Search results for: valproic acid
773 Osteoprotective Effect of Lawsonia inermis
Authors: Suraj Muke, Vikas Mankumare, Sadhana Sathaye
Abstract:
Osteoporosis is the most common metabolic bone disease which affects an estimated 25 million people worldwide, leading to 1 million fractures, 40,000 annual deaths and health costs of billions of dollars. It is estimated that about 80% of total osteoporosis patients are women, amongst which majority are above the age of 45 years. Postmenopausal osteoporosis is associated with lack of intestinal calcium absorption, increasing pro-oxidant and inflammatory mediators. Lawsonia inermis is a biennial dicotyledonous herbaceous shrub is reported to possess a high flavonoid, high phenolic and Inhibitors of osteoclastogenesis like Daphneside and Daphnorin. The present study aimed to screen osteoprotective effect of methanolic extract of Lawsonia inermis (LIM) in rat model along with its antioxidant activity. LIM shows phenolic content 146.3Milligrams of Gallic acid equivalent present per gram of extract and 19.8 Milligrams of rutin per gram of extract of Total flavonoid content with IC50 value 42.99μg/ml. bilateral ovariectomized rat model in which Healthy female wistar rats were used for screening. Treatment with LIM was carried out using graded doses of 25mg/kg, 50mg/kg and 100mg/kg for period of 28 days. The negative control group comprised of ovariectomized rats along with saline treatment for four weeks whereas sham operated rats were used as positive control.LIM showed a decrease in bone turnover by preventing loss of urinary calcium and phosphorous moreover it decreased the alkaline phosphatase levels and loss of bone density is prevented by LIM suggesting decrease in osteoclast activity.Keywords: antioxidant, osteoclast, osteoporosis, ovariectomized
Procedia PDF Downloads 410772 Transesterification of Waste Cooking Oil for Biodiesel Production Using Modified Clinoptilolite Zeolite as a Heterogeneous Catalyst
Authors: D. Mowla, N. Rasti, P. Keshavarz
Abstract:
Reduction of fossil fuels sources, increasing of pollution gases emission, and global warming effects increase the demand of renewable fuels. One of the main candidates of alternative fuels is biodiesel. Biodiesel limits greenhouse gas effects due to the closed CO2 cycle. Biodiesel has more biodegradability, lower combustion emissions such as CO, SOx, HC, PM and lower toxicity than petro diesel. However, biodiesel has high production cost due to high price of plant oils as raw material. So, the utilization of waste cooking oils (WCOs) as feedstock, due to their low price and disposal problems reduce biodiesel production cost. In this study, production of biodiesel by transesterification of methanol and WCO using modified sodic potassic (SP) clinoptilolite zeolite and sodic potassic calcic (SPC) clinoptilolite zeolite as heterogeneous catalysts have been investigated. These natural clinoptilolite zeolites were modified by KOH solution to increase the site activity. The optimum biodiesel yields for SP clinoptilolite and SPC clinoptilolite were 95.8% and 94.8%, respectively. Produced biodiesel were analyzed and compared with petro diesel and ASTM limits. The properties of produced biodiesel confirm well with ASTM limits. The density, kinematic viscosity, cetane index, flash point, cloud point, and pour point of produced biodiesel were all higher than petro diesel but its acid value was lower than petro diesel. Finally, the reusability and regeneration of catalysts were investigated. The results indicated that the spent zeolites cannot be reused directly for the transesterification, but they can be regenerated easily and can obtain high activity.Keywords: biodiesel, renewable fuel, transesterification, waste cooking oil
Procedia PDF Downloads 242771 Potential Therapeutic Effect of Obestatin in Oral Mucositis
Authors: Agnieszka Stempniewicz, Piotr Ceranowicz, Wojciech Macyk, Jakub Cieszkowski, Beata Kuśnierz-Cabała, Katarzyna Gałązka, Zygmunt Warzecha
Abstract:
Objectives: There are numerous strategies for the prevention or treatment of oral mucositis. However, their effectiveness is limited and does not correspond to expectations. Recent studies have shown that obestatin exhibits a protective effect and accelerates the healing of gastrointestinal mucosa. The aim of the present study was to examine the influence of obestatin administration on oral ulcers in rats. Methods: lingual ulcers were induced by the use of acetic acid. Rats were treated twice a day intraperitoneally with saline or obestatin(4, 8, or 16 nmol/kg/dose) for five days. The study determined: lingual mucosa morphology, cell proliferation, mucosal blood flow, and mucosal pro-inflammatory interleukin-1β level(IL-1β). Results: In animals without induction of oral ulcers, treatment with obestatin was without any effect. Obestatin administration in rats with lingual ulcers increased the healing rate of these ulcers. Obestatin given at the dose of 8 or 16 nmol/kg/dose caused the strongest and similar therapeutic effect. This result was associated with a significant increase in blood flow and cell proliferation in gingival mucosa, as well as a significant decrease in IL-1β level. Conclusions: Obestatin accelerates the healing of lingual ulcers in rats. This therapeutic effect is well-correlated with an increase in blood flow and cell proliferation in oral mucosa, as well as a decrease in pro-inflammatory IL-1β levels. Obestatin is a potentially useful candidate for the prevention and treatment of oral mucositis. Acknowledgment: Agnieszka Stempniewicz acknowledges the support of InterDokMed project no. POWR.03.02.00- 00-I013/16.Keywords: oral mucositis, ulcers, obestatin, lingual mucosa
Procedia PDF Downloads 74770 The Utilization of Tea Extract within the Realm of the Food Industry
Authors: Raana Babadi Fathipour
Abstract:
Tea, a beverage widely cherished across the globe, has captured the interest of scholars with its recent acknowledgement for possessing noteworthy health advantages. Of particular significance is its proven ability to ward off ailments such as cancer and cardiovascular afflictions. Moreover, within the realm of culinary creations, lipid oxidation poses a significant challenge for food product development. In light of these aforementioned concerns, this present discourse turns its attention towards exploring diverse methodologies employed in extracting polyphenols from various types of tea leaves and examining their utility within the vast landscape of the ever-evolving food industry. Based on the discoveries unearthed in this comprehensive investigation, it has been determined that the fundamental constituents of tea are polyphenols possessed of intrinsic health-enhancing properties. This includes an assortment of catechins, namely epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate. Moreover, gallic acid, flavonoids, flavonols and theaphlavins have also been detected within this aromatic beverage. Of these myriad components examined vigorously in this study's analysis, catechin emerges as particularly beneficial. Multiple techniques have emerged over time to successfully extract key compounds from tea plants, including solvent-based extraction methodologies, microwave-assisted water extraction approaches and ultrasound-assisted extraction techniques. In particular, consideration is given to microwave-assisted water extraction method as a viable scheme which effectively procures valuable polyphenols from tea extracts. This methodology appears adaptable for implementation within sectors such as dairy production along with meat and oil industries alike.Keywords: camellia sinensis, extraction, food application, shelf life, tea
Procedia PDF Downloads 73769 Impact of Cd and Pb Impregnation on the Health of an Adult Population Neighbouring a Landfill
Authors: M. Cabral, A. Verdin, G. Garçon, A. Touré, C. Diop, M. Fall, S. Bouhsina, D. Dewaele, F.Cazier, A. Tall Dia, P. Shirali, A. Diouf
Abstract:
This case-control study dealt with the health adverse effects within the population neighboring the Mbeubeuss waste dump, which is located near the district of Malika (Diamalaye II) in Dakar (Senegal). All the household and industrial waste arising from Dakar are stored in this open landfill without being covered and are therefore possible sources of Pb and Cd contaminated air emissions and lixiviates. The objective of this study is part of improving the health of the population neighboring Mbeubeuss by determining Pb and Cd concentrations both in environment and humans, and studying possible renal function alterations within the adults. Soil and air samples were collected in the control site (Darou Salam) and the waste dump neighboring site (Diamalaye II). Control and exposed adults were recruited as living in Darou Salam (n = 52) and in Diamalaye II (n = 77). Pb and Cd concentrations in soil, air and biological samples were determined. Moreover, we were interested in analyzing some impregnation (zinc protoporphyrin, d-aminolevulinic acid dehydratase) and oxidative stress biomarkers (malonedialdehyde, gluthatione status), in addition to several nephrotoxicity parameters (creatinuria, proteinuria, lactate dehydrogenase, CC16 protein, glutathione S-transferase-alpha and retinol binding protein) in blood and/or urine. The results showed the significant Pb and Cd contamination of the soil and air samples derived from the landfill, and therefore of the neighboring population of adults. This critical exposure to environmental Pb and Cd had some harmful consequences for their health, as shown by the reported oxidative stress and nephrotoxicity signs.Keywords: Pb and Cd environmental exposure, impregnation markers, landfill, nephrotoxicity markers
Procedia PDF Downloads 447768 The Effects of Seasonal Variation on the Microbial-N Flow to the Small Intestine and Prediction of Feed Intake in Grazing Karayaka Sheep
Authors: Mustafa Salman, Nurcan Cetinkaya, Zehra Selcuk, Bugra Genc
Abstract:
The objectives of the present study were to estimate the microbial-N flow to the small intestine and to predict the digestible organic matter intake (DOMI) in grazing Karayaka sheep based on urinary excretion of purine derivatives (xanthine, hypoxanthine, uric acid, and allantoin) by the use of spot urine sampling under field conditions. In the trial, 10 Karayaka sheep from 2 to 3 years of age were used. The animals were grazed in a pasture for ten months and fed with concentrate and vetch plus oat hay for the other two months (January and February) indoors. Highly significant linear and cubic relationships (P<0.001) were found among months for purine derivatives index, purine derivatives excretion, purine derivatives absorption, microbial-N and DOMI. Through urine sampling and the determination of levels of excreted urinary PD and Purine Derivatives / Creatinine ratio (PDC index), microbial-N values were estimated and they indicated that the protein nutrition of the sheep was insufficient. In conclusion, the prediction of protein nutrition of sheep under the field conditions may be possible with the use of spot urine sampling, urinary excreted PD and PDC index. The mean purine derivative levels in spot urine samples from sheep were highest in June, July and October. Protein nutrition of pastured sheep may be affected by weather changes, including rainfall. Spot urine sampling may useful in modeling the feed consumption of pasturing sheep. However, further studies are required under different field conditions with different breeds of sheep to develop spot urine sampling as a model.Keywords: Karayaka sheep, spot sampling, urinary purine derivatives, PDC index, microbial-N, feed intake
Procedia PDF Downloads 531767 Production of Hydrophilic PVC Surfaces with Microwave Treatment for its Separation from Mixed Plastics by Froth Floatation
Authors: Srinivasa Reddy Mallampati, Chi-Hyeon Lee, Nguyen Thanh Truc, Byeong-Kyu Lee
Abstract:
Organic polymeric materials (plastics) are widely used in our daily life and various industrial fields. The separation of waste plastics is important for its feedstock and mechanical recycling. One of the major problems in incineration for thermal recycling or heat melting for material recycling is the polyvinyl chloride (PVC) contained in waste plastics. This is due to the production of hydrogen chloride, chlorine gas, dioxins, and furans originated from PVC. Therefore, the separation of PVC from waste plastics is necessary before recycling. The separation of heavy polymers (PVC 1.42, PMMA 1.12, PC 1.22 and PET 1.27 g/cm3 ) from light ones (PE and PP 0.99 g/cm3) can be achieved on the basis of their density. However it is difficult to separate PVC from other heavy polymers basis of density. There are no simple and inexpensive techniques to separate PVC from others. If hydrophobic the PVC surface is selectively changed into hydrophilic, where other polymers still have hydrophobic surface, flotation process can separate PVC from others. In the present study, the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment after alkaline/acid washing and with activated carbon was studied as the pre-treatment of its separation by the following froth flotation. In presence of activated carbon as absorbent, the microwave treatment could selectively increase the hydrophilicity of the PVC surface (i.e. PVC contact angle decreased about 19o) among other plastics mixture. At this stage, 100% PVC separation from other plastics could be achieved by the combination of the pre- microwave treatment with activated carbon and the following froth floatation. The hydrophilization of PVC by surface analysis would be due to the hydrophilic groups produced by microwave treatment with activated carbon. The effect of optimum condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated.Keywords: Hydrophilic, PVC, contact angle, additive, microwave, froth floatation, waste plastics
Procedia PDF Downloads 624766 Free Radical Scavenging, Antioxidant Activity, Phenolic, Alkaloids Contents and Inhibited Properties against α-Amylase and Invertase Enzymes of Stem Bark Extracts Coula edulis B
Authors: Eric Beyegue, Boris Azantza, Judith Laure Ngondi, Julius E. Oben
Abstract:
Background: It is clearly that phytochemical constituents of plants in relation exhibit free radical scavenging, antioxidant and glycosylation properties. This study investigated the in vitro antioxidant and free radical scavenging, inhibited activities against α-amylase and invertase enzymes of stem bark extracts C. edulis (Olacaceae). Methods: Four extracts (hexane, dichloromethane, ethanol and aqueous) from the barks of C. edulis were used in this study. Colorimetric in vitro methods were using for evaluate free radical scavenging activity DPPH, ABTS, NO, OH, antioxidant capacity, glycosylation activity, inhibition of α-amylase and invertase activities, phenolic, flavonoid and alkaloid contents. Results: C. edulis extracts (CEE) had a higher scavenging potential on the 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), nitrite oxide (NO), 2, 2-azinobis (3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radicals and glucose scavenging with the IC50 varied between 41.95 and 36694.43 µg/ml depending on the solvent of extraction. The ethanol extract of C. edulis stem bark (CE EtOH) showed the highest polyphenolic (289.10 + 30.32), flavonoid (1.12 + 0.09) and alkaloids (18.47 + 0.16) content. All the tested extracts demonstrated a relative high inhibition potential against α-amylase and invertase digestive enzymes activities. Conclusion: This study suggests that CEE exhibited higher antioxidant potential and significant inhibition potential against digestive enzymes.Keywords: Coula edulis, antioxidant, scavenging activity, amylase, invertase
Procedia PDF Downloads 354765 Formulation and Optimization of Topical 5-Fluorouracil Microemulsions Using Central Compisite Design
Authors: Sudhir Kumar, V. R. Sinha
Abstract:
Water in oil topical microemulsions of 5-FU were developed and optimized using face centered central composite design. Topical w/o microemulsion of 5-FU were prepared using sorbitan monooleate (Span 80), polysorbate 80 (Tween 80), with different oils such as oleic acid (OA), triacetin (TA), and isopropyl myristate (IPM). The ternary phase diagrams designated the microemulsion region and face centered central composite design helped in determining the effects of selected variables viz. type of oil, smix ratio and water concentration on responses like drug content, globule size and viscosity of microemulsions. The CCD design exhibited that the factors have statistically significant effects (p<0.01) on the selected responses. The actual responses showed excellent agreement with the predicted values as suggested by the CCD with lower residual standard error. Similarly, the optimized values were found within the range as predicted by the model. Furthermore, other characteristics of microemulsions like pH, conductivity were investigated. For the optimized microemulsion batch, ex-vivo skin flux, skin irritation and retention studies were performed and compared with marketed 5-FU formulation. In ex vivo skin permeation studies, higher skin retention of drug and minimal flux was achieved for optimized microemulsion batch then the marketed cream. Results confirmed the actual responses to be in agreement with predicted ones with least residual standard errors. Controlled release of drug was achieved for the optimized batch with higher skin retention of 5-FU, which can further be utilized for the treatment of many dermatological disorders.Keywords: 5-FU, central composite design, microemulsion, ternanry phase diagram
Procedia PDF Downloads 482764 Screening of Potential Cytotoxic Activities of Some Medicinal Plants of Saudi Arabia
Authors: Syed Farooq Adil, Merajuddinkhan, Mujeeb Khan, Hamad Z. Alkhathlan
Abstract:
Phytochemicals from plant extracts belong to an important source of natural products which have demonstrated excellent cytotoxic activities. However, plants of different origins exhibit diverse chemical compositions and bioactivities. Therefore, the discovery of plants based new anticancer agents from different parts of the world is always challenging. In this study, methanolic extracts of different parts of 11 plants from Saudi Arabia have been tested in vitro for their anticancer potential on human liver cancer cell line (HepG2). Particularly, for this study, plants from Asteraceae, Resedaceae, and Polygonaceae families were chosen on the basis of locally available ethnobotanical data and their medicinal properties. Among 12 tested extract samples, three samples obtained from Artemisia monosperma stem, Ochradenus baccatus aerial parts, and Pulicaria glutinosa stem have demonstrated interesting cytotoxic activities with a cell viability of 29.3%, 28.4% and 24.2%, respectively. Whereas, four plant extracts including Calendula arvensis aerial parts, Scorzonera musilii whole plant, A. monosperma leaves show moderate anticancer properties bearing a cell viability ranging from 11.9 to 16.7%. The remaining extracts have shown poor cytotoxic activities. Subsequently, GC-MS analysis of methanolic extracts of the four most active plants extracts such as C. comosum, O. baccatus, P. glutinosa and A. monosperma detected the presence of 41 phytomolecules. Among which 3-(4-hydroxyphenyl) propionitrile (1), 8,11-octadecadiynoic acid methyl ester (2), 6,7-dimethoxycoumarin (3), and 1-(2-hydroxyphenyl) ethenone (4) were found to be the lead compounds of C. comosum, O. baccatus P. glutinosa and A. monosperma, respectively.Keywords: medicinal plants, asteraceae, polygonaceae, hepg2
Procedia PDF Downloads 130763 Combined Effect of Heat Stimulation and Delayed Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Faraidoon Rahmanzai, Mizuki Takigawa, Yu Bomura, Shigeyuki Date
Abstract:
To obtain the high quality and essential workability of mortar, different types of superplasticizers are used. The superplasticizers are the chemical admixture used in the mix to improve the fluidity of mortar. Many factors influenced the superplasticizer to disperse the cement particle in the mortar. Nature and amount of replaced cement by slag, mixing procedure, delayed addition time, and heat stimulation technique of superplasticizer cause the varied effect on the fluidity of the cementitious material. In this experiment, the superplasticizers were heated for 1 hour under 60 °C in a thermostatic chamber. Furthermore, the effect of delayed addition time of heat stimulated superplasticizers (SP) was also analyzed. This method was applied to two types of polycarboxylic acid based ether SP (precast type superplasticizer (SP2) and ready-mix type superplasticizer (SP1)) in combination with a partial replacement of normal Portland cement with blast furnace slag (BFS) with 30% w/c ratio. On the other hands, the fluidity, air content, fresh density, and compressive strength for 7 and 28 days were studied. The results indicate that the addition time and heat stimulation technique improved the flow and air content, decreased the density, and slightly decreased the compressive strength of mortar. Moreover, the slag improved the flow of mortar by increasing the amount of slag, and the effect of external temperature of SP on the flow of mortar was decreased. In comparison, the flow of mortar was improved on 5-minute delay for both kinds of SP, but SP1 has improved the flow in all conditions. Most importantly, the transition points in both types of SP appear to be the same, at about 5±1 min. In addition, the optimum addition time of SP to mortar should be in this period.Keywords: combined effect, delay addition, heat stimulation, flow of mortar
Procedia PDF Downloads 208762 Development of Nanoparticulate Based Chimeric Drug Delivery System Using Drug Bioconjugated Plant Virus Capsid on Biocompatible Nanoparticles
Authors: Indu Barwal, Shloka Thakur, Subhash C. Yadav
Abstract:
The plant virus capsid protein based nanoparticles are extensively studied for their application in biomedical research for development of nanomedicines and drug delivery systems. We have developed a chimeric drug delivery system by controlled in vitro assembly of separately bioconjugated fluorescent dye (as reporting molecule), folic acid (as receptor binding biomolecule for targeted delivery) and doxorubicin (as anticancer drug) using modified EDC NHS chemistry on heterologously overexpressed (E. coli) capsid proteins of cowpea chlorotic mottle virus (CCMV). This chimeric vehicle was further encapsidated on gold nanoparticles (20nm) coated with 5≠ thiolated DNA probe to neutralize the positive charge of capsid proteins. This facilitates the in vitro assembly of modified capsid subunits on the gold nanoparticles to develop chimeric GNPs encapsidated targeted drug delivery system. The bioconjugation of functionalities, number of functionality on capsid subunits as well as virus like nanoparticles, structural stability and in vitro assembly were confirmed by SDS PAGE, relative absorbance, MALDI TOF, ESI-MS, Circular dichroism, intrinsic tryptophan fluorescence, zeta particle size analyzer and TEM imaging. This vehicle was stable at pH 4.0 to 8.0 suitable for many organelles targeting. This in vitro assembled chimeric plant virus like particles could be suitable for ideal drug delivery vehicles for subcutaneous cancer treatment and could be further modified for other type of cancer treatment by conjugating other functionalities (targeting, drug) on capsids.Keywords: chimeric drug delivery vehicles, bioconjugated plant, virus, capsid
Procedia PDF Downloads 497761 Quantification and Identification of the Main Components of the Biomass of the Microalgae Scenedesmus SP. – Prospection of Molecules of Commercial Interest
Authors: Carolina V. Viegas, Monique Gonçalves, Gisel Chenard Diaz, Yordanka Reyes Cruz, Donato Alexandre Gomes Aranda
Abstract:
To develop the massive cultivation of microalgae, it is necessary to isolate and characterize the species, improving genetic tools in search of specific characteristics. Therefore, the detection, identification and quantification of the compounds that compose the Scenedesmus sp. were prerequisites to verify the potential of these microalgae. The main objective of this work was to carry out the characterization of Scenedesmus sp. as to the content of ash, carbohydrates, proteins and lipids as well as the determination of the composition of their lipid classes and main fatty acids. The biomass of Scenedesmus sp, showed 15,29 ± 0,23 % of ash and CaO (36,17 %) was the main component of this fraction, The total protein and carbohydrate content of the biomass was 40,74 ± 1,01 % and 23,37 ± 0,95 %, respectively, proving to be a potential source of proteins as well as carbohydrates for the production of ethanol via fermentation, The lipid contents extracted via Bligh & Dyer and in situ saponification were 8,18 ± 0,13 % and 4,11 ± 0,11 %, respectively. In the lipid extracts obtained via Bligh & Dyer, approximately 50 % of the composition of this fraction consists of fatty compounds, while the other half is composed of an unsaponifiable fraction composed mainly of chlorophylls, phytosterols and carotenes. From the lowest yield, it was possible to obtain a selectivity of 92,14 % for fatty components (fatty acids and fatty esters) confirmed through the infrared spectroscopy technique. The presence of polyunsaturated acids (~45 %) in the lipid extracts indicated the potential of this fraction as a source of nutraceuticals. The results indicate that the biomass of Scenedesmus sp, can become a promising potential source for obtaining polyunsaturated fatty acids, carotenoids and proteins as well as the simultaneous obtainment of different compounds of high commercial value.Keywords: microalgae, Desmodesmus, lipid classes, fatty acid profile, proteins, carbohydrates
Procedia PDF Downloads 102760 Differential Expression of GABA and Its Signaling Components in Ulcerative Colitis and Irritable Bowel Syndrome Pathogenesis
Authors: Surbhi Aggarwal, Jaishree Paul
Abstract:
Background: Role of GABA has been implicated in autoimmune diseases like multiple sclerosis, type1 diabetes and rheumatoid arthritis where they modulate the immune response but role in gut inflammation has not been defined. Ulcerative colitis (UC) and diarrhoeal predominant irritable bowel syndrome (IBS-D) both involve inflammation of gastrointestinal tract. UC is a chronic, relapsing and idiopathic inflammation of gut. IBS is a common functional gastrointestinal disorder characterised by abdominal pain, discomfort and alternating bowel habits. Mild inflammation is known to occur in IBS-D. Aim: Aim of this study was to investigate the role of GABA in UC as well as in IBS-D. Materials and methods: Blood and biopsy samples from UC, IBS-D and controls were collected. ELISA was used for measuring level of GABA in serum of UC, IBS-D and controls. RT-PCR analysis was done to determine GABAergic signal system in colon biopsy of UC, IBS-D and controls. RT-PCR was done to check the expression of proinflammatory cytokines. CurveExpert 1.4, Graphpad prism-6 software were used for data analysis. Statistical analysis was done by unpaired, two-way student`s t-test. All sets of data were represented as mean± SEM. A probability level of p < 0.05 was considered statistically significant. Results and conclusion: Significantly decreased level of GABA and altered GABAergic signal system was detected in UC and IBS-D as compared to controls. Significantly increased expression of proinflammatory cytokines was also determined in UC and IBS-D as compared to controls. Hence we conclude that insufficient level of GABA in UC and IBS-D leads to overproduction of proinflammatory cytokines which further contributes to inflammation. GABA may be used as a promising therapeutic target for treatment of gut inflammation or other inflammatory diseases.Keywords: diarrheal predominant irritable bowel syndrome, γ-aminobutyric acid (GABA), inflammation, ulcerative colitis
Procedia PDF Downloads 227759 Investigation the Photocatalytic Properties of Fe3O4-TiO2 Nanocomposites Prepared by Sonochemical Method
Authors: Zh. Saffari, A. Naeimi, M. S. Ekrami-Kakhki, F. Hamidi
Abstract:
Fe3O4 is one of the important magnetic oxides with spinel structure; it has exhibited unique electric and magnetic properties based on the electron transfer between Fe2+ and Fe3+ in the octahedral sites. Fe3O4 has received considerable attention in various areas such as cancer therapy, drug targeting, enzyme immobilization catalysis, magnetic cell separation, magnetic refrigeration systems and super-paramagnetic materials Fe3O4–TiO2 nanostructures were synthesized by simple, effective and new co-precipitation method assisted by ultrasonic reaction at room temperatures with organic surfactant. The effect of various parameters such as temperature, time, and power on the size and morphology of the product was investigated. Alternating gradient force magnetometer shows that Fe3O4 nanoparticles exhibit super-paramagnetic behaviour at room temperature. For preparation of nanocomposite, 1 g of TiO2 nanostructures were dispersed in 100 mL of ethanol. 0.25 g of Fe(NO3)2 and 2 mL of octanoic acid was added to the solution as a surfactant. Then, NaOH solution (1.5 M) was slowly added into the solution until the pH of the mixture was 7–8. After complete precipitation, the solution placed under the ultrasonic irradiation for 30 min. The product was centrifuged, washed with distilled water and dried in an oven at 100 °C for 3 h. The resulting red powder was calcinated at 800 °C for 3 h to remove any organic residue. The photocatalytic behaviour of Fe3O4–TiO2 nanoparticles was evaluated using the degradation of a Methyl Violet (MV) aqueous solution under ultraviolet light irradiation. As time increased, more and more MV was adsorbed on the nanoparticles catalyst, until the absorption peak vanish. The MV concentration decreased rapidly with increasing UV-irradiation timeKeywords: magnetic, methyl violet, nanocomposite, photocatalytic
Procedia PDF Downloads 258758 Comparison of Physicochemical Properties of Catfish Myofibrillar and Sarcoplasmic Protein Hydrolysates and Characterization of Their Bioactive Peptides
Authors: Leila Najafian
Abstract:
Sarcoplasmic protein hydrolysates (SPHs) and myofibrillar protein hydrolysates (MPHs) from patin (Pangasius sutchi) were produced using two types of proteases: Papain and Alcalase. 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical scavenging activities and metal chelating activity assays for antioxidant activities were carried out on the SPHs and MPHs. The hydrolysates were isolated and purified by ultrafiltration, gel filtration and reverse phase high-performance liquid chromatography (RP-HPLC) and liquid chromatography with tandem mass spectrometry detection (LC-MS/MS) was used in identifying peptide sequences. The results showed that when the DH of MPHs increased, the protein solubility increased, while the highest amount of the protein solubility of SPHs was after 60 min incubation. The effect of DH on antioxidant activities of SPHs and MPHs was investigated. Among the hydrolysates, papain-MPH and Alcalase-SPH, which had the highest antioxidant activities, were purified. The potent fractions obtained from RP-HPLC of sarcoplasmic (SI 3 fraction) and myofibrillar (MI 4 fraction) hydrolysates showed the highest DPPH radical scavenging activity. The FVNQPYLLYSVHMK peptide for MPH and the LVVDIPAALQHA peptide for SPH exhibited the highest antioxidant activity. The presence of hydrophobic and hydrophilic amino acids, namely leucine (L), valine (V), phenylalanine (F), histidine (H) and proline (P), in the peptide sequences of SPH and MPH are believed to contribute to high antioxidant activity. Hence, SPH and MPH from patin have the potential as a natural functional ingredient in food and pharmaceutical industry.Keywords: patin (Pangasius sutchi), protein hydrolysates, antioxidative peptides, mass spectrometry
Procedia PDF Downloads 264757 Calpain-Mediated, Cisplain-Induced Apoptosis in Breast Cancer Cells
Authors: Shadia Al-Bahlani, Khadija Al-Bulushi, Zuweina Al-Hadidi, Buthaina Al-Dhahl, Nadia Al-Abri
Abstract:
Breast cancer is the most common cancer in women worldwide. Triple-Negative Breast Cancer (TNBC) is an aggressive type of breast cancer, which is defined by the absence of Estrogen (ER), Progesterone (PR) and human epidermal growth factor (Her-2) receptors. The calpain system plays an important role in many cellular processes including apoptosis, necrosis, cell signaling and proliferation. However, the role of calpain in cisplatin (CDDP)-induced apoptosis in TNBC cells is not fully understood. Here, TNBC (MDA-MB231) cells were treated with different concentration of CDDP (0, 20 & 40 µM) and calpain activation and apoptosis were measured by western blot and Hoechst Stain respectively. In addition, calpain modulation by either activation and/or inhibition and its effect on CDDP-induced apoptosis were assessed by the same above approaches. Our findings showed that CDDP induced endoplasmic reticulum stress and thus Calcium release and subsequently activate calpain α-fodrin cleavage indicated by the increase in GRP78 and Calmodulin protein expression and respectively in MDA-MB231 cells. It also induced apoptosis as measured by Hoechst stain and caspase-12 cleavage. Calpain activation by both Cyclopiazonic acid and Thapsigargin showed similar effect and enhanced the sensitivity of these cells to CDDP treatment. On the other hand, calpain inhibition by either specific siRNA and/or exogenous inhibitor (Calpeptin) had an adverse effect where it attenuated calpain activation and thus CDDP- induced apoptosis in these cells. Altogether, these findings suggested that calpain activation play an essential role in sensitizing the TNBC cells to CDDP-induced apoptosis. This might lead to the discovery of novel treatment to over this aggressive type of breast cancer.Keywords: calpain, cisplatin, apoptosis, breast cancer
Procedia PDF Downloads 350756 Genome-Wide Identification and Characterization of MLO Family Genes in Pumpkin (Cucurbita maxima Duch.)
Authors: Khin Thanda Win, Chunying Zhang, Sanghyeob Lee
Abstract:
Mildew resistance locus o (Mlo), a plant-specific gene family with seven-transmembrane (TM), plays an important role in plant resistance to powdery mildew (PM). PM caused by Podosphaera xanthii is a widespread plant disease and probably represents the major fungal threat for many Cucurbits. The recent Cucurbita maxima genome sequence data provides an opportunity to identify and characterize the MLO gene family in this species. Total twenty genes (designated CmaMLO1 through CmaMLO20) have been identified by using an in silico cloning method with the MLO gene sequences of Cucumis sativus, Cucumis melo, Citrullus lanatus and Cucurbita pepo as probes. These CmaMLOs were evenly distributed on 15 chromosomes of 20 C. maxima chromosomes without any obvious clustering. Multiple sequence alignment showed that the common structural features of MLO gene family, such as TM domains, a calmodulin-binding domain and 30 important amino acid residues for MLO function, were well conserved. Phylogenetic analysis of the CmaMLO genes and other plant species reveals seven different clades (I through VII) and only clade IV is specific to monocots (rice, barley, and wheat). Phylogenetic and structural analyses provided preliminary evidence that five genes belonged to clade V could be the susceptibility genes which may play the importance role in PM resistance. This study is the first comprehensive report on MLO genes in C. maxima to our knowledge. These findings will facilitate the functional analysis of the MLOs related to PM susceptibility and are valuable resources for the development of disease resistance in pumpkin.Keywords: Mildew resistance locus o (Mlo), powdery mildew, phylogenetic relationship, susceptibility genes
Procedia PDF Downloads 185755 Nanofluid-Based Emulsion Liquid Membrane for Selective Extraction and Separation of Dysprosium
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Dysprosium is a rare earth element which is essential for many growing high-technology applications. Dysprosium along with neodymium plays a significant role in different applications such as metal halide lamps, permanent magnets, and nuclear reactor control rods preparation. The purification and separation of rare earth elements are challenging because of their similar chemical and physical properties. Among the various methods, membrane processes provide many advantages over the conventional separation processes such as ion exchange and solvent extraction. In this work, selective extraction and separation of dysprosium from aqueous solutions containing an equimolar mixture of dysprosium and neodymium by emulsion liquid membrane (ELM) was investigated. The organic membrane phase of the ELM was a nanofluid consisting of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as carrier, kerosene as base fluid, and nitric acid solution as internal aqueous phase. Factors affecting separation of dysprosium such as carrier concentration, MWCNT concentration, feed phase pH and stripping phase concentration were analyzed using Taguchi method. Optimal experimental condition was obtained using analysis of variance (ANOVA) after 10 min extraction. Based on the results, using MWCNT nanofluid in ELM process leads to increase the extraction due to higher stability of membrane and mass transfer enhancement and separation factor of 6 for dysprosium over neodymium can be achieved under the optimum conditions. Additionally, demulsification process was successfully performed and the membrane phase reused effectively in the optimum condition.Keywords: emulsion liquid membrane, MWCNT nanofluid, separation, Taguchi method
Procedia PDF Downloads 290754 Polymer Composites Of MOF-5 For Efficient and Sustained Delivery of Cephalexin and Metronidazole
Authors: Anoff Anim, Lila Mahmoud, Maria Katsikogianni, Sanjit Nayak
Abstract:
Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers, which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs and can be a potential strategy to integrate them in biomedical devices.Keywords: antimicrobial resistance, biodegradable polymers, cephalexin, drug release metronidazole, MOF-5, PCL, PLGA
Procedia PDF Downloads 138753 Promotional Effects of Zn in Cu-Zn/Core-Shell Al-MCM-41 for Selective Catalytic Reduction of NO with NH3: Acidic Properties, NOx Adsorption Properties, and Nature of Copper
Authors: Thidarat Imyen, Paisan Kongkachuichay
Abstract:
Cu-Zn/core-shell Al-MCM-41 catalyst with various copper species, prepared by a combination of three methods—substitution, ion-exchange, and impregnation, was studied for the selective catalytic reduction (SCR) of NO with NH3 at 300 °C for 150 min. In order to investigate the effects of Zn introduction on the nature of the catalyst, Cu/core-shell Al-MCM-41 and Zn/core-shell Al-MCM-41 catalysts were also studied. The roles of Zn promoter in the acidity and the NOx adsorption properties of the catalysts were investigated by in situ Fourier transform infrared spectroscopy (FTIR) of NH3 and NOx adsorption, and temperature-programmed desorption (TPD) of NH3 and NOx. The results demonstrated that the acidity of the catalyst was enhanced by the Zn introduction, as exchanged Zn(II) cations loosely bonded with Al-O-Si framework could create Brønsted acid sites by interacting with OH groups. Moreover, Zn species also provided the additional sites for NO adsorption in the form of nitrite (NO2–) and nitrate (NO3–) species, which are the key intermediates for SCR reaction. In addition, the effect of Zn on the nature of copper was studied by in situ FTIR of CO adsorption and in situ X-ray adsorption near edge structure (XANES). It was found that Zn species hindered the reduction of Cu(II) to Cu(0), resulting in higher Cu(I) species in the Zn promoted catalyst. The Cu-Zn/core-shell Al-MCM-41 exhibited higher catalytic activity compared with that of the Cu/core-shell Al-MCM-41 for the whole reaction time, as it possesses the highest amount of Cu(I) sites, which are responsible for SCR catalytic activity. The Cu-Zn/core-shell Al-MCM-41 catalyst also reached the maximum NO conversion of 100% with the average NO conversion of 76 %. The catalytic performance of the catalyst was further improved by using Zn promoter in the form of ZnO instead of reduced Zn species. The Cu-ZnO/core-shell Al-MCM-41 catalyst showed better catalytic performance with longer working reaction time, and achieved the average NO conversion of 81%.Keywords: Al-MCM-41, copper, nitrogen oxide, selective catalytic reduction, zinc
Procedia PDF Downloads 310752 Selection of Potential Starter Using Their Transcription Level
Authors: Elif Coskun Daggecen, Seyma Dokucu, Yekta Gezginc, Ismail Akyol
Abstract:
Fermented dairy food quality is mainly determined by the sensory perception and influenced by many factors. Today, starter cultures for fermented foods are being developed to have a constant quality in these foods. Streptococcus thermophilus is one of the main species of most a starter cultures of yogurt fermentation. This species produces lactate by lactose fermentation from pyruvate. On the other hand, a small amount of pyruvate can alternatively be converted to various typical yoghurt flavor compounds such as diacetyl, acetoin, acetaldehyde, or acetic acid, for which the activity of three genes are shown to be especially important; ldh, nox and als. Up to date, commercially produced yoghurts have not yet met the desired aromatic properties that Turkish consumers find in traditional homemade yoghurts. Therefore, it is important to select starters carrying favorable metabolic characteristics from natural isolates. In this study, 30 strains of Str. Thermophilus were isolated from traditional Turkish yoghurts obtained from different regions of the country. In these strains, transcriptional levels of ldh, nox and als genes were determined via a newly developed qPCR protocol, which is a more reliable and precision method for analyzing the quantitative and qualitative expression of specific genes in different experimental conditions or in different organisms compared to conventional analytical methods. Additionally, the metabolite production potentials of the isolates were measured. Of all the strains examined, 60% were found to carry the metabolite production potential and the gene activity which appeared to be suitable to be used as a starter culture. Probable starter cultures were determined according to real-time PCR results.Keywords: gene expression, RT-PCR, starter culture, Streptococcus thermophilus
Procedia PDF Downloads 191751 Biological Treatment of Corn Stover with Pleurotus ostreatus, Pleurotus eryngii and Lentinula edudes to Improve Digestibility
Authors: Aydan Atalar, Nurcan Cetinkaya
Abstract:
Corn stover is leftover of the leaves, stalk, husks and tassels in the field after harvesting the grain combined. Corn stover is a low-quality roughage but has mostly been used as roughage source for feeding ruminant animals in developing countries including Turkey; however, it can also be used to make biofuels as in developed countries. The objectives of the present study were to improve the digestibility of corn stover by the treatment of white rod fungus mainly Pleurotus osteritus (PO), Pleurotus eryingii (PE) and Lantinula edudes (LE) at different incubation times and also to determine the most effective fungus and incubation time to prepare fermeted corn stover for ruminant nutrition. The choped corn stover was treated with PO, PE and LE and incubated for 10, 20, 30 and 40 days in incubator at 26 0C. After each incubation time dry matter(DM), organic matter(OM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), neutral detergent lignin (ADL), in-vitro true dry matter digestibility (IVTDMD) and organic matter digestibility (IVTOMD) were determined. The mean IVTDMD and IVTOMD levels were increased by PO, PE and LE treatments in increasing order of incubation times. The obtained IVTDM values were 59.45, 60.51, 60.82 and 60.18 %; 59.45, 70.55, 67.18 and 66.96 %; 59.45, 70.55, 67.18 and 66,96 %; 59.45, 74.90, 69.18 % ; 59.45, 76.50, 71.24 and 73.04 for control, PO, PE and LE treatments at 0, 10, 20, 30 and 40 days incubation times respectively. The obtained IVTOMD values were 56.45,60.26,60.82and 60.18 %; 56.45, 68.70, 67.18 and 66.96 %; 56.45, 71.26, 69.18 and 69.28 %; 56.45, 73.23, 71.24 and 73.04 % for control, PO, PE and LE treatments at 0, 10, 20, 30 and 40 days incubation times respectively. The most effective fungus was PO and the incubation time was 30 days. In conclusion, PO treatment of corn stover with 30 days incubation may be used to prepare fermented corn stover for ruminant nutrition.Keywords: biological treatment, corn stover, digestibility, Lantinula edudes, Pleurotus eryingii, Pleurotus osteritus
Procedia PDF Downloads 249750 Biodegradable Polymer Composites of MOF-5 for Efficient and Sustained Delivery of Cephalexin and Metronidazole
Authors: Anoff Anim, Lila A. M. Mahmoud, Maria Katsikogianni, Sanjit Nayak
Abstract:
Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers, which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs and can be a potential strategy to integrate them in biomedical devices.Keywords: antimicrobial resistance, biodegradable polymers, cephalexin, drug release metronidazole, MOF-5, PCL, PLGA
Procedia PDF Downloads 146749 Re-Engineering of Traditional Indian Wadi into Ready-to-Use High Protein Quality and Fibre Rich Chunk
Authors: Radhika Jain, Sangeeta Goomer
Abstract:
In the present study an attempt has been made to re-engineer traditional wadi into wholesome ready-to-use cereal-pulse-based chunks rich in protein quality and fibre content. Chunks were made using extrusion-dehydration combination. Two formulations i.e., whole green gram dhal with instant oats and washed green gram dhal with whole oats were formulated. These chunks are versatile in nature as they can be easily incorporated in day-to-day home-made preparations such as pulao, potato curry and kadhi. Cereal-pulse ratio was calculated using NDpCal%. Limiting amino acids such as lysine, tryptophan, methionine, cysteine and threonine were calculated for maximum amino acid profile in cereal-pulse combination. Time-temperature combination for extrusion at 130oC and dehydration at 65oC for 7 hours and 15 minutes were standardized to obtain maximum protein and fibre content. Proximate analysis such as moisture, fat and ash content were analyzed. Protein content of formulation was 62.10% and 68.50% respectively. Fibre content of formulations was 2.99% and 2.45%, respectively. Using a 5-point hedonic scale, consumer preference trials of 102 consumers were conducted and analyzed. Evaluation of chunks prepared in potato curry, kadi and pulao showed preferences for colour 82%, 87%, 86%, texture and consistency 80%, 81%, 88%, flavour and aroma 74%, 82%, 86%, after taste 70%, 75%, 86% and overall acceptability 77%, 75%, 88% respectively. High temperature inactivates antinutritional compounds such as trypsin inhibitors, lectins, saponins etc. Hence, availability of protein content was increased. Developed products were palatable and easy to prepare.Keywords: extrusion, NDpCal%, protein quality, wadi
Procedia PDF Downloads 226748 Plasma-Assisted Nitrogen Fixation for the Elevation of Seed Germination and Plant Growth
Authors: Pradeep Lamichhane
Abstract:
Plasma-assisted nitrogen fixation is a process by which atomic nitrogen generated by plasma is converted into ammonia (NH₃) or related nitrogenous compounds. Nitrogen fixation is essential to plant because fixed inorganic nitrogen compounds are required to them for the biosynthesis of all nitrogen-containing organic compounds, such as amino acids and proteins, nucleoside triphosphates and nucleic acid. Most of our atmosphere is composed of nitrogen; however, the plant cannot absorb it directly from the air ambient. As a portion of the nitrogen cycle, nitrogen fixation fundamental for agriculture and the manufacture of fertilizer. In this study, plasma-assisted nitrogen fixation was performed by exposing a non-thermal atmospheric pressure nitrogen plasma generated a sinusoidal power supply (with an applied voltage of 10 kV and frequency of 33 kHz) on a water surface. Besides this, UV excitation of water molecules at the water interface was also done in order to disassociate water. Hydrogen and hydroxyl radical obtained from this UV photolysis electrochemically combine with nitrogen atom obtained from plasma. As a result of this, nitrogen fixation on plasma-activated water (PAW) significantly enhanced. The amount of nitrogen-based products like NOₓ and ammonia (NH₃) synthesized by this combined process of UV and plasma are 1.4 and 2.8 times higher than those obtained by plasma alone. In every 48 hours, 20 ml of plasma-activated water (pH≈3.15) for 10 minutes with moderate concentrations of NOₓ, NH₃ and hydrogen peroxide (H₂O₂) was irrigated on each corn plant (Zea Mays). It was found that the PAW has shown a significant impact on seeds germination rate and improved seedling growth. The result obtained from this experiment suggested that crop yield could increase in a short duration. In the future, this experiment could open boundless opportunities in plasma agriculture to mobilize nitrogen because nitrite, nitrate, and ammonia are more suitable for plant uptake.Keywords: plasma-assisted nitrogen fixation, nitrogen plasma, UV excitation of water, ammonia synthesis
Procedia PDF Downloads 142747 An Advanced Method of Plant Preservation and Colour Retention of Herbarium Specimens
Authors: Abduraheem K., Suboohi Nasrin
Abstract:
Herbaria are specimens of preserved plants, which are very delicate and cellulosic in nature. While these collections are very useful for the enrichment of knowledge and are considered as natural heritage of our entire world, it is very important to preserve and conserve them. The significance is not only to prevent the herbaria from the deterioration of biological agencies but also to preserve its colours and retain natural colour. Colour is not only characteristic of a plant, but it can also help to identify closely related species or to distinguish a plant from a collection of herbaria. Keeping this in mind, a selective solution has been prepared for the conservation and preservation of herbarium in the present study. In this, the quantity of all the selected chemicals, i.e., formaldehyde and copper sulphate was kept constant, and the solution was prepared by dissolving it in distilled water by increasing the amount of picric acid (1, 2, 3, 4, and 5 ml). Fresh specimens of roses and bougainvillea were washed with distilled water and kept in the above solution for 10 to 15 minutes at room temperature. After 10 minutes, the specimen was removed from the solution, dried with the help of paper, and then pressed under the plant press. Blotting sheets were used to absorb the moisture content and were changed every 2 to 3 days to protect against fungal growth. The results revealed that all solutions had insecticidal properties and protected the herbarium specimen against pests. While in the case of colour retention, solution-1 and 2 were not satisfactory colour preservation, and solutions-3 and 5 maintained the colour of rose and bougainvillea leaves for 15 to 20 days and for a month, respectively. After that, the colour begins to fade, and the process is faster in rose leaves than in bougainvillea. And it was also observed that the colour of young leaves started to fade before that of older leaves. When the leaves of rose and bougainvillea are treated with Solution-4, then the colour of rose leaves is maintained for six months.Keywords: solutions, colour retention, preservation and conservation, leaves of roses and bougainvillea
Procedia PDF Downloads 99746 Chemometric-Based Voltammetric Method for Analysis of Vitamins and Heavy Metals in Honey Samples
Authors: Marwa A. A. Ragab, Amira F. El-Yazbi, Amr El-Hawiet
Abstract:
The analysis of heavy metals in honey samples is crucial. When found in honey, they denote environmental pollution. Some of these heavy metals as lead either present at low or high concentrations are considered to be toxic. Other heavy metals, for example, copper and zinc, if present at low concentrations, they considered safe even vital minerals. On the contrary, if they present at high concentrations, they are toxic. Their voltammetric determination in honey represents a challenge due to the presence of other electro-active components as vitamins, which may overlap with the peaks of the metal, hindering their accurate and precise determination. The simultaneous analysis of some vitamins: nicotinic acid (B3) and riboflavin (B2), and heavy metals: lead, cadmium, and zinc, in honey samples, was addressed. The analysis was done in 0.1 M Potassium Chloride (KCl) using a hanging mercury drop electrode (HMDE), followed by chemometric manipulation of the voltammetric data using the derivative method. Then the derivative data were convoluted using discrete Fourier functions. The proposed method allowed the simultaneous analysis of vitamins and metals though their varied responses and sensitivities. Although their peaks were overlapped, the proposed chemometric method allowed their accurate and precise analysis. After the chemometric treatment of the data, metals were successfully quantified at low levels in the presence of vitamins (1: 2000). The heavy metals limit of detection (LOD) values after the chemometric treatment of data decreased by more than 60% than those obtained from the direct voltammetric method. The method applicability was tested by analyzing the selected metals and vitamins in real honey samples obtained from different botanical origins.Keywords: chemometrics, overlapped voltammetric peaks, derivative and convoluted derivative methods, metals and vitamins
Procedia PDF Downloads 154745 Effects of Ultraviolet Treatment on Microbiological Load and Phenolic Content of Vegetable Juice
Authors: Kubra Dogan, Fatih Tornuk
Abstract:
Due to increasing consumer demand for the high-quality food products and awareness regarding the health benefits of different nutrients in food minimal processing becomes more popular in modern food preservation. To date, heat treatment is often used for inactivation of spoilage microorganisms in foods. However, it may cause significant changes in the quality and nutritional properties of food. In order to overcome the detrimental effects of heat treatment, several alternatives of non-thermal microbial inactivation processes have been investigated. Ultraviolet (UV) inactivation is a promising and feasible method for better quality and longer shelf life as an alternative to heat treatment, which aims to inhibit spoilage and pathogenic microorganisms and to inactivate the enzymes in vegetable juice production. UV-C is a sub-class of UV treatment which shows the highest microcidal effect between 250-270 nm. The wavelength of 254 nm is used for the surface disinfection of certain liquid food products such as vegetable juice. Effects of UV-C treatment on microbiological load and quality parameter of vegetable juice which is a mix of celery, carrot, lemon and orange was investigated. Our results showed that storing of UV-C applied vegetable juice for three months, reduced the count of TMAB by 3.5 log cfu/g and yeast-mold by 2 log cfu/g compared to control sample. Total phenolic content was found to be 514.3 ± 0.6 mg gallic acid equivalent/L, and there wasn’t a significant difference compared to control. The present work suggests that UV-C treatment is an alternative method for disinfection of vegetable juice since it enables adequate microbial inactivation, longer shelf life and has minimal effect on degradation of quality parameters of vegetable juice.Keywords: heat treatment, phenolic content, shelf life, ultraviolet (UV-C), vegetable juice
Procedia PDF Downloads 211744 In Vitro Antioxidant and Free Radical Scavenging Activity of Phyllanthus Emblica L. Extract
Authors: Benyapa Suksuwan
Abstract:
Introduction: Oxidative stress is identified as the root cause of the development and progression of several diseases as the disproportion of free radicals in the body leads to tissue or cell damage. Polyphenols are the most common antioxidant found in plants and are efficient in capturing oxidative free radicals. Aim of the Study: This study focused on the antioxidant activity of polyphenols extracted from Phyllanthus Emblica L. as oxidative stress plays a vital role in developing and progressing many diseases, including cardiovascular diseases and cancer. Materials and Methods: The plant was extracted using a mixture solvent (ethyl alcohol: water in ratio 8:2). The total phenolic content of P. Emblica extract was determined using the Folin-Cioucalteu method and calculated as gallic acid equivalents (GAE) and various antioxidant assays DPPH and ABTS radical scavenging capacity assays. Results and Discussion: The findings exhibited a strong correlation between antioxidant activity and the total phenol contents. In addition, the IC₅₀ of P. Emblica extract via DPPH and ABTS assays were 68.10 μg/mL ± 0.455, and 49.24 μg/mL ± 0.716, respectively. Furthermore, P. Emblica extract showed antioxidant activities in a concentration-dependent manner. Vitamin C was used as a positive control in the DPPH assay, while Trolox was used as a positive control in the ABTS assay. Conclusions: In conclusion, P. Emblica extract consisted of a high amount of total phenolic content, which possesses potent antioxidant activity. However, further antioxidant activity assays using human cell lines such as SOD, ROS, and RNS scavenging assays and in vitro antioxidant experiments should be performed in order.Keywords: antioxidant, ABTS scavenging, DPPH scavenging assay, total phenol contents assay, Phyllanthus Emblica L
Procedia PDF Downloads 197