufficient, the regionalization methods are applied to transfer at-site data to a region. This study aims in regional high and low flow frequency analysis for Poland River Basins. Due to high frequent occurring of hydrological extremes in the region and rapid water resources development in this basin have caused serious concerns over the flood and drought magnitude and frequencies of the river in Poland. The magnitude and frequency result of high and low flows in the basin is needed for flood and drought planning, management and protection at present and future. Hydrological homogeneous high and low flow regions are formed by the cluster analysis of site characteristics, using the hierarchical and C- mean clustering and PCA method. Statistical tests for regional homogeneity are utilized, by Discordancy and Heterogeneity measure tests. In compliance with results of the tests, the region river basin has been divided into ten homogeneous regions. In this study, frequency analysis of high and low flows using AM for high flow and 7-day minimum low flow series is conducted using six statistical distributions. The use of L-moment and LL-moment method showed a homogeneous region over entire province with Generalized logistic (GLOG), Generalized extreme value (GEV), Pearson type III (P-III), Generalized Pareto (GPAR), Weibull (WEI) and Power (PR) distributions as the regional drought and flood frequency distributions. The 95% percentile and Flow duration curves of 1, 7, 10, 30 days have been plotted for 10 stations. However, the cluster analysis performed two regions in west and east of the province where L-moment and LL-moment method demonstrated the homogeneity of the regions and GLOG and Pearson Type III (PIII) distributions as regional frequency distributions for each region, respectively. The spatial variation and regional frequency distribution of flood and drought characteristics for 10 best catchment from the whole region was selected and beside the main variable (streamflow: high and low) we used variables which are more related to physiographic and drainage characteristics for identify and delineate homogeneous pools and to derive best regression models for ungauged sites. Those are mean annual rainfall, seasonal flow, average slope, NDVI, aspect, flow length, flow direction, maximum soil moisture, elevation, and drainage order. The regional high-flow or low-flow relationship among one streamflow characteristics with (AM or 7-day mean annual low flows) some basin characteristics is developed using Generalized Linear Mixed Model (GLMM) and Generalized Least Square (GLS) regression model, providing a simple and effective method for estimation of flood and drought of desired return periods for ungauged catchments.Keywords: flood , drought, frequency, magnitude, regionalization, stochastic, ungauged, Poland
Procedia PDF Downloads 60259 The Association between Gene Polymorphisms of GPX, SEPP1, and SEP15, Plasma Selenium Levels, Urinary Total Arsenic Concentrations, and Prostate Cancer
Authors: Yu-Mei Hsueh, Wei-Jen Chen, Yung-Kai Huang, Cheng-Shiuan Tsai, Kuo-Cheng Yeh
Abstract:
Prostate cancer occurs in men over the age of 50, and rank sixth of the top ten cancers in Taiwan, and the incidence increased gradually over the past decade in Taiwan. Arsenic is confirmed as a carcinogen by International Agency for Research on (IARC). Arsenic induces oxidative stress may be a risk factor for prostate cancer, but the mechanism is not clear. Selenium is an important antioxidant element. Whether the association between plasma selenium levels and risk of prostate cancer are modified by different genotype of selenoprotein is still unknown. Glutathione peroxidase, selenoprotein P (SEPP1) and 15 kDa selenoprotein (SEP 15) are selenoprotein and regulates selenium transport and the oxidation and reduction reaction. However, the association between gene polymorphisms of selenoprotein and prostate cancer is not yet clear. The aim of this study is to determine the relationship between plasma selenium, polymorphism of selenoprotein, urinary total arsenic concentration and prostate cancer. This study is a hospital-based case-control study. Three hundred twenty-two cases of prostate cancer and age (±5 years) 1:1 matched 322 control group were recruited from National Taiwan University Hospital, Taipei Medical University Hospital, and Wan Fang Hospital. Well-trained personnel carried out standardized personal interviews based on a structured questionnaire. Information collected included demographic and socioeconomic characteristics, lifestyle and disease history. Blood and urine samples were also collected at the same time. The Research Ethics Committee of National Taiwan University Hospital, Taipei, Taiwan, approved the study. All patients provided informed consent forms before sample and data collection. Buffy coat was to extract DNA, and the polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) was used to measure the genotypes of SEPP1 rs3797310, SEP15 rs5859, GPX1 rs1050450, GPX2 rs4902346, GPX3 rs4958872, and GPX4 rs2075710. Plasma concentrations of selenium were determined by inductively coupled plasma mass spectrometry (ICP-MS).Urinary arsenic species concentrations were measured by high-performance liquid chromatography links hydride generator and atomic absorption spectrometer (HPLC-HG-AAS). Subject with high education level compared to those with low educational level had a lower prostate cancer odds ratio (OR) Mainland Chinese and aboriginal people had a lower OR of prostate cancer compared to Fukien Taiwanese. After adjustment for age, educational level, subjects with GPX1 rs1050450 CT and TT genotype compared to the CC genotype have lower, OR of prostate cancer, the OR and 95% confidence interval (Cl) was 0.53 (0.31-0.90). SEPP1 rs3797310 CT+TT genotype compared to those with CC genotype had a marginally significantly lower OR of PC. The low levels of plasma selenium and the high urinary total arsenic concentrations had the high OR of prostate cancer in a significant dose-response manner, and SEPP1 rs3797310 genotype modified this joint association.Keywords: prostate cancer, plasma selenium concentration, urinary total arsenic concentrations, glutathione peroxidase, selenoprotein P, selenoprotein 15, gene polymorphism
Procedia PDF Downloads 26858 Avoidance of Brittle Fracture in Bridge Bearings: Brittle Fracture Tests and Initial Crack Size
Authors: Natalie Hoyer
Abstract:
Bridges in both roadway and railway systems depend on bearings to ensure extended service life and functionality. These bearings enable proper load distribution from the superstructure to the substructure while permitting controlled movement of the superstructure. The design of bridge bearings, according to Eurocode DIN EN 1337 and the relevant sections of DIN EN 1993, increasingly requires the use of thick plates, especially for long-span bridges. However, these plate thicknesses exceed the limits specified in the national appendix of DIN EN 1993-2. Furthermore, compliance with DIN EN 1993-1-10 regulations regarding material toughness and through-thickness properties necessitates further modifications. Consequently, these standards cannot be directly applied to the selection of bearing materials without supplementary guidance and design rules. In this context, a recommendation was developed in 2011 to regulate the selection of appropriate steel grades for bearing components. Prior to the initiation of the research project underlying this contribution, this recommendation had only been available as a technical bulletin. Since July 2023, it has been integrated into guideline 804 of the German railway. However, recent findings indicate that certain bridge-bearing components are exposed to high fatigue loads, which necessitate consideration in structural design, material selection, and calculations. Therefore, the German Centre for Rail Traffic Research called a research project with the objective of defining a proposal to expand the current standards in order to implement a sufficient choice of steel material for bridge bearings to avoid brittle fracture, even for thick plates and components subjected to specific fatigue loads. The results obtained from theoretical considerations, such as finite element simulations and analytical calculations, are validated through large-scale component tests. Additionally, experimental observations are used to calibrate the calculation models and modify the input parameters of the design concept. Within the large-scale component tests, a brittle failure is artificially induced in a bearing component. For this purpose, an artificially generated initial defect is introduced at the previously defined hotspot into the specimen using spark erosion. Then, a dynamic load is applied until the crack initiation process occurs to achieve realistic conditions in the form of a sharp notch similar to a fatigue crack. This initiation process continues until the crack length reaches a predetermined size. Afterward, the actual test begins, which requires cooling the specimen with liquid nitrogen until a temperature is reached where brittle fracture failure is expected. In the next step, the component is subjected to a quasi-static tensile test until failure occurs in the form of a brittle failure. The proposed paper will present the latest research findings, including the results of the conducted component tests and the derived definition of the initial crack size in bridge bearings.Keywords: bridge bearings, brittle fracture, fatigue, initial crack size, large-scale tests
Procedia PDF Downloads 4457 Effect of Salinity and Heavy Metal Toxicity on Gene Expression, and Morphological Characteristics in Stevia rebaudiana Plants
Authors: Umara Nissar Rafiqi, Irum Gul, Nazima Nasrullah, Monica Saifi, Malik Z. Abdin
Abstract:
Background: Stevia rebaudiana, a member of Asteraceae family is an important medicinal plant and produces a commercially used non-caloric natural sweetener, which is also an alternate herbal cure for diabetes. Steviol glycosides are the main sweetening compounds present in these plants. Secondary metabolites are crucial to the adaption of plants to the environment and its overcoming stress conditions. In agricultural procedures, the abiotic stresses like salinity, high metal toxicity and drought, in particular, are responsible for the majority of the reduction that differentiates yield potential from harvestable yield. Salt stress and heavy metal toxicity lead to increased production of reactive oxygen species (ROS). To avoid oxidative damage due to ROS and osmotic stress, plants have a system of anti-oxidant enzymes along with several stress induced enzymes. This helps in scavenging the ROS and relieve the osmotic stress in different cell compartments. However, whether stress induced toxicity modulates the activity of these enzymes in Stevia rebaudiana is poorly understood. Aim: The present study focussed on the effect of salinity, heavy metal toxicity (lead and mercury) on physiological traits and transcriptional profiling of Stevia rebaudiana. Method: Stevia rebaudiana plants were collected from the Central Institute of Medicinal and Aromatic plants (CIMAP), Patnagar, India and maintained under controlled conditions in a greenhouse at Hamdard University, Delhi, India. The plants were subjected to different concentrations of salt (0, 25, 50 and 75 mM respectively) and heavy metals, lead and mercury (0, 100, 200 and 300 µM respectively). The physiological traits such as shoot length, root numbers, leaf growth were evaluated. The samples were collected at different developmental stages and analysed for transcription profiling by RT-PCR. Transcriptional studies in stevia rebaudiana involves important antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), cytochrome P450 monooxygenase (CYP) and stress induced aquaporin (AQU), auxin repressed protein (ARP-1), Ndhc gene. The data was analysed using GraphPad Prism and expressed as mean ± SD. Result: Low salinity and lower metal toxicity did not affect the fresh weight of the plant. However, this was substantially decreased by 55% at high salinity and heavy metal treatment. With increasing salinity and heavy metal toxicity, the values of all studied physiological traits were significantly decreased. Chlorosis in treated plants was also observed which could be due to changes in Fe:Zn ratio. At low concentrations (upto 25 mM) of NaCl and heavy metals, we did not observe any significant difference in the gene expressions of treated plants compared to control plants. Interestingly, at high salt concentration and high metal toxicity, a significant increase in the expression profile of stress induced genes was observed in treated plants compared to control (p < 0.005). Conclusion: Stevia rebaudiana is tolerant to lower salt and heavy metal concentration. This study also suggests that with the increase in concentrations of salt and heavy metals, harvest yield of S. rebaudiana was hampered.Keywords: Stevia rebaudiana, natural sweetener, salinity, heavy metal toxicity
Procedia PDF Downloads 19656 Genomic and Proteomic Variability in Glycine Max Genotypes in Response to Salt Stress
Authors: Faheema Khan
Abstract:
To investigate the ability of sensitive and tolerant genotype of Glycine max to adapt to a saline environment in a field, we examined the growth performance, water relation and activities of antioxidant enzymes in relation to photosynthetic rate, chlorophyll a fluorescence, photosynthetic pigment concentration, protein and proline in plants exposed to salt stress. Ten soybean genotypes (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712) were selected and grown hydroponically. After 3 days of proper germination, the seedlings were transferred to Hoagland’s solution (Hoagland and Arnon 1950). The growth chamber was maintained at a photosynthetic photon flux density of 430 μmol m−2 s−1, 14 h of light, 10 h of dark and a relative humidity of 60%. The nutrient solution was bubbled with sterile air and changed on alternate days. Ten-day-old seedlings were given seven levels of salt in the form of NaCl viz., T1 = 0 mM NaCl, T2=25 mM NaCl, T3=50 mM NaCl, T4=75 mM NaCl, T5=100 mM NaCl, T6=125 mM NaCl, T7=150 mM NaCl. The investigation showed that genotype Pusa-24, PK-416 and Pusa-20 appeared to be the most salt-sensitive. genotypes as inferred from their significantly reduced length, fresh weight and dry weight in response to the NaCl exposure. Pusa-37 appeared to be the most tolerant genotype since no significant effect of NaCl treatment on growth was found. We observed a greater decline in the photosynthetic variables like photosynthetic rate, chlorophyll fluorescence and chlorophyll content, in salt-sensitive (Pusa-24) genotype than in salt-tolerant Pusa-37 under high salinity. Numerous primers were verified on ten soybean genotypes obtained from Operon technologies among which 30 RAPD primers shown high polymorphism and genetic variation. The Jaccard’s similarity coefficient values for each pairwise comparison between cultivars were calculated and similarity coefficient matrix was constructed. The closer varieties in the cluster behaved similar in their response to salinity tolerance. Intra-clustering within the two clusters precisely grouped the 10 genotypes in sub-cluster as expected from their physiological findings.Salt tolerant genotype Pusa-37, was further analysed by 2-Dimensional gel electrophoresis to analyse the differential expression of proteins at high salt stress. In the Present study, 173 protein spots were identified. Of these, 40 proteins responsive to salinity were either up- or down-regulated in Pusa-37. Proteomic analysis in salt-tolerant genotype (Pusa-37) led to the detection of proteins involved in a variety of biological processes, such as protein synthesis (12 %), redox regulation (19 %), primary and secondary metabolism (25 %), or disease- and defence-related processes (32 %). In conclusion, the soybean plants in our study responded to salt stress by changing their protein expression pattern. The photosynthetic, biochemical and molecular study showed that there is variability in salt tolerance behaviour in soybean genotypes. Pusa-24 is the salt-sensitive and Pusa-37 is the salt-tolerant genotype. Moreover this study gives new insights into the salt-stress response in soybean and demonstrates the power of genomic and proteomic approach in plant biology studies which finally could help us in identifying the possible regulatory switches (gene/s) controlling the salt tolerant genotype of the crop plants and their possible role in defence mechanism.Keywords: glycine max, salt stress, RAPD, genomic and proteomic variability
Procedia PDF Downloads 42355 Tensile Behaviours of Sansevieria Ehrenbergii Fiber Reinforced Polyester Composites with Water Absorption Time
Authors: T. P. Sathishkumar, P. Navaneethakrishnan
Abstract:
The research work investigates the variation of tensile properties for the sansevieria ehrenbergii fiber (SEF) and SEF reinforced polyester composites respect to various water absorption time. The experiments were conducted according to ATSM D3379-75 and ASTM D570 standards. The percentage of water absorption for composite specimens was measured according to ASTM D570 standard. The fiber of SE was cut in to 30 mm length for preparation of the composites. The simple hand lay-up method followed by compression moulding process adopted to prepare the randomly oriented SEF reinforced polyester composites at constant fiber weight fraction of 40%. The surface treatment was done on the SEFs with various chemicals such as NaOH, KMnO4, Benzoyl Peroxide, Benzoyl Chloride and Stearic Acid before preparing the composites. NaOH was used for pre-treatment of all other chemical treatments. The morphology of the tensile fractured specimens studied using the Scanning Electron Microscopic. The tensile strength of the SEF and SEF reinforced polymer composites were carried out with various water absorption time such as 4, 8, 12, 16, 20 and 24 hours respectively. The result shows that the tensile strength was drop off with increase in water absorption time for all composites. The highest tensile property of raw fiber was found due to lowest moistures content. Also the chemical bond between the cellulose and cementic materials such as lignin and wax was highest due to lowest moisture content. Tensile load was lowest and elongation was highest for the water absorbed fibers at various water absorption time ranges. During this process, the fiber cellulose inhales the water and expands the primary and secondary fibers walls. This increases the moisture content in the fibers. Ultimately this increases the hydrogen cation and the hydroxide anion from the water. In tensile testing, the water absorbed fibers shows highest elongation by stretching of expanded cellulose walls and the bonding strength between the fiber cellulose is low. The load carrying capability was stable at 20 hours of water absorption time. This could be directly affecting the interfacial bonding between the fiber/matrix and composite strength. The chemically treated fibers carry higher load and lower elongation which is due to removal of lignin, hemicellulose and wax content. The water time absorption decreases the tensile strength of the composites. The chemically SEF reinforced composites shows highest tensile strength compared to untreated SEF reinforced composites. This was due to highest bonding area between the fiber/matrix. This was proven in the morphology at the fracture zone of the composites. The intra-fiber debonding was occurred by water capsulation in the fiber cellulose. Among all, the tensile strength was found to be highest for KMnO4 treated SEF reinforced composite compared to other composites. This was due to better interfacial bonding between the fiber-matrix compared to other treated fiber composites. The percentage of water absorption of composites increased with time of water absorption. The percentage weight gain of chemically treated SEF composites at 4 hours to zero water absorption are 9, 9, 10, 10.8 and 9.5 for NaOH, BP, BC, KMnO4 and SA respectively. The percentage weight gain of chemically treated SEF composites at 24 hours to zero water absorption 5.2, 7.3, 12.5, 16.7 and 13.5 for NaOH, BP, BC, KMnO4 and SA respectively. Hence the lowest weight gain was found for KMnO4 treated SEF composites by highest percentage with lowest water uptake. However the chemically treated SEF reinforced composites is possible materials for automotive application like body panels, bumpers and interior parts, and household application like tables and racks etc.Keywords: fibres, polymer-matrix composites (PMCs), mechanical properties, scanning electron microscopy (SEM)
Procedia PDF Downloads 41054 Improved Morphology in Sequential Deposition of the Inverted Type Planar Heterojunction Solar Cells Using Cheap Additive (DI-H₂O)
Authors: Asmat Nawaz, Ceylan Zafer, Ali K. Erdinc, Kaiying Wang, M. Nadeem Akram
Abstract:
Hybrid halide Perovskites with the general formula ABX₃, where X = Cl, Br or I, are considered as an ideal candidates for the preparation of photovoltaic devices. The most commonly and successfully used hybrid halide perovskite for photovoltaic applications is CH₃NH₃PbI₃ and its analogue prepared from lead chloride, commonly symbolized as CH₃NH₃PbI₃_ₓClₓ. Some researcher groups are using lead free (Sn replaces Pb) and mixed halide perovskites for the fabrication of the devices. Both mesoporous and planar structures have been developed. By Comparing mesoporous structure in which the perovskite materials infiltrate into mesoporous metal oxide scaffold, the planar architecture is much simpler and easy for device fabrication. In a typical perovskite solar cell, a perovskite absorber layer is sandwiched between the hole and electron transport. Upon the irradiation, carriers are created in the absorber layer that can travel through hole and electron transport layers and the interface in between. We fabricated inverted planar heterojunction structure ITO/PEDOT/ Perovskite/PCBM/Al, based solar cell via two-step spin coating method. This is also called Sequential deposition method. A small amount of cheap additive H₂O was added into PbI₂/DMF to make a homogeneous solution. We prepared four different solution such as (W/O H₂O, 1% H₂O, 2% H₂O, 3% H₂O). After preparing, the whole night stirring at 60℃ is essential for the homogenous precursor solutions. We observed that the solution with 1% H₂O was much more homogenous at room temperature as compared to others. The solution with 3% H₂O was precipitated at once at room temperature. The four different films of PbI₂ were formed on PEDOT substrates by spin coating and after that immediately (before drying the PbI₂) the substrates were immersed in the methyl ammonium iodide solution (prepared in isopropanol) for the completion of the desired perovskite film. After getting desired films, rinse the substrates with isopropanol to remove the excess amount of methyl ammonium iodide and finally dried it on hot plate only for 1-2 minutes. In this study, we added H₂O in the PbI₂/DMF precursor solution. The concept of additive is widely used in the bulk- heterojunction solar cells to manipulate the surface morphology, leading to the enhancement of the photovoltaic performance. There are two most important parameters for the selection of additives. (a) Higher boiling point w.r.t host material (b) good interaction with the precursor materials. We observed that the morphology of the films was improved and we achieved a denser, uniform with less cavities and almost full surface coverage films but only using precursor solution having 1% H₂O. Therefore, we fabricated the complete perovskite solar cell by sequential deposition technique with precursor solution having 1% H₂O. We concluded that with the addition of additives in the precursor solutions one can easily be manipulate the morphology of the perovskite film. In the sequential deposition method, thickness of perovskite film is in µm and the charge diffusion length of PbI₂ is in nm. Therefore, by controlling the thickness using other deposition methods for the fabrication of solar cells, we can achieve the better efficiency.Keywords: methylammonium lead iodide, perovskite solar cell, precursor composition, sequential deposition
Procedia PDF Downloads 24653 The Analysis of Noise Harmfulness in Public Utility Facilities
Authors: Monika Sobolewska, Aleksandra Majchrzak, Bartlomiej Chojnacki, Katarzyna Baruch, Adam Pilch
Abstract:
The main purpose of the study is to perform the measurement and analysis of noise harmfulness in public utility facilities. The World Health Organization reports that the number of people suffering from hearing impairment is constantly increasing. The most alarming is the number of young people occurring in the statistics. The majority of scientific research in the field of hearing protection and noise prevention concern industrial and road traffic noise as the source of health problems. As the result, corresponding standards and regulations defining noise level limits are enforced. However, there is another field uncovered by profound research – leisure time. Public utility facilities such as clubs, shopping malls, sport facilities or concert halls – they all generate high-level noise, being out of proper juridical control. Among European Union Member States, the highest legislative act concerning noise prevention is the Environmental Noise Directive 2002/49/EC. However, it omits the problem discussed above and even for traffic, railway and aircraft noise it does not set limits or target values, leaving these issues to the discretion of the Member State authorities. Without explicit and uniform regulations, noise level control at places designed for relaxation and entertainment is often in the responsibility of people having little knowledge of hearing protection, unaware of the risk the noise pollution poses. Exposure to high sound levels in clubs, cinemas, at concerts and sports events may result in a progressive hearing loss, especially among young people, being the main target group of such facilities and events. The first step to change this situation and to raise the general awareness is to perform reliable measurements the results of which will emphasize the significance of the problem. This project presents the results of more than hundred measurements, performed in most types of public utility facilities in Poland. As the most suitable measuring instrument for such a research, personal noise dosimeters were used to collect the data. Each measurement is presented in the form of numerical results including equivalent and peak sound pressure levels and a detailed description considering the type of the sound source, size and furnishing of the room and the subjective sound level evaluation. In the absence of a straight reference point for the interpretation of the data, the limits specified in EU Directive 2003/10/EC were used for comparison. They set the maximum sound level values for workers in relation to their working time length. The analysis of the examined problem leads to the conclusion that during leisure time, people are exposed to noise levels significantly exceeding safe values. As the hearing problems are gradually progressing, most people underplay the problem, ignoring the first symptoms. Therefore, an effort has to be made to specify the noise regulations for public utility facilities. Without any action, in the foreseeable future the majority of Europeans will be dealing with serious hearing damage, which will have a negative impact on the whole societies.Keywords: hearing protection, noise level limits, noise prevention, noise regulations, public utility facilities
Procedia PDF Downloads 22352 Backward-Facing Step Measurements at Different Reynolds Numbers Using Acoustic Doppler Velocimetry
Authors: Maria Amelia V. C. Araujo, Billy J. Araujo, Brian Greenwood
Abstract:
The flow over a backward-facing step is characterized by the presence of flow separation, recirculation and reattachment, for a simple geometry. This type of fluid behaviour takes place in many practical engineering applications, hence the reason for being investigated. Historically, fluid flows over a backward-facing step have been examined in many experiments using a variety of measuring techniques such as laser Doppler velocimetry (LDV), hot-wire anemometry, particle image velocimetry or hot-film sensors. However, some of these techniques cannot conveniently be used in separated flows or are too complicated and expensive. In this work, the applicability of the acoustic Doppler velocimetry (ADV) technique is investigated to such type of flows, at various Reynolds numbers corresponding to different flow regimes. The use of this measuring technique in separated flows is very difficult to find in literature. Besides, most of the situations where the Reynolds number effect is evaluated in separated flows are in numerical modelling. The ADV technique has the advantage in providing nearly non-invasive measurements, which is important in resolving turbulence. The ADV Nortek Vectrino+ was used to characterize the flow, in a recirculating laboratory flume, at various Reynolds Numbers (Reh = 3738, 5452, 7908 and 17388) based on the step height (h), in order to capture different flow regimes, and the results compared to those obtained using other measuring techniques. To compare results with other researchers, the step height, expansion ratio and the positions upstream and downstream the step were reproduced. The post-processing of the AVD records was performed using a customized numerical code, which implements several filtering techniques. Subsequently, the Vectrino noise level was evaluated by computing the power spectral density for the stream-wise horizontal velocity component. The normalized mean stream-wise velocity profiles, skin-friction coefficients and reattachment lengths were obtained for each Reh. Turbulent kinetic energy, Reynolds shear stresses and normal Reynolds stresses were determined for Reh = 7908. An uncertainty analysis was carried out, for the measured variables, using the moving block bootstrap technique. Low noise levels were obtained after implementing the post-processing techniques, showing their effectiveness. Besides, the errors obtained in the uncertainty analysis were relatively low, in general. For Reh = 7908, the normalized mean stream-wise velocity and turbulence profiles were compared directly with those acquired by other researchers using the LDV technique and a good agreement was found. The ADV technique proved to be able to characterize the flow properly over a backward-facing step, although additional caution should be taken for measurements very close to the bottom. The ADV measurements showed reliable results regarding: a) the stream-wise velocity profiles; b) the turbulent shear stress; c) the reattachment length; d) the identification of the transition from transitional to turbulent flows. Despite being a relatively inexpensive technique, acoustic Doppler velocimetry can be used with confidence in separated flows and thus very useful for numerical model validation. However, it is very important to perform adequate post-processing of the acquired data, to obtain low noise levels, thus decreasing the uncertainty.Keywords: ADV, experimental data, multiple Reynolds number, post-processing
Procedia PDF Downloads 14851 Temporal and Spacial Adaptation Strategies in Aerodynamic Simulation of Bluff Bodies Using Vortex Particle Methods
Authors: Dario Milani, Guido Morgenthal
Abstract:
Fluid dynamic computation of wind caused forces on bluff bodies e.g light flexible civil structures or high incidence of ground approaching airplane wings, is one of the major criteria governing their design. For such structures a significant dynamic response may result, requiring the usage of small scale devices as guide-vanes in bridge design to control these effects. The focus of this paper is on the numerical simulation of the bluff body problem involving multiscale phenomena induced by small scale devices. One of the solution methods for the CFD simulation that is relatively successful in this class of applications is the Vortex Particle Method (VPM). The method is based on a grid free Lagrangian formulation of the Navier-Stokes equations, where the velocity field is modeled by particles representing local vorticity. These vortices are being convected due to the free stream velocity as well as diffused. This representation yields the main advantages of low numerical diffusion, compact discretization as the vorticity is strongly localized, implicitly accounting for the free-space boundary conditions typical for this class of FSI problems, and a natural representation of the vortex creation process inherent in bluff body flows. When the particle resolution reaches the Kolmogorov dissipation length, the method becomes a Direct Numerical Simulation (DNS). However, it is crucial to note that any solution method aims at balancing the computational cost against the accuracy achievable. In the classical VPM method, if the fluid domain is discretized by Np particles, the computational cost is O(Np2). For the coupled FSI problem of interest, for example large structures such as long-span bridges, the aerodynamic behavior may be influenced or even dominated by small structural details such as barriers, handrails or fairings. For such geometrically complex and dimensionally large structures, resolving the complete domain with the conventional VPM particle discretization might become prohibitively expensive to compute even for moderate numbers of particles. It is possible to reduce this cost either by reducing the number of particles or by controlling its local distribution. It is also possible to increase the accuracy of the solution without increasing substantially the global computational cost by computing a correction of the particle-particle interaction in some regions of interest. In this paper different strategies are presented in order to extend the conventional VPM method to reduce the computational cost whilst resolving the required details of the flow. The methods include temporal sub stepping to increase the accuracy of the particles convection in certain regions as well as dynamically re-discretizing the particle map to locally control the global and the local amount of particles. Finally, these methods will be applied on a test case and the improvements in the efficiency as well as the accuracy of the proposed extension to the method are presented. The important benefits in terms of accuracy and computational cost of the combination of these methods will be thus presented as long as their relevant applications.Keywords: adaptation, fluid dynamic, remeshing, substepping, vortex particle method
Procedia PDF Downloads 26250 Digital Holographic Interferometric Microscopy for the Testing of Micro-Optics
Authors: Varun Kumar, Chandra Shakher
Abstract:
Micro-optical components such as microlenses and microlens array have numerous engineering and industrial applications for collimation of laser diodes, imaging devices for sensor system (CCD/CMOS, document copier machines etc.), for making beam homogeneous for high power lasers, a critical component in Shack-Hartmann sensor, fiber optic coupling and optical switching in communication technology. Also micro-optical components have become an alternative for applications where miniaturization, reduction of alignment and packaging cost are necessary. The compliance with high-quality standards in the manufacturing of micro-optical components is a precondition to be compatible on worldwide markets. Therefore, high demands are put on quality assurance. For quality assurance of these lenses, an economical measurement technique is needed. For cost and time reason, technique should be fast, simple (for production reason), and robust with high resolution. The technique should provide non contact, non-invasive and full field information about the shape of micro- optical component under test. The interferometric techniques are noncontact type and non invasive and provide full field information about the shape of the optical components. The conventional interferometric technique such as holographic interferometry or Mach-Zehnder interferometry is available for characterization of micro-lenses. However, these techniques need more experimental efforts and are also time consuming. Digital holography (DH) overcomes the above described problems. Digital holographic microscopy (DHM) allows one to extract both the amplitude and phase information of a wavefront transmitted through the transparent object (microlens or microlens array) from a single recorded digital hologram by using numerical methods. Also one can reconstruct the complex object wavefront at different depths due to numerical reconstruction. Digital holography provides axial resolution in nanometer range while lateral resolution is limited by diffraction and the size of the sensor. In this paper, Mach-Zehnder based digital holographic interferometric microscope (DHIM) system is used for the testing of transparent microlenses. The advantage of using the DHIM is that the distortions due to aberrations in the optical system are avoided by the interferometric comparison of reconstructed phase with and without the object (microlens array). In the experiment, first a digital hologram is recorded in the absence of sample (microlens array) as a reference hologram. Second hologram is recorded in the presence of microlens array. The presence of transparent microlens array will induce a phase change in the transmitted laser light. Complex amplitude of object wavefront in presence and absence of microlens array is reconstructed by using Fresnel reconstruction method. From the reconstructed complex amplitude, one can evaluate the phase of object wave in presence and absence of microlens array. Phase difference between the two states of object wave will provide the information about the optical path length change due to the shape of the microlens. By the knowledge of the value of the refractive index of microlens array material and air, the surface profile of microlens array is evaluated. The Sag of microlens and radius of curvature of microlens are evaluated and reported. The sag of microlens agrees well within the experimental limit as provided in the specification by the manufacturer.Keywords: micro-optics, microlens array, phase map, digital holographic interferometric microscopy
Procedia PDF Downloads 49849 Study on Aerosol Behavior in Piping Assembly under Varying Flow Conditions
Authors: Anubhav Kumar Dwivedi, Arshad Khan, S. N. Tripathi, Manish Joshi, Gaurav Mishra, Dinesh Nath, Naveen Tiwari, B. K. Sapra
Abstract:
In a nuclear reactor accident scenario, a large number of fission products may release to the piping system of the primary heat transport. The released fission products, mostly in the form of the aerosol, get deposited on the inner surface of the piping system mainly due to gravitational settling and thermophoretic deposition. The removal processes in the complex piping system are controlled to a large extent by the thermal-hydraulic conditions like temperature, pressure, and flow rates. These parameters generally vary with time and therefore must be carefully monitored to predict the aerosol behavior in the piping system. The removal process of aerosol depends on the size of particles that determines how many particles get deposit or travel across the bends and reach to the other end of the piping system. The released aerosol gets deposited onto the inner surface of the piping system by various mechanisms like gravitational settling, Brownian diffusion, thermophoretic deposition, and by other deposition mechanisms. To quantify the correct estimate of deposition, the identification and understanding of the aforementioned deposition mechanisms are of great importance. These mechanisms are significantly affected by different flow and thermodynamic conditions. Thermophoresis also plays a significant role in particle deposition. In the present study, a series of experiments were performed in the piping system of the National Aerosol Test Facility (NATF), BARC using metal aerosols (zinc) in dry environments to study the spatial distribution of particles mass and number concentration, and their depletion due to various removal mechanisms in the piping system. The experiments were performed at two different carrier gas flow rates. The commercial CFD software FLUENT is used to determine the distribution of temperature, velocity, pressure, and turbulence quantities in the piping system. In addition to the in-built models for turbulence, heat transfer and flow in the commercial CFD code (FLUENT), a new sub-model PBM (population balance model) is used to describe the coagulation process and to compute the number concentration along with the size distribution at different sections of the piping. In the sub-model coagulation kernels are incorporated through user-defined function (UDF). The experimental results are compared with the CFD modeled results. It is found that most of the Zn particles (more than 35 %) deposit near the inlet of the plenum chamber and a low deposition is obtained in piping sections. The MMAD decreases along the length of the test assembly, which shows that large particles get deposited or removed in the course of flow, and only fine particles travel to the end of the piping system. The effect of a bend is also observed, and it is found that the relative loss in mass concentration at bends is more in case of a high flow rate. The simulation results show that the thermophoresis and depositional effects are more dominating for the small and larger sizes as compared to the intermediate particles size. Both SEM and XRD analysis of the collected samples show the samples are highly agglomerated non-spherical and composed mainly of ZnO. The coupled model framed in this work could be used as an important tool for predicting size distribution and concentration of some other aerosol released during a reactor accident scenario.Keywords: aerosol, CFD, deposition, coagulation
Procedia PDF Downloads 14448 Ragging and Sludging Measurement in Membrane Bioreactors
Authors: Pompilia Buzatu, Hazim Qiblawey, Albert Odai, Jana Jamaleddin, Mustafa Nasser, Simon J. Judd
Abstract:
Membrane bioreactor (MBR) technology is challenged by the tendency for the membrane permeability to decrease due to ‘clogging’. Clogging includes ‘sludging’, the filling of the membrane channels with sludge solids, and ‘ragging’, the aggregation of short filaments to form long rag-like particles. Both sludging and ragging demand manual intervention to clear out the solids, which is time-consuming, labour-intensive and potentially damaging to the membranes. These factors impact on costs more significantly than membrane surface fouling which, unlike clogging, is largely mitigated by the chemical clean. However, practical evaluation of MBR clogging has thus far been limited. This paper presents the results of recent work attempting to quantify sludging and clogging based on simple bench-scale tests. Results from a novel ragging simulation trial indicated that rags can be formed within 24-36 hours from dispersed < 5 mm-long filaments at concentrations of 5-10 mg/L under gently agitated conditions. Rag formation occurred for both a cotton wool standard and samples taken from an operating municipal MBR, with between 15% and 75% of the added fibrous material forming a single rag. The extent of rag formation depended both on the material type or origin – lint from laundering operations forming zero rags – and the filament length. Sludging rates were quantified using a bespoke parallel-channel test cell representing the membrane channels of an immersed flat sheet MBR. Sludge samples were provided from two local MBRs, one treating municipal and the other industrial effluent. Bulk sludge properties measured comprised mixed liquor suspended solids (MLSS) concentration, capillary suction time (CST), particle size, soluble COD (sCOD) and rheology (apparent viscosity μₐ vs shear rate γ). The fouling and sludging propensity of the sludge was determined using the test cell, ‘fouling’ being quantified as the pressure incline rate against flux via the flux step test (for which clogging was absent) and sludging by photographing the channel and processing the image to determine the ratio of the clogged to unclogged regions. A substantial difference in rheological and fouling behaviour was evident between the two sludge sources, the industrial sludge having a higher viscosity but less shear-thinning than the municipal. Fouling, as manifested by the pressure increase Δp/Δt, as a function of flux from classic flux-step experiments (where no clogging was evident), was more rapid for the industrial sludge. Across all samples of both sludge origins the expected trend of increased fouling propensity with increased CST and sCOD was demonstrated, whereas no correlation was observed between clogging rate and these parameters. The relative contribution of fouling and clogging was appraised by adjusting the clogging propensity via increasing the MLSS both with and without a commensurate increase in the COD. Results indicated that whereas for the municipal sludge the fouling propensity was affected by the increased sCOD, there was no associated increased in the sludging propensity (or cake formation). The clogging rate actually decreased on increasing the MLSS. Against this, for the industrial sludge the clogging rate dramatically increased with solids concentration despite a decrease in the soluble COD. From this was surmised that sludging did not relate to fouling.Keywords: clogging, membrane bioreactors, ragging, sludge
Procedia PDF Downloads 17847 Genome-Scale Analysis of Streptomyces Caatingaensis CMAA 1322 Metabolism, a New Abiotic Stress-Tolerant Actinomycete
Authors: Suikinai Nobre Santos, Ranko Gacesa, Paul F. Long, Itamar Soares de Melo
Abstract:
Extremophilic microorganism are adapted to biotopes combining several stress factors (temperature, pressure, radiation, salinity and pH), which indicate the richness valuable resource for the exploitation of novel biotechnological processes and constitute unique models for investigations their biomolecules (1, 2). The above information encourages us investigate bioprospecting synthesized compounds by a noval actinomycete, designated thermotolerant Streptomyces caatingaensis CMAA 1322, isolated from sample soil tropical dry forest (Caatinga) in the Brazilian semiarid region (3-17°S and 35-45°W). This set of constrating physical and climatic factores provide the unique conditions and a diversity of well adapted species, interesting site for biotechnological purposes. Preliminary studies have shown the great potential in the production of cytotoxic, pesticidal and antimicrobial molecules (3). Thus, to extend knowledge of the genes clusters responsible for producing biosynthetic pathways of natural products in strain CMAA1322, whole-genome shotgun (WGS) DNA sequencing was performed using paired-end long sequencing with PacBio RS (Pacific Biosciences). Genomic DNA was extracted from a pure culture grown overnight on LB medium using the PureLink genomic DNA kit (Life Technologies). An approximately 3- to 20-kb-insert PacBio library was constructed and sequenced on an 8 single-molecule real-time (SMRT) cell, yielding 116,269 reads (average length, 7,446 bp), which were allocated into 18 contigs, with 142.11x coverage and N50 value of 20.548 bp (BioProject number PRJNA288757). The assembled data were analyzed by Rapid Annotations using Subsystems Technology (RAST) (4) the genome size was found to be 7.055.077 bp, comprising 6167 open reading frames (ORFs) and 413 subsystems. The G+C content was estimated to be 72 mol%. The closest-neighbors tool, available in RAST through functional comparison of the genome, revealed that strain CMAA1322 is more closely related to Streptomyces hygroscopicus ATCC 53653 (similarity score value, 537), S. violaceusniger Tu 4113 (score value, 483), S. avermitilis MA-4680 (score value, 475), S. albus J1074 (score value, 447). The Streptomyces sp. CMAA1322 genome contains 98 tRNA genes and 135 genes copies related to stress response, mainly osmotic stress (14), heat shock (16), oxidative stress (49). Functional annotation by antiSMASH version 3.0 (5) identified 41 clusters for secondary metabolites (including two clusters for lanthipeptides, ten clusters for nonribosomal peptide synthetases [NRPS], three clusters for siderophores, fourteen for polyketide synthetase [PKS], six clusters encoding a terpene, two clusters encoding a bacteriocin, and one cluster encoding a phenazine). Our work provide in comparative analyse of genome and extract produced (data no published) by lineage CMAA1322, revealing the potential of microorganisms accessed from extreme environments as Caatinga” to produce a wide range of biotechnological relevant compounds.Keywords: caatinga, streptomyces, environmental stresses, biosynthetic pathways
Procedia PDF Downloads 24246 Nanoscale Photo-Orientation of Azo-Dyes in Glassy Environments Using Polarized Optical Near-Field
Authors: S. S. Kharintsev, E. A. Chernykh, S. K. Saikin, A. I. Fishman, S. G. Kazarian
Abstract:
Recent advances in improving information storage performance are inseparably linked with circumvention of fundamental constraints such as the supermagnetic limit in heat assisted magnetic recording, charge loss tolerance in solid-state memory and the Abbe’s diffraction limit in optical storage. A substantial breakthrough in the development of nonvolatile storage devices with dimensional scaling has been achieved due to phase-change chalcogenide memory, which nowadays, meets the market needs to the greatest advantage. A further progress is aimed at the development of versatile nonvolatile high-speed memory combining potentials of random access memory and archive storage. The well-established properties of light at the nanoscale empower us to use them for recording optical information with ultrahigh density scaled down to a single molecule, which is the size of a pit. Indeed, diffraction-limited optics is able to record as much information as ~1 Gb/in2. Nonlinear optical effects, for example, two-photon fluorescence recording, allows one to decrease the extent of the pit even more, which results in the recording density up to ~100 Gb/in2. Going beyond the diffraction limit, due to the sub-wavelength confinement of light, pushes the pit size down to a single chromophore, which is, on average, of ~1 nm in length. Thus, the memory capacity can be increased up to the theoretical limit of 1 Pb/in2. Moreover, the field confinement provides faster recording and readout operations due to the enhanced light-matter interaction. This, in turn, leads to the miniaturization of optical devices and the decrease of energy supply down to ~1 μW/cm². Intrinsic features of light such as multimode, mixed polarization and angular momentum in addition to the underlying optical and holographic tools for writing/reading, enriches the storage and encryption of optical information. In particular, the finite extent of the near-field penetration, falling into a range of 50-100 nm, gives the possibility to perform 3D volume (layer-to-layer) recording/readout of optical information. In this study, we demonstrate a comprehensive evidence of isotropic-to-homeotropic phase transition of the azobenzene-functionalized polymer thin film exposed to light and dc electric field using near-field optical microscopy and scanning capacitance microscopy. We unravel a near-field Raman dichroism of a sub-10 nm thick epoxy-based side-chain azo-polymer films with polarization-controlled tip-enhanced Raman scattering. In our study, orientation of azo-chromophores is controlled with a bias voltage gold tip rather than light polarization. Isotropic in-plane and homeotropic out-of-plane arrangement of azo-chromophores in glassy environment can be distinguished with transverse and longitudinal optical near-fields. We demonstrate that both phases are unambiguously visualized by 2D mapping their local dielectric properties with scanning capacity microscopy. The stability of the polar homeotropic phase is strongly sensitive to the thickness of the thin film. We make an analysis of α-transition of the azo-polymer by detecting a temperature-dependent phase jump of an AFM cantilever when passing through the glass temperature. Overall, we anticipate further improvements in optical storage performance, which approaches to a single molecule level.Keywords: optical memory, azo-dye, near-field, tip-enhanced Raman scattering
Procedia PDF Downloads 17745 Signature Bridge Design for the Port of Montreal
Authors: Juan Manuel Macia
Abstract:
The Montreal Port Authority (MPA) wanted to build a new road link via Souligny Avenue to increase the fluidity of goods transported by truck in the Viau Street area of Montreal and to mitigate the current traffic problems on Notre-Dame Street. With the purpose of having a better integration and acceptance of this project with the neighboring residential surroundings, this project needed to include an architectural integration, bringing some artistic components to the bridge design along with some landscaping components. The MPA is required primarily to provide direct truck access to Port of Montreal with a direct connection to the future Assomption Boulevard planned by the City of Montreal and, thus, direct access to Souligny Avenue. The MPA also required other key aspects to be considered for the proposal and development of the project, such as the layout of road and rail configurations, the reconstruction of underground structures, the relocation of power lines, the installation of lighting systems, the traffic signage and communication systems improvement, the construction of new access ramps, the pavement reconstruction and a summary assessment of the structural capacity of an existing service tunnel. The identification of the various possible scenarios began by identifying all the constraints related to the numerous infrastructures located in the area of the future link between the port and the future extension of Souligny Avenue, involving interaction with several disciplines and technical specialties. Several viaduct- and tunnel-type geometries were studied to link the port road to the right-of-way north of Notre-Dame Street and to improve traffic flow at the railway corridor. The proposed design took into account the existing access points to Port of Montreal, the built environment of the MPA site, the provincial and municipal rights-of-way, and the future Notre-Dame Street layout planned by the City of Montreal. These considerations required the installation of an engineering structure with a span of over 60 m to free up a corridor for the future urban fabric of Notre-Dame Street. The best option for crossing this span length was identified by the design and construction of a curved bridge over Notre-Dame Street, which is essentially a structure with a deck formed by a reinforced concrete slab on steel box girders with a single span of 63.5m. The foundation units were defined as pier-cap type abutments on drilled shafts to bedrock with rock sockets, with MSE-type walls at the approaches. The configuration of a single-span curved structure posed significant design and construction challenges, considering the major constraints of the project site, a design for durability approach, and the need to guarantee optimum performance over a 75-year service life in accordance with the client's needs and the recommendations and requirements defined by the standards used for the project. These aspects and the need to include architectural and artistic components in this project made it possible to design, build, and integrate a signature infrastructure project with a sustainable approach, from which the MPA, the commuters, and the city of Montreal and its residents will benefit.Keywords: curved bridge, steel box girder, medium span, simply supported, industrial and urban environment, architectural integration, design for durability
Procedia PDF Downloads 7044 Audience Members' Perspective-Taking Predicts Accurate Identification of Musically Expressed Emotion in a Live Improvised Jazz Performance
Authors: Omer Leshem, Michael F. Schober
Abstract:
This paper introduces a new method for assessing how audience members and performers feel and think during live concerts, and how audience members' recognized and felt emotions are related. Two hypotheses were tested in a live concert setting: (1) that audience members’ cognitive perspective taking ability predicts their accuracy in identifying an emotion that a jazz improviser intended to express during a performance, and (2) that audience members' affective empathy predicts their likelihood of feeling the same emotions as the performer. The aim was to stage a concert with audience members who regularly attend live jazz performances, and to measure their cognitive and affective reactions during the performance as non-intrusively as possible. Pianist and Grammy nominee Andy Milne agreed, without knowing details of the method or hypotheses, to perform a full-length solo improvised concert that would include an ‘unusual’ piece. Jazz fans were recruited through typical advertising for New York City jazz performances. The event was held at the New School’s Glass Box Theater, the home of leading NYC jazz venue ‘The Stone.’ Audience members were charged typical NYC jazz club admission prices; advertisements informed them that anyone who chose to participate in the study would be reimbursed their ticket price after the concert. The concert, held in April 2018, had 30 attendees, 23 of whom participated in the study. Twenty-two minutes into the concert, the performer was handed a paper note with the instruction: ‘Perform a 3-5-minute improvised piece with the intention of conveying sadness.’ (Sadness was chosen based on previous music cognition lab studies, where solo listeners were less likely to select sadness as the musically-expressed emotion accurately from a list of basic emotions, and more likely to misinterpret sadness as tenderness). Then, audience members and the performer were invited to respond to a questionnaire from a first envelope under their seat. Participants used their own words to describe the emotion the performer had intended to express, and then to select the intended emotion from a list. They also reported the emotions they had felt while listening using Izard’s differential emotions scale. The concert then continued as usual. At the end, participants answered demographic questions and Davis’ interpersonal reactivity index (IRI), a 28-item scale designed to assess both cognitive and affective empathy. Hypothesis 1 was supported: audience members with greater cognitive empathy were more likely to accurately identify sadness as the expressed emotion. Moreover, audience members who accurately selected ‘sadness’ reported feeling marginally sadder than people who did not select sadness. Hypotheses 2 was not supported; audience members with greater affective empathy were not more likely to feel the same emotions as the performer. If anything, members with lower cognitive perspective-taking ability had marginally greater emotional overlap with the performer, which makes sense given that these participants were less likely to identify the music as sad, which corresponded with the performer’s actual feelings. Results replicate findings from solo lab studies in a concert setting and demonstrate the viability of exploring empathy and collective cognition in improvised live performance.Keywords: audience, cognition, collective cognition, emotion, empathy, expressed emotion, felt emotion, improvisation, live performance, recognized emotion
Procedia PDF Downloads 13243 Best Practices and Recommendations for CFD Simulation of Hydraulic Spool Valves
Authors: Jérémy Philippe, Lucien Baldas, Batoul Attar, Jean-Charles Mare
Abstract:
The proposed communication deals with the research and development of a rotary direct-drive servo valve for aerospace applications. A key challenge of the project is to downsize the electromagnetic torque motor by reducing the torque required to drive the rotary spool. It is intended to optimize the spool and the sleeve geometries by combining a Computational Fluid Dynamics (CFD) approach with commercial optimization software. The present communication addresses an important phase of the project, which consists firstly of gaining confidence in the simulation results. It is well known that the force needed to pilot a sliding spool valve comes from several physical effects: hydraulic forces, friction and inertia/mass of the moving assembly. Among them, the flow force is usually a major contributor to the steady-state (or Root Mean Square) driving torque. In recent decades, CFD has gradually become a standard simulation tool for studying fluid-structure interactions. However, in the particular case of high-pressure valve design, the authors have experienced that the calculated overall hydraulic force depends on the parameterization and options used to build and run the CFD model. To solve this issue, the authors have selected the standard case of the linear spool valve, which is addressed in detail in numerous scientific references (analytical models, experiments, CFD simulations). The first CFD simulations run by the authors have shown that the evolution of the equivalent discharge coefficient vs. Reynolds number at the metering orifice corresponds well to the values that can be predicted by the classical analytical models. Oppositely, the simulated flow force was found to be quite different from the value calculated analytically. This drove the authors to investigate minutely the influence of the studied domain and the setting of the CFD simulation. It was firstly shown that the flow recirculates in the inlet and outlet channels if their length is not sufficient regarding their hydraulic diameter. The dead volume on the uncontrolled orifice side also plays a significant role. These examples highlight the influence of the geometry of the fluid domain considered. The second action was to investigate the influence of the type of mesh, the turbulence models and near-wall approaches, and the numerical solver and discretization scheme order. Two approaches were used to determine the overall hydraulic force acting on the moving spool. First, the force was deduced from the momentum balance on a control domain delimited by the valve inlet and outlet and the spool walls. Second, the overall hydraulic force was calculated from the integral of pressure and shear forces acting at the boundaries of the fluid domain. This underlined the significant contribution of the viscous forces acting on the spool between the inlet and outlet orifices, which are generally not considered in the literature. This also emphasized the influence of the choices made for the implementation of CFD calculation and results analysis. With the step-by-step process adopted to increase confidence in the CFD simulations, the authors propose a set of best practices and recommendations for the efficient use of CFD to design high-pressure spool valves.Keywords: computational fluid dynamics, hydraulic forces, servovalve, rotary servovalve
Procedia PDF Downloads 4342 Partial Discharge Characteristics of Free- Moving Particles in HVDC-GIS
Authors: Philipp Wenger, Michael Beltle, Stefan Tenbohlen, Uwe Riechert
Abstract:
The integration of renewable energy introduces new challenges to the transmission grid, as the power generation is located far from load centers. The associated necessary long-range power transmission increases the demand for high voltage direct current (HVDC) transmission lines and DC distribution grids. HVDC gas-insulated switchgears (GIS) are considered being a key technology, due to the combination of the DC technology and the long operation experiences of AC-GIS. To ensure long-term reliability of such systems, insulation defects must be detected in an early stage. Operational experience with AC systems has proven evidence, that most failures, which can be attributed to breakdowns of the insulation system, can be detected and identified via partial discharge (PD) measurements beforehand. In AC systems the identification of defects relies on the phase resolved partial discharge pattern (PRPD). Since there is no phase information within DC systems this method cannot be transferred to DC PD diagnostic. Furthermore, the behaviour of e.g. free-moving particles differs significantly at DC: Under the influence of a constant direct electric field, charge carriers can accumulate on particles’ surfaces. As a result, a particle can lift-off, oscillate between the inner conductor and the enclosure or rapidly bounces at just one electrode, which is known as firefly motion. Depending on the motion and the relative position of the particle to the electrodes, broadband electromagnetic PD pulses are emitted, which can be recorded by ultra-high frequency (UHF) measuring methods. PDs are often accompanied by light emissions at the particle’s tip which enables optical detection. This contribution investigates PD characteristics of free moving metallic particles in a commercially available 300 kV SF6-insulated HVDC-GIS. The influences of various defect parameters on the particle motion and the PD characteristic are evaluated experimentally. Several particle geometries, such as cylinder, lamella, spiral and sphere with different length, diameter and weight are determined. The applied DC voltage is increased stepwise from inception voltage up to UDC = ± 400 kV. Different physical detection methods are used simultaneously in a time-synchronized setup. Firstly, the electromagnetic waves emitted by the particle are recorded by an UHF measuring system. Secondly, a photomultiplier tube (PMT) detects light emission with a wavelength in the range of λ = 185…870 nm. Thirdly, a high-speed camera (HSC) tracks the particle’s motion trajectory with high accuracy. Furthermore, an electrically insulated electrode is attached to the grounded enclosure and connected to a current shunt in order to detect low frequency ion currents: The shunt measuring system’s sensitivity is in the range of 10 nA at a measuring bandwidth of bw = DC…1 MHz. Currents of charge carriers, which are generated at the particle’s tip migrate through the gas gap to the electrode and can be recorded by the current shunt. All recorded PD signals are analyzed in order to identify characteristic properties of different particles. This includes e.g. repetition rates and amplitudes of successive pulses, characteristic frequency ranges and detected signal energy of single PD pulses. Concluding, an advanced understanding of underlying physical phenomena particle motion in direct electric field can be derived.Keywords: current shunt, free moving particles, high-speed imaging, HVDC-GIS, UHF
Procedia PDF Downloads 16041 A Longitudinal Exploration into Computer-Mediated Communication Use (CMC) and Relationship Change between 2005-2018
Authors: Laurie Dempsey
Abstract:
Relationships are considered to be beneficial for emotional wellbeing, happiness and physical health. However, they are also complicated: individuals engage in a multitude of complex and volatile relationships during their lifetime, where the change to or ending of these dynamics can be deeply disruptive. As the internet is further integrated into everyday life and relationships are increasingly mediated, Media Studies’ and Sociology’s research interests intersect and converge. This study longitudinally explores how relationship change over time corresponds with the developing UK technological landscape between 2005-2018. Since the early 2000s, the use of computer-mediated communication (CMC) in the UK has dramatically reshaped interaction. Its use has compelled individuals to renegotiate how they consider their relationships: some argue it has allowed for vast networks to be accumulated and strengthened; others contend that it has eradicated the core values and norms associated with communication, damaging relationships. This research collaborated with UK media regulator Ofcom, utilising the longitudinal dataset from their Adult Media Lives study to explore how relationships and CMC use developed over time. This is a unique qualitative dataset covering 2005-2018, where the same 18 participants partook in annual in-home filmed depth interviews. The interviews’ raw video footage was examined year-on-year to consider how the same people changed their reported behaviour and outlooks towards their relationships, and how this coincided with CMC featuring more prominently in their everyday lives. Each interview was transcribed, thematically analysed and coded using NVivo 11 software. This study allowed for a comprehensive exploration into these individuals’ changing relationships over time, as participants grew older, experienced marriages or divorces, conceived and raised children, or lost loved ones. It found that as technology developed between 2005-2018, everyday CMC use was increasingly normalised and incorporated into relationship maintenance. It played a crucial role in altering relationship dynamics, even factoring in the breakdown of several ties. Three key relationships were identified as being shaped by CMC use: parent-child; extended family; and friendships. Over the years there were substantial instances of relationship conflict: for parents renegotiating their dynamic with their child as they tried to both restrict and encourage their child’s technology use; for estranged family members ‘forced’ together in the online sphere; and for friendships compelled to publicly display their relationship on social media, for fear of social exclusion. However, it was also evident that CMC acted as a crucial lifeline for these participants, providing opportunities to strengthen and maintain their bonds via previously unachievable means, both over time and distance. A longitudinal study of this length and nature utilising the same participants does not currently exist, thus provides crucial insight into how and why relationship dynamics alter over time. This unique and topical piece of research draws together Sociology and Media Studies, illustrating how the UK’s changing technological landscape can reshape one of the most basic human compulsions. This collaboration with Ofcom allows for insight that can be utilised in both academia and policymaking alike, making this research relevant and impactful across a range of academic fields and industries.Keywords: computer mediated communication, longitudinal research, personal relationships, qualitative data
Procedia PDF Downloads 12140 Effects of Irrigation Applications during Post-Anthesis Period on Flower Development and Pyrethrin Accumulation in Pyrethrum
Authors: Dilnee D. Suraweera, Tim Groom, Brian Chung, Brendan Bond, Andrew Schipp, Marc E. Nicolas
Abstract:
Pyrethrum (Tanacetum cinerariifolium) is a perennial plant belongs to family Asteraceae. This is cultivated commercially for extraction of natural insecticide pyrethrins, which accumulates in their flower head achenes. Approximately 94% of the pyrethrins are produced within secretory ducts and trichomes of achenes of the mature pyrethrum flower. This is the most widely used botanical insecticide in the world and Australia is the current largest pyrethrum producer in the world. Rainfall in pyrethrum growing regions in Australia during pyrethrum flowering period, in late spring and early summer is significantly less. Due to lack of adequate soil moisture and under elevated temperature conditions during post-anthesis period, resulting in yield reductions. Therefore, understanding of yield responses of pyrethrum to irrigation is important for Pyrethrum as a commercial crop. Irrigation management has been identified as a key area of pyrethrum crop management strategies that could be manipulated to increase yield. Pyrethrum is a comparatively drought tolerant plant and it has some ability to survive in dry conditions due to deep rooting. But in dry areas and in dry seasons, the crop cannot reach to its full yield potential without adequate soil moisture. Therefore, irrigation is essential during the flowering period prevent crop water stress and maximise yield. Irrigation during the water deficit period results in an overall increased rate of water uptake and growth by the plant which is essential to achieve the maximum yield benefits from commercial crops. The effects of irrigation treatments applied at post-anthesis period on pyrethrum yield responses were studied in two irrigation methods. This was conducted in a first harvest commercial pyrethrum field in Waubra, Victoria, during 2012/2013 season. Drip irrigation and overhead sprinkler irrigation treatments applied during whole flowering period were compared with ‘rainfed’ treatment in relation to flower yield and pyrethrin yield responses. The results of this experiment showed that the application of 180mm of irrigation throughout the post-anthesis period, from early flowering stages to physiological maturity under drip irrigation treatment increased pyrethrin concentration by 32%, which combined with the 95 % increase in the flower yield to give a total pyrethrin yield increase of 157%, compared to the ‘rainfed’ treatment. In contrast to that overhead sprinkler irrigation treatment increased pyrethrin concentration by 19%, which combined with the 60 % increase in the flower yield to give a total pyrethrin yield increase of 91%, compared to the ‘rainfed’ treatment. Irrigation treatments applied throughout the post-anthesis period significantly increased flower yield as a result of enhancement of number of flowers and flower size. Irrigation provides adequate soil moisture for flower development in pyrethrum which slows the rate of flower development and increases the length of the flowering period, resulting in a delayed crop harvest (11 days) compared to the ‘rainfed’ treatment. Overall, irrigation has a major impact on pyrethrin accumulation which increases the rate and duration of pyrethrin accumulation resulting in higher pyrethrin yield per flower at physiological maturity. The findings of this study will be important for future yield predictions and to develop advanced agronomic strategies to maximise pyrethrin yield in pyrethrum.Keywords: achene, drip irrigation, overhead irrigation, pyrethrin
Procedia PDF Downloads 40939 Exploring Closed-Loop Business Systems Which Eliminates Solid Waste in the Textile and Fashion Industry: A Systematic Literature Review Covering the Developments Occurred in the Last Decade
Authors: Bukra Kalayci, Geraldine Brennan
Abstract:
Introduction: Over the last decade, a proliferation of literature related to textile and fashion business in the context of sustainable production and consumption has emerged. However, the economic and environmental benefits of solid waste recovery have not been comprehensively searched. Therefore at the end-of-life or end-of-use textile waste management remains a gap. Solid textile waste reuse and recycling principles of the circular economy need to be developed to close the disposal stage of the textile supply chain. The environmental problems associated with the over-production and –consumption of textile products arise. Together with growing population and fast fashion culture the share of solid textile waste in municipal waste is increasing. Focusing on post-consumer textile waste literature, this research explores the opportunities, obstacles and enablers or success factors associated with closed-loop textile business systems. Methodology: A systematic literature review was conducted in order to identify best practices and gaps from the existing body of knowledge related to closed-loop post-consumer textile waste initiatives over the last decade. Selected keywords namely: ‘cradle-to-cradle ‘, ‘circular* economy* ‘, ‘closed-loop* ‘, ‘end-of-life* ‘, ‘reverse* logistic* ‘, ‘take-back* ‘, ‘remanufacture* ‘, ‘upcycle* ‘ with the combination of (and) ‘fashion* ‘, ‘garment* ‘, ‘textile* ‘, ‘apparel* ‘, clothing* ‘ were used and the time frame of the review was set between 2005 to 2017. In order to obtain a broad coverage, Web of Knowledge and Science Direct databases were used, and peer-reviewed journal articles were chosen. The keyword search identified 299 number of papers which was further refined into 54 relevant papers that form the basis of the in-depth thematic analysis. Preliminary findings: A key finding was that the existing literature is predominantly conceptual rather than applied or empirical work. Moreover, the enablers or success factors, obstacles and opportunities to implement closed-loop systems in the textile industry were not clearly articulated and the following considerations were also largely overlooked in the literature. While the circular economy suggests multiple cycles of discarded products, components or materials, most research has to date tended to focus on a single cycle. Thus the calculations of environmental and economic benefits of closed-loop systems are limited to one cycle which does not adequately explore the feasibility or potential benefits of multiple cycles. Additionally, the time period textile products spend between point of sale, and end-of-use/end-of-life return is a crucial factor. Despite past efforts to study closed-loop textile systems a clear gap in the literature is the lack of a clear evaluation framework which enables manufacturers to clarify the reusability potential of textile products through consideration of indicators related too: quality, design, lifetime, length of time between manufacture and product return, volume of collected disposed products, material properties, and brand segment considerations (e.g. fast fashion versus luxury brands).Keywords: circular fashion, closed loop business, product service systems, solid textile waste elimination
Procedia PDF Downloads 204