Search results for: machine readable format
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3349

Search results for: machine readable format

769 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference

Authors: Hussein Alahmer, Amr Ahmed

Abstract:

Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate.  This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.

Keywords: CAD system, difference of feature, fuzzy c means, lesion detection, liver segmentation

Procedia PDF Downloads 326
768 Comparison of Whole-Body Vibration and Plyometric Exercises on Explosive Power in Non-Athlete Girl Students

Authors: Fereshteh Zarei, Mahdi Kohandel

Abstract:

The aim of this study was investigate and compare plyometric and vibration exercises on muscle explosive power in non-athlete female students. For this purpose, 45 female students from non-athletes selected target then divided in to the three groups, two experimental and one control groups. From all groups were getting pre-tested. Experimental A did whole-body vibration exercises involved standing on one of machine vibration with frequency 30 Hz, amplitude 10 mm and in 5 different postures. Training for each position was 40 seconds with 60 seconds rest between it, and each season 5 seconds was added to duration of each body condition, until time up to 2 minutes for each postures. Exercises were done three times a week for 2 month. Experimental group B did plyometric exercises that include jumping, such as horizontal, vertical, and skipping .They included 10 times repeat for 5 set in each season. Intensity with increasing repetitions and sets were added. At this time, asked from control group that keep a daily activity and avoided strength training, explosive power and. after do exercises by groups we measured factors again. One-way analysis of variance and paired t statistical methods were used to analyze the data. There was significant difference in the amount of explosive power between the control and vibration groups (p=0/048) there was significant difference between the control and plyometric groups (019/0 = p). But between vibration and plyometric groups didn't observe significant difference in the amount of explosive power.

Keywords: vibration, plyometric, exercises, explosive power, non-athlete

Procedia PDF Downloads 453
767 Exploring Digital Media’s Impact on Sports Sponsorship: A Global Perspective

Authors: Sylvia Chan-Olmsted, Lisa-Charlotte Wolter

Abstract:

With the continuous proliferation of media platforms, there have been tremendous changes in media consumption behaviors. From the perspective of sports sponsorship, while there is now a multitude of platforms to create brand associations, the changing media landscape and shift of message control also mean that sports sponsors will have to take into account the nature of and consumer responses toward these emerging digital media to devise effective marketing strategies. Utilizing the personal interview methodology, this study is qualitative and exploratory in nature. A total of 18 experts from European and American academics, sports marketing industry, and sports leagues/teams were interviewed to address three main research questions: 1) What are the major changes in digital technologies that are relevant to sports sponsorship; 2) How have digital media influenced the channels and platforms of sports sponsorship; and 3) How have these technologies affected the goals, strategies, and measurement of sports sponsorship. The study found that sports sponsorship has moved from consumer engagement, engagement measurement, and consequences of engagement on brand behaviors to micro-targeting one on one, engagement by context, time, and space, and activation and leveraging based on tracking and databases. From the perspective of platforms and channels, the use of mobile devices is prominent during sports content consumption. Increasing multiscreen media consumption means that sports sponsors need to optimize their investment decisions in leagues, teams, or game-related content sources, as they need to go where the fans are most engaged in. The study observed an imbalanced strategic leveraging of technology and digital infrastructure. While sports leagues have had less emphasis on brand value management via technology, sports sponsors have been much more active in utilizing technologies like mobile/LBS tools, big data/user info, real-time marketing and programmatic, and social media activation. Regardless of the new media/platforms, the study found that integration and contextualization are the two essential means of improving sports sponsorship effectiveness through technology. That is, how sponsors effectively integrate social media/mobile/second screen into their existing legacy media sponsorship plan so technology works for the experience/message instead of distracting fans. Additionally, technological advancement and attention economy amplify the importance of consumer data gathering, but sports consumer data does not mean loyalty or engagement. This study also affirms the benefit of digital media as they offer viral and pre-event activations through storytelling way before the actual event, which is critical for leveraging brand association before and after. That is, sponsors now have multiple opportunities and platforms to tell stories about their brands for longer time period. In summary, digital media facilitate fan experience, access to the brand message, multiplatform/channel presentations, storytelling, and content sharing. Nevertheless, rather than focusing on technology and media, today’s sponsors need to define what they want to focus on in terms of content themes that connect with their brands and then identify the channels/platforms. The big challenge for sponsors is to play to the venues/media’s specificity and its fit with the target audience and not uniformly deliver the same message in the same format on different platforms/channels.

Keywords: digital media, mobile media, social media, technology, sports sponsorship

Procedia PDF Downloads 294
766 The Relationship between the Parameters of Laser 3D Printing of Titanium Alloy and Its Strength Properties

Authors: Lubov Magerramova, Vladimir Isakov, Michail Petrov

Abstract:

A methodology for calculating and modeling technological modes of laser 3D printing of Ti6Al4V powder alloy samples has been developed. ProXDPM320 3D printer was used. The technological model that takes into account the multifactorial influence of modes and conditions of additive cultivation on characteristics and strength properties of titanium samples has been created. Process control parameters and an order parameter, to which the others are subordinate, were established. Using the iterative method, the optimal technological parameters for the additive growth of cylindrical samples were calculated. The calculations were combined with data obtained during virtual 3D printing in the Altair Inspire software environment. The samples were subjected to short-term tensile strength tests at normal temperature on a servo-hydraulic machine “LFV-100”. As a result, deformation diagrams were constructed, and mechanical characteristics such as proportionality limit, conditional yield strength, tensile strength, elastic modulus, relative elongation, and stress at break were obtained. Comparison of these characteristics with those for the industrial alloy Ti6Al4V showed acceptable agreement. Some of the synthesized samples were subjected to laser shock treatment to increase fatigue strength. The results obtained were used to validate the mathematical model of 3D printing of titanium alloys.

Keywords: additive technology, titanium alloy, numerical simulation, strength tests

Procedia PDF Downloads 9
765 Potentials of Additive Manufacturing: An Approach to Increase the Flexibility of Production Systems

Authors: A. Luft, S. Bremen, N. Balc

Abstract:

The task of flexibility planning and design, just like factory planning, for example, is to create the long-term systemic framework that constitutes the restriction for short-term operational management. This is a strategic challenge since, due to the decision defect character of the underlying flexibility problem, multiple types of flexibility need to be considered over the course of various scenarios, production programs, and production system configurations. In this context, an evaluation model has been developed that integrates both conventional and additive resources on a basic task level and allows the quantification of flexibility enhancement in terms of mix and volume flexibility, complexity reduction, and machine capacity. The model helps companies to decide in early decision-making processes about the potential gains of implementing additive manufacturing technologies on a strategic level. For companies, it is essential to consider both additive and conventional manufacturing beyond pure unit costs. It is necessary to achieve an integrative view of manufacturing that incorporates both additive and conventional manufacturing resources and quantifies their potential with regard to flexibility and manufacturing complexity. This also requires a structured process for the strategic production systems design that spans the design of various scenarios and allows for multi-dimensional and comparative analysis. A respective guideline for the planning of additive resources on a strategic level is being laid out in this paper.

Keywords: additive manufacturing, production system design, flexibility enhancement, strategic guideline

Procedia PDF Downloads 124
764 Customized Design of Amorphous Solids by Generative Deep Learning

Authors: Yinghui Shang, Ziqing Zhou, Rong Han, Hang Wang, Xiaodi Liu, Yong Yang

Abstract:

The design of advanced amorphous solids, such as metallic glasses, with targeted properties through artificial intelligence signifies a paradigmatic shift in physical metallurgy and materials technology. Here, we developed a machine-learning architecture that facilitates the generation of metallic glasses with targeted multifunctional properties. Our architecture integrates the state-of-the-art unsupervised generative adversarial network model with supervised models, allowing the incorporation of general prior knowledge derived from thousands of data points across a vast range of alloy compositions, into the creation of data points for a specific type of composition, which overcame the common issue of data scarcity typically encountered in the design of a given type of metallic glasses. Using our generative model, we have successfully designed copper-based metallic glasses, which display exceptionally high hardness or a remarkably low modulus. Notably, our architecture can not only explore uncharted regions in the targeted compositional space but also permits self-improvement after experimentally validated data points are added to the initial dataset for subsequent cycles of data generation, hence paving the way for the customized design of amorphous solids without human intervention.

Keywords: metallic glass, artificial intelligence, mechanical property, automated generation

Procedia PDF Downloads 57
763 Influence of Displacement Amplitude and Vertical Load on the Horizontal Dynamic and Static Behavior of Helical Wire Rope Isolators

Authors: Nicolò Vaiana, Mariacristina Spizzuoco, Giorgio Serino

Abstract:

In this paper, the results of experimental tests performed on a Helical Wire Rope Isolator (HWRI) are presented in order to describe the dynamic and static behavior of the selected metal device in three different displacements ranges, namely small, relatively large, and large displacements ranges, without and under the effect of a vertical load. A testing machine, allowing to apply horizontal displacement or load histories to the tested bearing with a constant vertical load, has been adopted to perform the dynamic and static tests. According to the experimental results, the dynamic behavior of the tested device depends on the applied displacement amplitude. Indeed, the HWRI displays a softening and a hardening stiffness at small and relatively large displacements, respectively, and a stronger nonlinear stiffening behavior at large displacements. Furthermore, the experimental tests reveal that the application of a vertical load allows to have a more flexible device with higher damping properties and that the applied vertical load affects much less the dynamic response of the metal device at large displacements. Finally, a decrease in the static to dynamic effective stiffness ratio with increasing displacement amplitude has been observed.

Keywords: base isolation, earthquake engineering, experimental hysteresis loops, wire rope isolators

Procedia PDF Downloads 434
762 Performance Evaluation of Iar Multi Crop Thresher

Authors: Idris Idris Sunusi, U.S. Muhammed, N.A. Sale, I.B. Dalha, N.A. Adam

Abstract:

Threshing efficiency and mechanical grain damages are among the important parameters used in rating the performance of agricultural threshers. To be acceptable to farmers, threshers should have high threshing efficiency and low grain. The objective of the research is to evaluate the performances of the thresher using sorghum and millet, the performances parameters considered are; threshing efficiency and mechanical grain damage. For millet, four drum speed levels; 700, 800, 900 and 1000 rpm were considered while for sorghum; 600, 700, 800 and 900 rpm were considered. The feed rate levels were 3, 4, 5 and 6 kg/min for both sorghum and millet; the levels of moisture content were 8.93 and 10.38% for sorghum and 9.21 and 10.81% for millet. For millet the test result showed a maximum of 98.37 threshing efficiencies and a minimum of 0.24% mechanical grain damage while for sorghum the test result indicated a maximum of 99.38 threshing efficiencies, and a minimum of 0.75% mechanical grain damage. In comparison to the previous thresher, the threshing efficiency and mechanical grain damage of the modified machine has improved by 2.01% and 330.56% for millet and 5.31%, 287.64% for sorghum. Also analysis of variance (ANOVA) showed that, the effect of drum speed, feed rate and moisture content were significant on the performance parameters.

Keywords: Threshing Efficiency, Mechanical Grain Damages, Sorghum and Millet, Multi Crop Thresher

Procedia PDF Downloads 351
761 When the ‘Buddha’s Tree Itself Becomes a Rhizome’: The Religious Itinerant, Nomad Science and the Buddhist State

Authors: James Taylor

Abstract:

This paper considers the political, geo-philosophical musings of Deleuze and Guattari on spatialisation, place and movement in relation to the religious nomad (wandering ascetics and reclusive forest monks) inhabiting the borderlands of Thailand. A nomadic science involves improvised ascetic practices between the molar lines striated by modern state apparatuses. The wandering ascetics, inhabiting a frontier political ecology, stand in contrast to the appropriating, sedentary metaphysics and sanctifying arborescence of statism and its corollary place-making, embedded in rootedness and territorialisation. It is argued that the religious nomads, residing on the endo-exteriorities of the state, came to represent a rhizomatic and politico-ontological threat to centre-nation and its apparatus of capture. The paper also theorises transitions and movement at the borderlands in the context of the state’s monastic reforms. These reforms, and its pervasive royal science, problematised the interstitial zones of the early ascetic wanderers in their radical cross-cutting networks and lines, moving within and across demarcated frontiers. Indeed, the ascetic wanderers and their allegorical war machine were seen as a source of wild, free-floating charisma and mystical power, eventually appropriated by the centre-nation in it’s becoming unitary and fixed.

Keywords: Deleuze and Guattari, religious nomad, centre-nation, borderlands, Buddhism

Procedia PDF Downloads 86
760 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks

Authors: Khalid Ali, Manar Jammal

Abstract:

In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.

Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity

Procedia PDF Downloads 228
759 Development and Power Characterization of an IoT Network for Agricultural Imaging Applications

Authors: Jacob Wahl, Jane Zhang

Abstract:

This paper describes the development and characterization of a prototype IoT network for use with agricultural imaging and monitoring applications. The sensor and gateway nodes are designed using the ESP32 SoC with integrated Bluetooth Low Energy 4.2 and Wi-Fi. A development board, the Arducam IoTai ESP32, is used for prototyping, testing, and power measurements. Google’s Firebase is used as the cloud storage site for image data collected by the sensor. The sensor node captures images using the OV2640 2MP camera module and transmits the image data to the gateway via Bluetooth Low Energy. The gateway then uploads the collected images to Firebase via a known nearby Wi-Fi network connection. This image data can then be processed and analyzed by computer vision and machine learning pipelines to assess crop growth or other needs. The sensor node achieves a wireless transmission data throughput of 220kbps while consuming 150mA of current; the sensor sleeps at 162µA. The sensor node device lifetime is estimated to be 682 days on a 6600mAh LiPo battery while acquiring five images per day based on the development board power measurements. This network can be utilized by any application that requires high data rates, low power consumption, short-range communication, and large amounts of data to be transmitted at low-frequency intervals.

Keywords: Bluetooth low energy, ESP32, firebase cloud, IoT, smart farming

Procedia PDF Downloads 140
758 The Analysis Fleet Operational Performance as an Indicator of Load and Haul Productivity

Authors: Linet Melisa Daubanes, Nhleko Monique Chiloane

Abstract:

The shovel-truck system is the most prevalent material handling system used in surface mining operations. Material handling entails the loading and hauling of material from production areas to dumping areas. The material handling process has operational delays that have a negative impact on the productivity of the load and haul fleet. Factors that may contribute to operational delays include shovel-truck mismatch, haul routes, machine breakdowns, extreme weather conditions, etc. The aim of this paper is to investigate factors that contribute to operational delays affecting the productivity of the load and haul fleet at the mine. Productivity is the measure of the effectiveness of producing products from a given quantity of units, the ratio of output to inputs. Productivity can be improved by producing more outputs with the same or fewer units and/or introducing better working methods etc. Several key performance indicators (KPI) for the evaluation of productivity will be discussed in this study. These KPIs include but are not limited to hauling conditions, bucket fill factor, cycle time, and utilization. The research methodology of this study is a combination of on-site time studies and observations. Productivity can be optimized by managing the factors that affect the operational performance of the haulage fleet.

Keywords: cycle time, fleet performance, load and haul, surface mining

Procedia PDF Downloads 199
757 Random Forest Classification for Population Segmentation

Authors: Regina Chua

Abstract:

To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.

Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling

Procedia PDF Downloads 95
756 Sustainable Manufacturing of Solenoid Valve Housing in Fiji: Fused Deposition Modeling (FDM) and Emergy Analysis

Authors: M. Hisham, S. Cabemaiwai, S. Prasad, T. Dauvakatini, R. Ananthanarayanan

Abstract:

A solenoid valve is an important part of many fluid systems. Its purpose is to regulate fluid flow in a machine. Due to the crucial role of the solenoid valve and its design intricacy, it is quite expensive to obtain in Fiji and is not manufactured locally. A concern raised by the local health industry is that the housing of the solenoid valve gets damaged when machines are continuously being used and this part of the valve is very costly to replace due to the lack of availability in Fiji and many other South Pacific region countries. This study explores the agile manufacturing of a solenoid coil housing using the Fused Deposition Modeling (FDM) process. An emergy study was carried out to analyze the feasibility and sustainability of producing the part locally after estimating a Unit Emergy Value (or emergy transformity) of 1.27E+05 sej/j for the electricity in Fiji. The total emergy of the process was calculated to be 3.05E+12 sej, of which a majority was sourced from imported services and materials. Renewable emergy sources contributed to just 16.04% of the total emergy. Therefore, the part is suitable to be manufactured in Fiji with a reasonable quality and a cost of $FJ 2.85. However, the loading on the local environment is found to be significant and therefore, alternative raw materials for the filament like recycled PET should be explored or alternative manufacturing processes may be analyzed before committing to fabricating the part using FDM in its analyzed state.

Keywords: emergy analysis, fused deposition modeling, solenoid valve housing, sustainable production

Procedia PDF Downloads 35
755 Design of an Ensemble Learning Behavior Anomaly Detection Framework

Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia

Abstract:

Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.

Keywords: cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing

Procedia PDF Downloads 128
754 Wind Tunnel Tests on Ground-Mounted and Roof-Mounted Photovoltaic Array Systems

Authors: Chao-Yang Huang, Rwey-Hua Cherng, Chung-Lin Fu, Yuan-Lung Lo

Abstract:

Solar energy is one of the replaceable choices to reduce the CO2 emission produced by conventional power plants in the modern society. As an island which is frequently visited by strong typhoons and earthquakes, it is an urgent issue for Taiwan to make an effort in revising the local regulations to strengthen the safety design of photovoltaic systems. Currently, the Taiwanese code for wind resistant design of structures does not have a clear explanation on photovoltaic systems, especially when the systems are arranged in arrayed format. Furthermore, when the arrayed photovoltaic system is mounted on the rooftop, the approaching flow is significantly altered by the building and led to different pressure pattern in the different area of the photovoltaic system. In this study, L-shape arrayed photovoltaic system is mounted on the ground of the wind tunnel and then mounted on the building rooftop. The system is consisted of 60 PV models. Each panel model is equivalent to a full size of 3.0 m in depth and 10.0 m in length. Six pressure taps are installed on the upper surface of the panel model and the other six are on the bottom surface to measure the net pressures. Wind attack angle is varied from 0° to 360° in a 10° interval for the worst concern due to wind direction. The sampling rate of the pressure scanning system is set as high enough to precisely estimate the peak pressure and at least 20 samples are recorded for good ensemble average stability. Each sample is equivalent to 10-minute time length in full scale. All the scale factors, including timescale, length scale, and velocity scale, are properly verified by similarity rules in low wind speed wind tunnel environment. The purpose of L-shape arrayed system is for the understanding the pressure characteristics at the corner area. Extreme value analysis is applied to obtain the design pressure coefficient for each net pressure. The commonly utilized Cook-and-Mayne coefficient, 78%, is set to the target non-exceedance probability for design pressure coefficients under Gumbel distribution. Best linear unbiased estimator method is utilized for the Gumbel parameter identification. Careful time moving averaging method is also concerned in data processing. Results show that when the arrayed photovoltaic system is mounted on the ground, the first row of the panels reveals stronger positive pressure than that mounted on the rooftop. Due to the flow separation occurring at the building edge, the first row of the panels on the rooftop is most in negative pressures; the last row, on the other hand, shows positive pressures because of the flow reattachment. Different areas also have different pressure patterns, which corresponds well to the regulations in ASCE7-16 describing the area division for design values. Several minor observations are found according to parametric studies, such as rooftop edge effect, parapet effect, building aspect effect, row interval effect, and so on. General comments are then made for the proposal of regulation revision in Taiwanese code.

Keywords: aerodynamic force coefficient, ground-mounted, roof-mounted, wind tunnel test, photovoltaic

Procedia PDF Downloads 139
753 Estimating Anthropometric Dimensions for Saudi Males Using Artificial Neural Networks

Authors: Waleed Basuliman

Abstract:

Anthropometric dimensions are considered one of the important factors when designing human-machine systems. In this study, the estimation of anthropometric dimensions has been improved by using Artificial Neural Network (ANN) model that is able to predict the anthropometric measurements of Saudi males in Riyadh City. A total of 1427 Saudi males aged 6 to 60 years participated in measuring 20 anthropometric dimensions. These anthropometric measurements are considered important for designing the work and life applications in Saudi Arabia. The data were collected during eight months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining 15 dimensions were set to be the measured variables (Model’s outcomes). The hidden layers varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was able to estimate the body dimensions of Saudi male population in Riyadh City. The network's mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found to be 0.0348 and 3.225, respectively. These results were found less, and then better, than the errors found in the literature. Finally, the accuracy of the developed neural network was evaluated by comparing the predicted outcomes with regression model. The ANN model showed higher coefficient of determination (R2) between the predicted and actual dimensions than the regression model.

Keywords: artificial neural network, anthropometric measurements, back-propagation

Procedia PDF Downloads 488
752 The Impact of Cybercrime on Youth Development in Nigeria

Authors: Christiana Ebobo

Abstract:

Cybercrime consists of numerous crimes that are perpetrated on the internet on daily basis. The forms include but not limited to Identity theft, Pretentious dating, Desktop counterfeiting, Internet chat room, Cyber harassment, Fraudulent electronic mails, Automated Teller Machine Spoofing, Pornography, Piracy, Hacking, Credit card frauds, Phishing and Spamming. The general term used among the youths for this type of crime in Nigeria is ‘Yahoo Yahoo’. Cybercrime is on the increase among the youths at all levels as such this study aims at examining the impact of cybercrime on youth development in Nigeria. The study examines the impact of cybercrime on youths’ academic performance, integrity, employment and religious practices. The study is a survey which made use of questionnaire and focus group discussion among 150 randomly selected youths in Gwagwalada LCDA, Federal Capital Territory, Nigeria. The study adopts the systems theory as its theoretical framework. The study also adopts the simple frequency table and percentage for its data analysis. The study reveals that cybercrime has eaten deep into the minds of some youths and some of them are practicing diabolic means to succeed in it. It is also reveals that majority (68%) of the respondents believe that cybercrime impacts negatively on youths’ academic performance in Nigeria. The major recommendation of this study is that cybercrime offenders should be treated like armed robbers in order to discourage other youths from getting involved in it.

Keywords: armed robber, cybercrime, integrity, youth

Procedia PDF Downloads 528
751 A Detailed Experimental Study and Evaluation of Springback under Stretch Bending Process

Authors: A. Soualem

Abstract:

The design of multi stage deep drawing processes requires the evaluation of many process parameters such as the intermediate die geometry, the blank shape, the sheet thickness, the blank holder force, friction, lubrication etc..These process parameters have to be determined for the optimum forming conditions before the process design. In general sheet metal forming may involve stretching drawing or various combinations of these basic modes of deformation. It is important to determine the influence of the process variables in the design of sheet metal working process. Especially, the punch and die corner for deep drawing will affect the formability. At the same time the prediction of sheet metals springback after deep drawing is an important issue to solve for the control of manufacturing processes. Nowadays, the importance of this problem increases because of the use of steel sheeting with high stress and also aluminum alloys. The aim of this paper is to give a better understanding of the springback and its effect in various sheet metals forming process such as expansion and restraint deep drawing in the cup drawing process, by varying radius die, lubricant for two commercially available materials e.g. galvanized steel and Aluminum sheet. To achieve these goals experiments were carried out and compared with other results. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback.

Keywords: springback, deep drawing, expansion, restricted deep drawing

Procedia PDF Downloads 455
750 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing

Authors: Aleksandra Zysk, Pawel Badura

Abstract:

Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.

Keywords: classification, singing, spectral analysis, vocal emission, vocal register

Procedia PDF Downloads 305
749 Development of Building Information Modeling in Property Industry: Beginning with Building Information Modeling Construction

Authors: B. Godefroy, D. Beladjine, K. Beddiar

Abstract:

In France, construction BIM actors commonly evoke the BIM gains for exploitation by integrating of the life cycle of a building. The standardization of level 7 of development would achieve this stage of the digital model. The householders include local public authorities, social landlords, public institutions (health and education), enterprises, facilities management companies. They have a dual role: owner and manager of their housing complex. In a context of financial constraint, the BIM of exploitation aims to control costs, make long-term investment choices, renew the portfolio and enable environmental standards to be met. It assumes a knowledge of the existing buildings, marked by its size and complexity. The information sought must be synthetic and structured, it concerns, in general, a real estate complex. We conducted a study with professionals about their concerns and ways to use it to see how householders could benefit from this development. To obtain results, we had in mind the recurring interrogation of the project management, on the needs of the operators, we tested the following stages: 1) Inculcate a minimal culture of BIM with multidisciplinary teams of the operator then by business, 2) Learn by BIM tools, the adaptation of their trade in operations, 3) Understand the place and creation of a graphic and technical database management system, determine the components of its library so their needs, 4) Identify the cross-functional interventions of its managers by business (operations, technical, information system, purchasing and legal aspects), 5) Set an internal protocol and define the BIM impact in their digital strategy. In addition, continuity of management by the integration of construction models in the operation phase raises the question of interoperability in the control of the production of IFC files in the operator’s proprietary format and the export and import processes, a solution rivaled by the traditional method of vectorization of paper plans. Companies that digitize housing complex and those in FM produce a file IFC, directly, according to their needs without recourse to the model of construction, they produce models business for the exploitation. They standardize components, equipment that are useful for coding. We observed the consequences resulting from the use of the BIM in the property industry and, made the following observations: a) The value of data prevail over the graphics, 3D is little used b) The owner must, through his organization, promote the feedback of technical management information during the design phase c) The operator's reflection on outsourcing concerns the acquisition of its information system and these services, observing the risks and costs related to their internal or external developments. This study allows us to highlight: i) The need for an internal organization of operators prior to a response to the construction management ii) The evolution towards automated methods for creating models dedicated to the exploitation, a specialization would be required iii) A review of the communication of the project management, management continuity not articulating around his building model, it must take into account the environment of the operator and reflect on its scope of action.

Keywords: information system, interoperability, models for exploitation, property industry

Procedia PDF Downloads 145
748 Spatiotemporal Analysis of Visual Evoked Responses Using Dense EEG

Authors: Rima Hleiss, Elie Bitar, Mahmoud Hassan, Mohamad Khalil

Abstract:

A comprehensive study of object recognition in the human brain requires combining both spatial and temporal analysis of brain activity. Here, we are mainly interested in three issues: the time perception of visual objects, the ability of discrimination between two particular categories (objects vs. animals), and the possibility to identify a particular spatial representation of visual objects. Our experiment consisted of acquiring dense electroencephalographic (EEG) signals during a picture-naming task comprising a set of objects and animals’ images. These EEG responses were recorded from nine participants. In order to determine the time perception of the presented visual stimulus, we analyzed the Event Related Potentials (ERPs) derived from the recorded EEG signals. The analysis of these signals showed that the brain perceives animals and objects with different time instants. Concerning the discrimination of the two categories, the support vector machine (SVM) was applied on the instantaneous EEG (excellent temporal resolution: on the order of millisecond) to categorize the visual stimuli into two different classes. The spatial differences between the evoked responses of the two categories were also investigated. The results showed a variation of the neural activity with the properties of the visual input. Results showed also the existence of a spatial pattern of electrodes over particular regions of the scalp in correspondence to their responses to the visual inputs.

Keywords: brain activity, categorization, dense EEG, evoked responses, spatio-temporal analysis, SVM, time perception

Procedia PDF Downloads 423
747 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management

Authors: M. Graus, K. Westhoff, X. Xu

Abstract:

The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.

Keywords: data analytics, green production, industrial energy management, optimization, renewable energies, simulation

Procedia PDF Downloads 436
746 Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets

Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can

Abstract:

This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes.

Keywords: tri-metallic, upsetting, copper, brass, steel, aluminum

Procedia PDF Downloads 342
745 Optimization of Alkali Silicate Glass Heat Treatment for the Improvement of Thermal Expansion and Flexural Strength

Authors: Stephanie Guerra-Arias, Stephani Nevarez, Calvin Stewart, Rachel Grodsky, Denis Eichorst

Abstract:

The objective of this study is to describe the framework for optimizing the heat treatment of alkali silicate glasses, to enhance the performance of hermetic seals in extreme environments. When connectors are exposed to elevated temperatures, residual stresses develop due to the mismatch of thermal expansions between the glass, metal pin, and metal shell. Excessive thermal expansion mismatch compromises the reliability of hermetic seals. In this study, a series of heat treatment schedules will be performed on two commercial sealing glasses (one conventional sealing glass and one crystallizable sealing glass) using a design of experiments (DOE) approach. The coefficient of thermal expansion (CTE) will be measured pre- and post-heat treatment using thermomechanical analysis (TMA). Afterwards, the flexural strength of the specimen will be measured using a four-point bend fixture mounted in a static universal testing machine. The measured material properties will be statistically analyzed using MiniTab software to determine which factors of the heat treatment process have a strong correlation to the coefficient of thermal expansion and/or flexural strength. Finally, a heat-treatment will be designed and tested to ensure the optimal performance of the hermetic seals in connectors.

Keywords: glass-ceramics, design of experiment, hermetic connectors, material characterization

Procedia PDF Downloads 151
744 Diversity Indices as a Tool for Evaluating Quality of Water Ways

Authors: Khadra Ahmed, Khaled Kheireldin

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: planktons, diversity indices, water quality index, water ways

Procedia PDF Downloads 519
743 The Impact of a Simulated Teaching Intervention on Preservice Teachers’ Sense of Professional Identity

Authors: Jade V. Rushby, Tony Loughland, Tracy L. Durksen, Hoa Nguyen, Robert M. Klassen

Abstract:

This paper reports a study investigating the development and implementation of an online multi-session ‘scenario-based learning’ (SBL) program administered to preservice teachers in Australia. The transition from initial teacher education to the teaching profession can present numerous cognitive and psychological challenges for early career teachers. Therefore, the identification of additional supports, such as scenario-based learning, that can supplement existing teacher education programs may help preservice teachers to feel more confident and prepared for the realities and complexities of teaching. Scenario-based learning is grounded in situated learning theory which holds that learning is most powerful when it is embedded within its authentic context. SBL exposes participants to complex and realistic workplace situations in a supportive environment and has been used extensively to help prepare students in other professions, such as legal and medical education. However, comparatively limited attention has been paid to investigating the effects of SBL in teacher education. In the present study, the SBL intervention provided participants with the opportunity to virtually engage with school-based scenarios, reflect on how they might respond to a series of plausible response options, and receive real-time feedback from experienced educators. The development process involved several stages, including collaboration with experienced educators to determine the scenario content based on ‘critical incidents’ they had encountered during their teaching careers, the establishment of the scoring key, the development of the expert feedback, and an extensive review process to refine the program content. The 4-part SBL program focused on areas that can be challenging in the beginning stages of a teaching career, including managing student behaviour and workload, differentiating the curriculum, and building relationships with colleagues, parents, and the community. Results from prior studies implemented by the research group using a similar 4-part format have shown a statistically significant increase in preservice teachers’ self-efficacy and classroom readiness from the pre-test to the final post-test. In the current research, professional teaching identity - incorporating self-efficacy, motivation, self-image, satisfaction, and commitment to teaching - was measured over six weeks at multiple time points: before, during, and after the 4-part scenario-based learning program. Analyses included latent growth curve modelling to assess the trajectory of change in the outcome variables throughout the intervention. The paper outlines (1) the theoretical underpinnings of SBL, (2) the development of the SBL program and methodology, and (3) the results from the study, including the impact of the SBL program on aspects of participating preservice teachers’ professional identity. The study shows how SBL interventions can be implemented alongside the initial teacher education curriculum to help prepare preservice teachers for the transition from student to teacher.

Keywords: classroom simulations, e-learning, initial teacher education, preservice teachers, professional learning, professional teaching identity, scenario-based learning, teacher development

Procedia PDF Downloads 72
742 Selective Laser Melting (SLM) Process and Its Influence on the Machinability of TA6V Alloy

Authors: Rafał Kamiński, Joel Rech, Philippe Bertrand, Christophe Desrayaud

Abstract:

Titanium alloys are among the most important material in the aircraft industry, due to its low density, high strength, and corrosion resistance. However, these alloys are considered as difficult to machine because they have poor thermal properties and high reactivity with cutting tools. The Selective Laser Melting (SLM) process becomes even more popular through industry since it enables the design of new complex components, that cannot be manufactured by standard processes. However, the high temperature reached during the melting phase as well as the several rapid heating and cooling phases, due to the movement of the laser, induce complex microstructures. These microstructures differ from conventional equiaxed ones obtained by casting+forging. Parts obtained by SLM have to be machined in order calibrate the dimensions and the surface roughness of functional surfaces. The ball milling technique is widely applied to finish complex shapes. However, the machinability of titanium is strongly influenced by the microstructure. So the objective of this work is to investigate the influence of the SLM process, i.e. microstructure, on the machinability of titanium, compared to conventional forming processes. The machinability is analyzed by measuring surface roughness, cutting forces, cutting tool wear for a range of cutting conditions (depth of cut ap, feed per tooth fz, spindle speed N) in accordance with industrial practices.

Keywords: ball milling, microstructure, surface roughness, titanium

Procedia PDF Downloads 298
741 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm

Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn

Abstract:

Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.

Keywords: binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct

Procedia PDF Downloads 227
740 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home

Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.

Keywords: situation-awareness, smart home, IoT, machine learning, classifier

Procedia PDF Downloads 422