Search results for: Data Collete Bob-Manuel
22525 Disaster Resilience Analysis of Atlanta Interstate Highway System within the Perimeter
Authors: Mengmeng Liu, J. David Frost
Abstract:
Interstate highway system within the Atlanta Perimeter plays an important role in residents’ daily life. The serious influence of Atlanta I-85 Collapses implies that transportation system in the region lacks a cohesive and comprehensive transportation plan. Therefore, disaster resilience analysis of the transportation system is necessary. Resilience is the system’s capability to persist or to maintain transportation services when exposed to changes or shocks. This paper analyzed the resilience of the whole transportation system within the Perimeter and see how removing interstates within the Perimeter will affect the resilience of the transportation system. The data used in the paper are Atlanta transportation networks and LEHD Origin-Destination Employment Statistics data. First, we calculate the traffic flow on each road section based on LEHD data assuming each trip travel along the shortest travel time paths. Second, we calculate the measure of resilience, which is flow-based connectivity and centrality of the transportation network, and see how they will change if we remove each section of interstates from the current transportation system. Finally, we get the resilience function curve of the interstates and identify the most resilient interstates section. The resilience analysis results show that the framework of calculation resilience is effective and can provide some useful information for the transportation planning and sustainability analysis of the transportation infrastructures.Keywords: connectivity, interstate highway system, network analysis, resilience analysis
Procedia PDF Downloads 26022524 Analyzing Migration Patterns Using Public Disorder Event Data
Authors: Marie E. Docken
Abstract:
At some point in the lifecycle of a country, patterns of political and social unrest of varying degrees are observed. Events involving public disorder or civil disobedience may produce effects that range a wide spectrum of varying outcomes, depending on the level of unrest. Many previous studies, primarily theoretical in nature, have attempted to measure public disorder in answering why or how it occurs in society by examining causal factors or underlying issues in the social or political position of a population. The main objective in doing so is to understand how these activities evolve or seek some predictive capability for the events. In contrast, this research involves the fusion of analytics and social studies to provide more knowledge of the public disorder and civil disobedience intensity in populations. With a greater understanding of the magnitude of these events, it is believed that we may learn how they relate to extreme actions such as mass migration or violence. Upon establishing a model for measuring civil unrest based upon empirical data, a case study on various Latin American countries is performed. Interpretations of historical events are combined with analytical results to provide insights regarding the magnitude and effect of social and political activism.Keywords: public disorder, civil disobedience, Latin America, metrics, data analysis
Procedia PDF Downloads 14622523 AI as a Tool Hindering Digital Education
Authors: Justyna Żywiołek, Marek Matulewski
Abstract:
The article presents the results of a survey conducted among students from various European countries. The aim of the study was to understand how artificial intelligence (AI) affects educational processes in a digital environment. The survey covered a wide range of topics, including students' understanding and use of AI, its impact on motivation and engagement, interaction and support issues, accessibility and equity, and data security and privacy concerns. Most respondents admitted having difficulties comprehending the advanced functions of AI in educational tools. Many students believe that excessive use of AI in education can decrease their motivation for self-study and active participation in classes. Additionally, students reported that interaction with AI-based tools is often less satisfying compared to direct contact with teachers. Furthermore, the survey highlighted inequalities in access to advanced AI tools, which can widen the educational gap between students from different economic backgrounds. Students also expressed concerns about the security and privacy of their personal data collected and processed by AI systems. The findings suggest that while AI has the potential to support digital education, significant challenges need to be addressed to make these tools more effective and acceptable for students. Recommendations include increasing training for students and teachers on using AI, providing more interactive and engaging forms of education, and implementing stricter regulations on data protection.Keywords: AI, digital education, education tools, motivation and engagement
Procedia PDF Downloads 2822522 Using Printouts as Social Media Evidence and Its Authentication in the Courtroom
Authors: Chih-Ping Chang
Abstract:
Different from traditional objective evidence, social media evidence has its own characteristics with easily tampering, recoverability, and cannot be read without using other devices (such as a computer). Simply taking a screenshot from social network sites must be questioned its original identity. When the police search and seizure digital information, a common way they use is to directly print out digital data obtained and ask the signature of the parties at the presence, without taking original digital data back. In addition to the issue on its original identity, this conduct to obtain evidence may have another two results. First, it will easily allege that is tampering evidence because the police wanted to frame the suspect and falsified evidence. Second, it is not easy to discovery hidden information. The core evidence associated with crime may not appear in the contents of files. Through discovery the original file, data related to the file, such as the original producer, creation time, modification date, and even GPS location display can be revealed from hidden information. Therefore, how to show this kind of evidence in the courtroom will be arguably the most important task for ruling social media evidence. This article, first, will introduce forensic software, like EnCase, TCT, FTK, and analyze their function to prove the identity with another digital data. Then turning back to the court, the second part of this article will discuss legal standard for authentication of social media evidence and application of that forensic software in the courtroom. As the conclusion, this article will provide a rethinking, that is, what kind of authenticity is this rule of evidence chase for. Does legal system automatically operate the transcription of scientific knowledge? Or furthermore, it wants to better render justice, not only under scientific fact, but through multivariate debating.Keywords: federal rule of evidence, internet forensic, printouts as evidence, social media evidence, United States v. Vayner
Procedia PDF Downloads 29022521 Adsorption of Paracetamol Using Activated Carbon of Dende and Babassu Coconut Mesocarp
Authors: R. C. Ferreira, H. H. C. De Lima, A. A. Cândido, O. M. Couto Junior, P. A. Arroyo, K. Q De Carvalho, G. F. Gauze, M. A. S. D. Barros
Abstract:
Removal of the widespread used drug paracetamol from water was investigated using activated carbon originated from dende coconut mesocarp and babassu coconut mesocarp. Kinetic and equilibrium data were obtained at different values of pH. Babassu activated carbon showed higher efficiency due to its acidity and higher microporosity. Pseudo-second order model was better adjusted to the kinetic results. Equilibrium data may be represented by Langmuir equation. Lower solution pH provided better removal efficiency as the carbonil groups may be attracted by the positively charged carbon surface.Keywords: adsorption, activated carbon, babassu, dende
Procedia PDF Downloads 37122520 Knowledge and Eating Behavior of Teenage Pregnancy
Authors: Udomporn Yingpaisuk, Premwadee Karuhadej
Abstract:
The purposed of this research was to study the eating habit of teenage pregnancy and its relationship to the knowledge of nutrition during pregnancy. The 100 samples were derived from simple random sampling technique of the teenage pregnancy in Bangkae District. The questionnaire was used to collect data with the reliability of 0.8. The data were analyzed by SPSS for Windows with multiple regression technique. Percentage, mean and the relationship of knowledge of eating and eating behavior were obtained. The research results revealed that their knowledge in nutrition was at the average of 4.07 and their eating habit that they mentioned most was to refrain from alcohol and caffeine at 82% and the knowledge in nutrition influenced their eating habits at 54% with the statistically significant level of 0.001.Keywords: teenage pregnancy, knowledge of eating, eating behavior, alcohol, caffeine
Procedia PDF Downloads 35822519 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation
Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang
Abstract:
Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation
Procedia PDF Downloads 6822518 Long-Term Trends of Sea Level and Sea Surface Temperature in the Mediterranean Sea
Authors: Bayoumy Mohamed, Khaled Alam El-Din
Abstract:
In the present study, 24 years of gridded sea level anomalies (SLA) from satellite altimetry and sea surface temperature (SST) from advanced very-high-resolution radiometer (AVHRR) daily data (1993-2016) are used. These data have been used to investigate the sea level rising and warming rates of SST, and their spatial distribution in the Mediterranean Sea. The results revealed that there is a significant sea level rise in the Mediterranean Sea of 2.86 ± 0.45 mm/year together with a significant warming of 0.037 ± 0.007 °C/year. The high spatial correlation between sea level and SST variations suggests that at least part of the sea level change reported during the period of study was due to heating of surface layers. This indicated that the steric effect had a significant influence on sea level change in the Mediterranean Sea.Keywords: altimetry, AVHRR, Mediterranean Sea, sea level and SST changes, trend analysis
Procedia PDF Downloads 19422517 Maximum-likelihood Inference of Multi-Finger Movements Using Neural Activities
Authors: Kyung-Jin You, Kiwon Rhee, Marc H. Schieber, Nitish V. Thakor, Hyun-Chool Shin
Abstract:
It remains unknown whether M1 neurons encode multi-finger movements independently or as a certain neural network of single finger movements although multi-finger movements are physically a combination of single finger movements. We present an evidence of correlation between single and multi-finger movements and also attempt a challenging task of semi-blind decoding of neural data with minimum training of the neural decoder. Data were collected from 115 task-related neurons in M1 of a trained rhesus monkey performing flexion and extension of each finger and the wrist (12 single and 6 two-finger-movements). By exploiting correlation of temporal firing pattern between movements, we found that correlation coefficient for physically related movements pairs is greater than others; neurons tuned to single finger movements increased their firing rate when multi-finger commands were instructed. According to this knowledge, neural semi-blind decoding is done by choosing the greatest and the second greatest likelihood for canonical candidates. We achieved a decoding accuracy about 60% for multiple finger movement without corresponding training data set. this results suggest that only with the neural activities on single finger movements can be exploited to control dexterous multi-fingered neuroprosthetics.Keywords: finger movement, neural activity, blind decoding, M1
Procedia PDF Downloads 32022516 Evaluation of the Urban Regeneration Project: Land Use Transformation and SNS Big Data Analysis
Authors: Ju-Young Kim, Tae-Heon Moon, Jung-Hun Cho
Abstract:
Urban regeneration projects have been actively promoted in Korea. In particular, Jeonju Hanok Village is evaluated as one of representative cases in terms of utilizing local cultural heritage sits in the urban regeneration project. However, recently, there has been a growing concern in this area, due to the ‘gentrification’, caused by the excessive commercialization and surging tourists. This trend was changing land and building use and resulted in the loss of identity of the region. In this regard, this study analyzed the land use transformation between 2010 and 2016 to identify the commercialization trend in Jeonju Hanok Village. In addition, it conducted SNS big data analysis on Jeonju Hanok Village from February 14th, 2016 to March 31st, 2016 to identify visitors’ awareness of the village. The study results demonstrate that rapid commercialization was underway, unlikely the initial intention, so that planners and officials in city government should reconsider the project direction and rebuild deliberate management strategies. This study is meaningful in that it analyzed the land use transformation and SNS big data to identify the current situation in urban regeneration area. Furthermore, it is expected that the study results will contribute to the vitalization of regeneration area.Keywords: land use, SNS, text mining, urban regeneration
Procedia PDF Downloads 29322515 Performance of Environmental Efficiency of Energy Iran and Other Middle East Countries
Authors: Bahram Fathi, Mahdi Khodaparast Mashhadi, Masuod Homayounifar
Abstract:
According to 1404 forecasting documentation, among the most fundamental ways of Iran’s success in competition with other regional countries are innovations, efficiency enhancements and domestic productivity. Therefore, in this study, the energy consumption efficiency of Iran and the neighbor countries has been measured in the period between 2007-2012 considering the simultaneous economic activities, CO2 emission, and consumption of energy through data envelopment analysis of undesirable output. The results of the study indicated that the energy efficiency changes in both Iran and the average neighbor countries has been on a descending trend and Iran’s energy efficiency status is not desirable compared to the other countries in the region.Keywords: energy efficiency, environmental, undesirable output, data envelopment analysis
Procedia PDF Downloads 44822514 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.Keywords: cancer classification, feature selection, deep learning, genetic algorithm
Procedia PDF Downloads 11122513 Creativity and Expressive Interpretation of Musical Drama in Children with Special Needs (Down Syndrome) in Special Schools Yayasan Pendidikan Anak Cacat, Medan, North Sumatera
Authors: Junita Batubara
Abstract:
Children with special needs, especially those with disability in mental, physical or social/emotional interactions, are marginalized. Many people still view them as troublesome, inconvenience, having learning difficulties, unproductive and burdensome to society. This study intends to investigate; how musical drama can develop the ability to control the coordination of mental functions; how musical dramas can assist children to work together; how musical dramas can assist to maintain the child's emotional and physical health; how musical dramas can improve children creativity. The objectives of the research are: To know whether musical drama can control the coordination of mental function of children; to know whether musical drama can improve communication ability and expression of children; to know whether musical drama can help children work with people around them; to find out if musical dramas can develop the child's emotional and physical health; to find out if musical drama can improve children's creativity. The study employed a qualitative research approach. Data was collecting by listening, observing in depth through public hearings that select the key informants who were teachers and principals, parents and children. The data obtained from each public hearing was then processed (reduced), conclusion drawing/verification, presentation of data (data display). Furthermore, the model obtained was implementing for musical performance, where the benefits of the show are: musical drama can improve language skills; musical dramas are capable of developing memory and storage of information; developing communication skills and express themselves; helping children work together; assisting emotional and physical health; enhancing creativity.Keywords: children Down syndrome, music, drama script, performance
Procedia PDF Downloads 24122512 Medical Image Compression Based on Region of Interest: A Review
Authors: Sudeepti Dayal, Neelesh Gupta
Abstract:
In terms of transmission, bigger the size of any image, longer the time the channel takes for transmission. It is understood that the bandwidth of the channel is fixed. Therefore, if the size of an image is reduced, a larger number of data or images can be transmitted over the channel. Compression is the technique used to reduce the size of an image. In terms of storage, compression reduces the file size which it occupies on the disk. Any image is based on two parameters, region of interest and non-region of interest. There are several algorithms of compression that compress the data more economically. In this paper we have reviewed region of interest and non-region of interest based compression techniques and the algorithms which compress the image most efficiently.Keywords: compression ratio, region of interest, DCT, DWT
Procedia PDF Downloads 37522511 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 11222510 Rényi Entropy Correction to Expanding Universe
Authors: Hamidreza Fazlollahi
Abstract:
The Re ́nyi entropy comprises a group of data estimates that sums up the well-known Shannon entropy, acquiring a considerable lot of its properties. It appears as unqualified and restrictive entropy, relative entropy, or common data, and has found numerous applications in information theory. In the Re ́nyi’s argument, the area law of the black hole entropy plays a significant role. However, the total entropy can be modified by some quantum effects, motivated by the randomness of a system. In this note, by employing this modified entropy relation, we have derived corrections to Friedmann equations. Taking this entropy associated with the apparent horizon of the Friedmann-Robertson-Walker Universe and assuming the first law of thermodynamics, dE=T_A (dS)_A+WdV, satisfies the apparent horizon, we have reconsidered expanding Universe. Also, the second thermodynamics law has been examined.Keywords: Friedmann equations, dark energy, first law of thermodynamics, Reyni entropy
Procedia PDF Downloads 9422509 Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data
Authors: Arjun G. Koppad
Abstract:
The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest.Keywords: forest, biomass, LULC, back scatter, SAR, regression
Procedia PDF Downloads 2622508 Empirical Orthogonal Functions Analysis of Hydrophysical Characteristics in the Shira Lake in Southern Siberia
Authors: Olga S. Volodko, Lidiya A. Kompaniets, Ludmila V. Gavrilova
Abstract:
The method of empirical orthogonal functions is the method of data analysis with a complex spatial-temporal structure. This method allows us to decompose the data into a finite number of modes determined by empirically finding the eigenfunctions of data correlation matrix. The modes have different scales and can be associated with various physical processes. The empirical orthogonal function method has been widely used for the analysis of hydrophysical characteristics, for example, the analysis of sea surface temperatures in the Western North Atlantic, ocean surface currents in the North Carolina, the study of tropical wave disturbances etc. The method used in this study has been applied to the analysis of temperature and velocity measurements in saline Lake Shira (Southern Siberia, Russia). Shira is a shallow lake with the maximum depth of 25 m. The lake Shira can be considered as a closed water site because of it has one small river providing inflow and but it has no outflows. The main factor that causes the motion of fluid is variable wind flows. In summer the lake is strongly stratified by temperature and saline. Long-term measurements of the temperatures and currents were conducted at several points during summer 2014-2015. The temperature has been measured with an accuracy of 0.1 ºC. The data were analyzed using the empirical orthogonal function method in the real version. The first empirical eigenmode accounts for 70-80 % of the energy and can be interpreted as temperature distribution with a thermocline. A thermocline is a thermal layer where the temperature decreases rapidly from the mixed upper layer of the lake to much colder deep water. The higher order modes can be interpreted as oscillations induced by internal waves. The currents measurements were recorded using Acoustic Doppler Current Profilers 600 kHz and 1200 kHz. The data were analyzed using the empirical orthogonal function method in the complex version. The first empirical eigenmode accounts for about 40 % of the energy and corresponds to the Ekman spiral occurring in the case of a stationary homogeneous fluid. Other modes describe the effects associated with the stratification of fluids. The second and next empirical eigenmodes were associated with dynamical modes. These modes were obtained for a simplified model of inhomogeneous three-level fluid at a water site with a flat bottom.Keywords: Ekman spiral, empirical orthogonal functions, data analysis, stratified fluid, thermocline
Procedia PDF Downloads 13622507 Overall Determinants of Foreign Direct Investment Inflows in Kenya
Authors: George Ogono Muok, N. Obange, S. A. Odhiambo
Abstract:
Empirical literature on the determinants of foreign direct investments (FDI) flows is extensive but controversial over some determinants of FDI in-flows in developing countries. The objective of this study therefore was to investigate the overall determinants of FDI inflows in Kenya. Dynamic macroeconomic theory and correlational study design provided theoretical framework for specification of a time series model. The study used data observed from 1970 to 2015 in World Development Indicators (WDI) data bank. The results show that annual growth rate of GDP, inflation rates and external debt as a proportion of GDP are significant determinants of FDI inflows in Kenya and are therefore important macroeconomic parameters for policy formulation for promotion of FDI inflows in Kenya.Keywords: determinants of foreign, direct, investment inflows in, Kenya, Africa
Procedia PDF Downloads 28522506 Unsupervised Part-of-Speech Tagging for Amharic Using K-Means Clustering
Authors: Zelalem Fantahun
Abstract:
Part-of-speech tagging is the process of assigning a part-of-speech or other lexical class marker to each word into naturally occurring text. Part-of-speech tagging is the most fundamental and basic task almost in all natural language processing. In natural language processing, the problem of providing large amount of manually annotated data is a knowledge acquisition bottleneck. Since, Amharic is one of under-resourced language, the availability of tagged corpus is the bottleneck problem for natural language processing especially for POS tagging. A promising direction to tackle this problem is to provide a system that does not require manually tagged data. In unsupervised learning, the learner is not provided with classifications. Unsupervised algorithms seek out similarity between pieces of data in order to determine whether they can be characterized as forming a group. This paper explicates the development of unsupervised part-of-speech tagger using K-Means clustering for Amharic language since large amount of data is produced in day-to-day activities. In the development of the tagger, the following procedures are followed. First, the unlabeled data (raw text) is divided into 10 folds and tokenization phase takes place; at this level, the raw text is chunked at sentence level and then into words. The second phase is feature extraction which includes word frequency, syntactic and morphological features of a word. The third phase is clustering. Among different clustering algorithms, K-means is selected and implemented in this study that brings group of similar words together. The fourth phase is mapping, which deals with looking at each cluster carefully and the most common tag is assigned to a group. This study finds out two features that are capable of distinguishing one part-of-speech from others these are morphological feature and positional information and show that it is possible to use unsupervised learning for Amharic POS tagging. In order to increase performance of the unsupervised part-of-speech tagger, there is a need to incorporate other features that are not included in this study, such as semantic related information. Finally, based on experimental result, the performance of the system achieves a maximum of 81% accuracy.Keywords: POS tagging, Amharic, unsupervised learning, k-means
Procedia PDF Downloads 45122505 The Effect of Microfinance on Labor Productivity of SME - The Case of Iran
Authors: Sayyed Abdolmajid Jalaee Esfand Abadi, Sepideh Samimi
Abstract:
Since one of the major difficulties to develop small manufacturing enterpriser in developing countries is the limitations of financing activities, this paper want to answer the question: “what is the role and status of micro finance in improving the labor productivity of small industries in Iran?” The results of panel data estimation show that micro finance in Iran has not yet been able to work efficiently and provide the required credit and investment. Also, reducing economy’s dependence on oil revenues reduced and increasing its reliance on domestic production and exports of industrial production can increase the productivity of workforce in Iranian small industries.Keywords: microfinance, small manufacturing enterprises (SME), workforce productivity, Iran, panel data
Procedia PDF Downloads 42222504 An Ensemble System of Classifiers for Computer-Aided Volcano Monitoring
Authors: Flavio Cannavo
Abstract:
Continuous evaluation of the status of potentially hazardous volcanos plays a key role for civil protection purposes. The importance of monitoring volcanic activity, especially for energetic paroxysms that usually come with tephra emissions, is crucial not only for exposures to the local population but also for airline traffic. Presently, real-time surveillance of most volcanoes worldwide is essentially delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks. Unfavorably, the high nonlinearity of the complex and coupled volcanic dynamics leads to a large variety of different volcanic behaviors. Moreover, continuously measured parameters (e.g. seismic, deformation, infrasonic and geochemical signals) are often not able to fully explain the ongoing phenomenon, thus making the fast volcano state assessment a very puzzling task for the personnel on duty at the control rooms. With the aim of aiding the personnel on duty in volcano surveillance, here we introduce a system based on an ensemble of data-driven classifiers to infer automatically the ongoing volcano status from all the available different kind of measurements. The system consists of a heterogeneous set of independent classifiers, each one built with its own data and algorithm. Each classifier gives an output about the volcanic status. The ensemble technique allows weighting the single classifier output to combine all the classifications into a single status that maximizes the performance. We tested the model on the Mt. Etna (Italy) case study by considering a long record of multivariate data from 2011 to 2015 and cross-validated it. Results indicate that the proposed model is effective and of great power for decision-making purposes.Keywords: Bayesian networks, expert system, mount Etna, volcano monitoring
Procedia PDF Downloads 24622503 Robust Single/Multi bit Memristor Based Memory
Authors: Ahmed Emara, Maged Ghoneima, Mohamed Dessouky
Abstract:
Demand for low power fast memories is increasing with the increase in IC’s complexity, in this paper we introduce a proposal for a compact SRAM based on memristor devices. The compact size of the proposed cell (1T2M compared to 6T of traditional SRAMs) allows denser memories on the same area. In this paper, we will discuss the proposed memristor memory cell for single/multi bit data storing configurations along with the writing and reading operations. Stored data stability across successive read operation will be illustrated, operational simulation results and a comparison of our proposed design with previously conventional SRAM and previously proposed memristor cells will be provided.Keywords: memristor, multi-bit, single-bit, circuits, systems
Procedia PDF Downloads 37422502 Informing, Enabling and Inspiring Social Innovation by Geographic Systems Mapping: A Case Study in Workforce Development
Authors: Cassandra A. Skinner, Linda R. Chamberlain
Abstract:
The nonprofit and public sectors are increasingly turning to Geographic Information Systems for data visualizations which can better inform programmatic and policy decisions. Additionally, the private and nonprofit sectors are turning to systems mapping to better understand the ecosystems within which they operate. This study explores the potential which combining these data visualization methods—a method which is called geographic systems mapping—to create an exhaustive and comprehensive understanding of a social problem’s ecosystem may have in social innovation efforts. Researchers with Grand Valley State University collaborated with Talent 2025 of West Michigan to conduct a mixed-methods research study to paint a comprehensive picture of the workforce development ecosystem in West Michigan. Using semi-structured interviewing, observation, secondary research, and quantitative analysis, data were compiled on workforce development organizations’ locations, programming, metrics for success, partnerships, funding sources, and service language. To best visualize and disseminate the data, a geographic system map was created which identifies programmatic, operational, and geographic gaps in workforce development services of West Michigan. By combining geographic and systems mapping methods, the geographic system map provides insight into the cross-sector relationships, collaboration, and competition which exists among and between workforce development organizations. These insights identify opportunities for and constraints around cross-sectoral social innovation in the West Michigan workforce development ecosystem. This paper will discuss the process utilized to prepare the geographic systems map, explain the results and outcomes, and demonstrate how geographic systems mapping illuminated the needs of the community and opportunities for social innovation. As complicated social problems like unemployment often require cross-sectoral and multi-stakeholder solutions, there is potential for geographic systems mapping to be a tool which informs, enables, and inspires these solutions.Keywords: cross-sector collaboration, data visualization, geographic systems mapping, social innovation, workforce development
Procedia PDF Downloads 29522501 An Online Questionnaire Investigating UK Mothers' Experiences of Bottle Refusal by Their Breastfed Baby
Authors: Clare Maxwell, Lorna Porcellato, Valerie Fleming, Kate Fleming
Abstract:
A review of global online forums and social media reveals large numbers of mothers experiencing bottle refusal by their breastfed baby. It is difficult to determine precise numbers due to a lack of data, however, established virtual communities illustrate thousands of posts in relation to the issue. Mothers report various negative consequences of bottle refusal including delaying their return to work, time and financial outlay spent on methods to overcome it and experiencing stress, anxiety, and resentment of breastfeeding. A search of the literature revealed no studies being identified, and due to a lack of epidemiological data, a study investigating mother’s experiences of bottle refusal by their breastfed baby was undertaken. The aim of the study was to investigate UK mothers’ experiences of bottle refusal by their breastfed baby. Data were collected using an online questionnaire collecting quantitative and qualitative data. 841 UK mothers who had experienced or were experiencing bottle refusal by their breastfed baby completed the questionnaire. Data were analyzed using descriptive statistics and non-parametric testing. The results showed 61% (516/840) of mothers reported their breastfed baby was still refusing/had never accepted a bottle, with 39% (324/840) reporting their baby had eventually accepted. The most frequently reported reason to introduce a bottle was so partner/family could feed the baby 59% (499/839). 75% (634/841) of mothers intended their baby to feed on a bottle ‘occasionally’. Babies who accepted a bottle were more likely to be older at 1st attempt to introduce one than those babies who refused (Mdn = 12 weeks v 8 weeks, n = 286) (p = <0.001). Length of time taken to acceptance was 9 weeks (Mdn = 9, IQR = 18, R = 103.9, n = 306) with the older the baby was at 1st attempt to introduce a bottle being associated with a shorter length of time to acceptance (p = < 0.002). 60% (500/841) of mothers stated that none of the methods they used had worked. 26% (222/841) of mothers reported bottle refusal had had a negative impact upon their overall breastfeeding experience. 47% (303/604) reported they would have tried to introduce a bottle earlier to prevent refusal. This study provides a unique insight into the scenario of bottle refusal by breastfed babies. It highlights that bottle refusal by breastfed babies is a significant issue, which requires recognition from those communicating breastfeeding information to mothers.Keywords: bottle feeding, bottle refusal, breastfeeding, infant feeding
Procedia PDF Downloads 16422500 The Experimental and Modeling Adsorption Properties of Sr2+ on Raw and Purified Bentonite
Authors: A. A. Khodadadi, S. C. Ravaj, B. D. Tavildari, M. B. Abdolahi
Abstract:
The adsorption properties of local bentonite (Semnan Iran) and purified prepared from this bentonite towards Sr2+ adsorption, were investigated by batch equilibration. The influence of equilibration time, adsorption isotherms, kinetic adsorption, solution pH, and presence of EDTA and NaCl on these properties was studied and discussed. Kinetic data were found to be well fitted with a pseudo-second order kinetic model. Sr2+ is preferably adsorbed by bentonite and purified bentonite. The D-R isotherm model has the best fit with experimental data than other adsorption isotherm models. The maximum adsorption of Sr2+ representing the highest negative charge density on the surface of the adsorbent was seen at pH 12. Presence of EDTA and NaCl decreased the amount of Sr2+ adsorption.Keywords: bentonite, purified bentonite, Sr2+, equilibrium isotherm, kinetics
Procedia PDF Downloads 37522499 Teacher Trainers’ Motivation in Transformation of Teaching and Learning: The Fun Way Approach
Authors: Malathi Balakrishnan, Gananthan M. Nadarajah, Noraini Abd Rahim, Amy Wong On Mei
Abstract:
The purpose of the study is to investigate the level of intrinsic motivation of trainers after attending a Continuous Professional Development Course (CPD) organized by Institute of Teacher Training Malaysia titled, ‘Transformation of Teaching and Learning the Fun Way’. This study employed a survey whereby 96 teacher trainers were given Situational Intrinsic Motivational Scale (SIMS) Instruments. Confirmatory factor analysis was carried out to get validity of this instrument in local setting. Data were analyzed with SPSS for descriptive statistic. Semi structured interviews were also administrated to collect qualitative data on participants experiences after participating in the two-day fun-filled program. The findings showed that the participants’ level of intrinsic motivation showed higher mean than the amotivation. The results revealed that the intrinsic motivation mean is 19.0 followed by Identified regulation with a mean of 17.4, external regulation 9.7 and amotivation 6.9. The interview data also revealed that the participants were motivated after attending this training program. It can be concluded that this program, which was organized by Institute of Teacher Training Malaysia, was able to enhance participants’ level of motivation. Self-Determination Theory (SDT) as a multidimensional approach to motivation was utilized. Therefore, teacher trainers may have more success using the ‘The fun way approach’ in conducting training program in future.Keywords: teaching and learning, motivation, teacher trainer, SDT
Procedia PDF Downloads 46122498 A Clustering-Based Approach for Weblog Data Cleaning
Authors: Amine Ganibardi, Cherif Arab Ali
Abstract:
This paper addresses the data cleaning issue as a part of web usage data preprocessing within the scope of Web Usage Mining. Weblog data recorded by web servers within log files reflect usage activity, i.e., End-users’ clicks and underlying user-agents’ hits. As Web Usage Mining is interested in End-users’ behavior, user-agents’ hits are referred to as noise to be cleaned-off before mining. Filtering hits from clicks is not trivial for two reasons, i.e., a server records requests interlaced in sequential order regardless of their source or type, website resources may be set up as requestable interchangeably by end-users and user-agents. The current methods are content-centric based on filtering heuristics of relevant/irrelevant items in terms of some cleaning attributes, i.e., website’s resources filetype extensions, website’s resources pointed by hyperlinks/URIs, http methods, user-agents, etc. These methods need exhaustive extra-weblog data and prior knowledge on the relevant and/or irrelevant items to be assumed as clicks or hits within the filtering heuristics. Such methods are not appropriate for dynamic/responsive Web for three reasons, i.e., resources may be set up to as clickable by end-users regardless of their type, website’s resources are indexed by frame names without filetype extensions, web contents are generated and cancelled differently from an end-user to another. In order to overcome these constraints, a clustering-based cleaning method centered on the logging structure is proposed. This method focuses on the statistical properties of the logging structure at the requested and referring resources attributes levels. It is insensitive to logging content and does not need extra-weblog data. The used statistical property takes on the structure of the generated logging feature by webpage requests in terms of clicks and hits. Since a webpage consists of its single URI and several components, these feature results in a single click to multiple hits ratio in terms of the requested and referring resources. Thus, the clustering-based method is meant to identify two clusters based on the application of the appropriate distance to the frequency matrix of the requested and referring resources levels. As the ratio clicks to hits is single to multiple, the clicks’ cluster is the smallest one in requests number. Hierarchical Agglomerative Clustering based on a pairwise distance (Gower) and average linkage has been applied to four logfiles of dynamic/responsive websites whose click to hits ratio range from 1/2 to 1/15. The optimal clustering set on the basis of average linkage and maximum inter-cluster inertia results always in two clusters. The evaluation of the smallest cluster referred to as clicks cluster under the terms of confusion matrix indicators results in 97% of true positive rate. The content-centric cleaning methods, i.e., conventional and advanced cleaning, resulted in a lower rate 91%. Thus, the proposed clustering-based cleaning outperforms the content-centric methods within dynamic and responsive web design without the need of any extra-weblog. Such an improvement in cleaning quality is likely to refine dependent analysis.Keywords: clustering approach, data cleaning, data preprocessing, weblog data, web usage data
Procedia PDF Downloads 17022497 A Qualitative South African Study on Exploration of the Moral Identity of Nurses
Authors: Yolanda Havenga
Abstract:
Being a competent nurse requires clinical, general, and moral competencies. Moral competence is a culmination of moral perceptions, moral judgment, moral behaviour, and moral identity. Moral identity is the values, images, and fundamental principles held in the collective minds and memories of nurses about what it means to be a ‘good nurse’. It is important to explore and describe South African nurses’ moral identities and excavate the post-colonial counter-narrative to nurses moral identities as a better understanding of these identities will enable means to positively address nurses’ moral behaviours. This study explored the moral identity of nurses within the South African context. A qualitative approach was followed triangulating with phenomenological and narrative designs with the same purposively sampled group of professional nurses. In-depth interviews were conducted until saturation of data occurred about the sampled nurses lived experiences of being a nurse in South Africa. They were probed about their core personal-, social-, and professional values. Data were analysed based on the steps used by Colaizzi. These nurses were then asked to write a narrative telling a personal story that portrayed a significant time in their professional career that defines their identity as a nurse. This data were analysed using a critical narrative approach and findings of the two sets of data were merged. Ethical approval was obtained and approval from all relevant gate keepers. In the findings, themes emerged related to personal, social and professional values, images and fundamental principles of being a nurse within the South African context. The findings of this study will inform a future national study including a representative sample of South African nurses.Keywords: moral behaviour, moral identity, nurses, qualitative research
Procedia PDF Downloads 28322496 Developing Measurement Instruments for Enterprise Resources Planning (ERP) Post-Implementation Failure Model
Authors: Malihe Motiei, Nor Hidayati Zakaria, Davide Aloini
Abstract:
This study aims to present a method to develop the failure measurement model for ERP post-implementation. To achieve this outcome, the study firstly evaluates the suitability of Technology-Organization-Environment framework for the proposed conceptual model. This study explains how to discover the constructs and subsequently to design and evaluate the constructs as formative or reflective. Constructs are used including reflective and purely formative. Then, the risk dimensions are investigated to determine the instruments to examine the impact of risk on ERP failure after implementation. Two construct as formative constructs consist inadequate implementation and poor organizational decision making. Subsequently six construct as reflective construct include technical risks, operational risks, managerial risks, top management risks, lack of external risks, and user’s inefficiency risks. A survey was conducted among Iranian industries to collect data. 69 data were collected from manufacturing sectors and the data were analyzed by Smart PLS software. The results indicated that all measurements included 39 critical risk factors were acceptable for the ERP post-implementation failure model.Keywords: critical risk factors (CRFs), ERP projects, ERP post-implementation, measurement instruments, ERP system failure measurement model
Procedia PDF Downloads 363